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Abstract

Surface evolution has been used for various applications, such as numerical construction
of minimal surfaces (Truss structure design), point cloud meshing, and quad remeshing of
triangular meshes. We present a novel approach with all its current limitations to remeshing
of polygonal geometries governed by evolution equation: ∂tF = vN + vT where F is the
immersion of the evolving manifolds into R3, that is: the time-dependent state of the evolving
surface, and vN with vT are the normal and tangential velocities respectively. Evolution
in the normal direction is controlled by mean curvature (Laplace-Beltrami operator), and
preferred gradient field −∇d in R3 of the (signed) distance function d of the original mesh.
Tangential velocity vT is given by area-based, length-based, and angle-based redistribution
of mesh vertices, which inherently controls the polygonal density in target regions of the
surface.

Keywords - remeshing, surface evolution, immersion, Laplace-Beltrami operator, signed distance func-

tion, tangential redistribution



Abstrakt

Evolúcia plôch má už viacero aplikácii, ako napŕıklad numerická konštrukcia minimálnych
plôch (dizajn Trussových štruktúr), triangulácia dát vo forme mračna bodov, alebo aj
remeshing trojuholńıkovej na optimálnu štvoruholńıkovú sieť. Aj s jeho súčasnými obmedzeni-
ami v tejto práci ukazujeme nový pŕıstup k optimalizácii n-uholńıkových geometrii (n = 3, 4),
riadenej evolučnou rovnicou: ∂tF = vN + vT kde F je vnorenie vyv́ıjajúcej sa variety do R3,
teda časovo-závislý stav vyv́ıjajúcej sa plochy v priestore a vN s vT sú normálová a dotyková
(tangenciálna) rýchlosť. Evolúcia v normálovom smere je kontrolovaná strednou krivosťou
(Laplace-Beltramiho operátor) a zvoleným gradientným pǒlom −∇d v R3 (znamienkovej)
vzdialenostnej funkcie d pôvodnej siete. Tangenciálna rýchlosť vT je určená redistribúciou
uzlových bodov poďla plôch n-uholńıkov, d́lžok hrán a vnútorných uhlov, čo zabezpečuje
kontrolu hustoty n-uholńıkov v ciělových oblastiach plochy.

Kľúčové slová - remeshing, evolúcia plôch, vnorenie, Laplace-Beltramiho operátor, znamienková vzdi-

alenostná funkcia, tangenciálna redistribúcia
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A Word on Notation

This chapter is recommended for readers who may find the notation in this thesis in contrast with their

preferred symbols. We adopt a combination of notational approaches mainly from textbooks on differential

geometry, algebra, and analysis. The notation is chosen, so that symbols do not conflict, at least within

chapters, and if they do, the reader is notified.

Number fields are denoted with blackboard bold symbols: N (natural numbers), Z (whole numbers),

Q (rational numbers), R (real numbers), and C (complex numbers). Their particular restrictions are then

expressed in upper and lower indices, for example R+
0 stands for positive real numbers including zero (non-

negative). Cartesian product producing pairs (x, y) (as well as n-tuples (x1, ..., xn)) between sets is marked

with X × Y .

We make use of the standard set-theoretic notation: ∈ (element of), /∈ (not an element of), ⊂ (proper

subset of), ⊆ (subset of or equal to) etc. Including their reversed versions. Individual sets have different

symbols, depending on their context. Topological spaces and manifolds are marked with capital X, Y , Z

etc. while their subsets are in caligraphic capital letters U , V. Sets defined by elements with particular

attributes are marked as {x | P (x)}, that is ”elements x such that P (x)” where P is a predicate (statement

about the nature of x). Intervals in R follow: [a, b] (closed), [a, b[ (closed in a, open in b), ]a, b] (open in a,

closed in b), and ]a, b[ (open), to avoid confusion between a pair (a, b) and an open interval.

Mappings between sets X and Y are marked with arrows f : X → Y (f maps set X to Y ) and by

elements f : x 7→ f(x) (f maps x ∈ X onto f(x) ∈ Y ). Occasionally, if we require a concise note that f is a

linear map, we write f : X
lin→ Y . Unary operators ”act” on set elements from the right: fx or are marked

as mapped values f(x). A mapping is an object fundamentally different from its image of the particular

element f(x). Specific operators (especially those which process tuples of elements) can be written in their

”evaluating form” f(·) using dots for missing arguments, for example b = b(·, ·) : V × V → F is a viable

notation for a bilinear form processing two vectors form V . The image of a set U ⊆ X by f is marked

with brackets: Imf [U ] = f [U ], to denote the difference between mapping an element, and mapping a set. If

we do not want to restrict ourselves to a particular subset of the domain X, we can put f [X] = Im(f). A

composition of mappings f : X → Y and g : Z → W , where Z ⊆ Im(f) is marked by ◦ operator ”in order

of acting”, that is: if element w = g(f(x)) ∈W then we put w = (g ◦ f)(x).

As for binary operators, we use standard notation for operations in number fields and vector spaces,

unless we intend to emphasize the difference between operations in respective spaces, for example: u+ v =

u ⊕ v = u ⊕V v which emphasizes that the addition is carried out on the vector space structure of V (and

u, v ∈ V ). Whenever a ”matrix approach” to algebra is required, vectors (column by default) from Rn are

in bold: x = (x1, x2, x3)>, including respective matrix operators on them: Ax = b.

Vector spaces on fields are usually marked with the number field F they are constructed on: Fn =

F× ...× F︸ ︷︷ ︸
n-times

where n ∈ N denotes its dimension (sometimes we use d as ”dimension” while n is used for

indexing). The notation for inner products can change depending on the setting. 〈u, v〉 denotes standard
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inner product in Rn. However, we use ”dot” x · y as for dot product (especially in 2D and 3D spaces R2,

R3), while the bracket notation is resorted to higher-dimensional abstract vector spaces, sometimes with an

emphasis 〈·, ·〉V on a particular vector space where this inner product is defined. Similarly, we put manifold

symbols as lower indices for metric gX(·, ·) to show that it is constructed on a manifold X.

In some instances, we follow the Einstein summation rule to express linear combinations of higher-

dimensional objects: v1ê1 + ... + vnên = viêi, which helps in higher order expansions, especially when

deriving results based on the multi-linearity of forms on manifolds. A new index, within bounds, but

generally unrelated to the original indexing, is created for each expansion. Upper and lower expansion

indices often ”cancel out” to produce a single object. We also use the Kronecker delta: δji = 1 (if i = j) and

δji = 0 (otherwise).
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Chapter 1

Introduction to Modern Remeshing

Techniques in Computer Graphics

Almost all computer-generated surface models ever rendered on a screen are composed of triangular

elements. Perhaps the only exception to this approach are implicitly generated surfaces rendered via ray-

marching methods using shaders which include various procedurally generated fractals and landscapes in

some animations.

Discretized versions of real-world objects are also the essence of engineering techniques which make use

of various numerical methods (FEM, BEM, etc.). These areas require the underlying mesh representation

of an object to have certain qualities, that is: the individual mesh elements need to be ”well shaped” for

the particular numerical solution to converge, let alone to produce results representative of reality. Since

triangular elements are easy to render on a screen, computer-aided designs (CAD), on the other hand,

only require the model to be composed of triangles. The quality of these triangular elements is often not

guaranteed by the very process of mesh generation.

Mesh quality is also desired in computer graphics (CG) modeling within film-making and video-game

development applications, mainly due to the following reasons:

� It is easy to perform various deformations on high-quality meshes, and such meshes are generally

desired for use in character design with animated bone movements.

� A high-quality mesh is desired for optimal surface rendering with UV-mapped textures and normal

(bump) maps.

� The subdivision detail (i.e.: the number of discretisation vertices) is generally easy to control for

high-quality meshes.

� One needs effective control over the amount of polygons in a model, in order to save storage space.

For a combination of the above reasons, there also seems to be a preference for quadrilateral (quad) meshes

over triangular or (n ≥ 5)-gonal meshes. For example, it is easy to see why a ”subdivision surface” operation

produces better results on a quad mesh. Another example can be seen in various UV-mapping tools which

are easier to work with when parametrizing a texture map over a quad mesh.

The process of generating a higher-quality mesh from a low-quality one is referred to as remeshing.
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1.1 Mesh Generation

Figure 1.1: Four steps of subdivision of geometric

primitives (icosahedron, cube, cube-sphere).

The most straight-forward approach to generating a sur-

face or volume mesh is by sampling the parametrization

(chart map) of the modeled object.

The sampling may be performed by directly evaluating

the parametrization in Rn or recursively subdividing an

existing mesh (for example an icosahedron, see Fig. 1.1).

In both cases we speak of a structured mesh, although

some sources [30] refer to meshes generated by recursive

subdivision of a base mesh as semi-regular.

In almost any (even moderately complex) model the

designs require an outline which is generally not easy

to parametrize. Take, for example, a general polygonal

boundary. Such object can be sampled by triangular el-

ements in many ways, but only a small subset of all tes-

sellations can be considered as structured. Structured

meshes require a strict geometric outline, such as oppos-

ing edges for 2-parametrization, or other direct mathe-

matical ways to sample individual points of a given sur-

face.

Figure 1.2: Crude approaches to unstructured

mesh generation: (a) A coarse polygonal model,

triangulated using the ”ear-clipping” algorithm.

(b) A Delaunay triangulation of a random point

cloud, and (c) a modified Delaunay triangulation

for convex hulls on the same random data.

The default technique for triangulating general polygo-

nal surfaces in virtually all rendering frameworks is called an

ear-clipping algorithm. It relies on recursive clipping of tri-

angular cuts from the polygon, as can be seen in Fig. 1.2 (a).

One can imagine cutting off triangular corners of a polygonal

piece of paper until we are left with a single triangle. This

procedure can be extended even to polygons with holes.

When processing point-cloud data with a significant

amount of noise, the most common approach is the Delau-

nay triangulation, relying on searching for such adjacency

configuration for all given vertices, that no point lies inside

the circumcircle (or circumsphere) of any triangle. Running

a Delaunay procedure on 3D data, however, may result in a

non-manifold geometry which makes any form of global tex-

ture UV-mapping impractical. It can, of course, be modified

to only produce a convex hull of the point set (see Fig.1.2

(b), (c)) or even a suitable surface boundary of data with

given point normals.

Most FEM mesh generators use advancing front mesh

generation to produce tessellations of desired element size

and density as a basis for additional refinement. The result

is a relatively homogeneous discretisation of a given region.

It relies on constructing equilateral triangles (or tetrahedra

in 3D) from the boundary inwards, and adjusting the each element generation according to collision with
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elements advancing from the other side. Not only can such meshes properly process boundaries with a lot of

detail (see Fig.1.3 (a)), but the element density can also be imposed on elements in the interior, effectively

controlling the mesh quality and sampling.

Figure 1.3: (a) Mesh of a polygonal

region generated by the advancing front

technique, and (b) an iso-surface gener-

ated by the marching cubes algorithm.

The marching cubes algorithm generates an iso-surface of a given

scalar field (implicitly or explicitly generated), by effectively subdi-

viding a desired volume into regular cells, and triangulating only the

cells whose vertex values surround a given threshold value, in other

words: if we choose a particular value f0 of a scalar field f : R3 → R,

the algorithm renders an approximation of a level surface of f up to

the detail of the sampled regular grid. The position of triangulated

vertices is interpolated according to the threshold’s relative position

within vertex values. This is perhaps the most effective (and the

easiest to implement) technique to visualize 3D scalar data, and is

widely used in medical imaging.

1.2 Mesh Quality

All of the above techniques might, under certain configurations, pro-

duce elements of low quality. However, it is by no means obvious

what ”mesh quality” might be a function of. FEM software demands

inner angles of an element to be bounded from above as well as from

below, in such way that we avoid constructing elements that would

be ”too thin”. For optimal numerical results, individual elements

ought to locally resemble regular structured grids as much as possi-

ble. ANSYS©, for example, measures element orthogonality, aspect

ratio as well as skewness.

The discrete representation of a surface also needs to be opti-

mized for shape-related operations such as normal, tangent plane,

or curvature estimations. Specific quality metrics are described in

more detail in Knupp [20].

Another crucial property is mesh fidelity. The generated mesh

has to approximate a target shape with sufficient accuracy, while keeping the mesh ”coarse enough”. It can

be controlled by a specific error metric, or choosing between approximating or interpolating mesh nodes.
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Chapter 2

Computational Geometry

Fundamentals

Figure 2.1: A Dupin Cyclide connect-

ing a cylinder with a plane.

In this work we will consider 3D models with properties

specific to CG applications. This chapter deals with the elementary

mathematical definitions of our objects of interest.

Any geometry rendered on scene can be a collection of approxi-

mations of manifolds. However, there is no guarantee that such col-

lection is connected, or even form a larger manifold. Non-manifold

geometries are common in CAD applications, since the design process

involving a set union of two manifold geometries with the intention

of producing a connected model usually results in regions where any

chart-map parametrization would not have an inverse. It is usually

easier to connect two geometries via non-manifold ”seams”, than re-

design the entire model to produce a manifold geometry (see Fig.2.1).

Throughout this thesis, however, we will only consider manifold

geometries.

2.1 Triangulations and Polygonal Ap-

proximations

Since triangles are geometric primitives most representative of a linear

2-space, a triangulation is generally considered to be a piecewise-linear representation of a given 2-manifold

(surface) immersed in Rn. Such approximations can easily be extended to arbitrary dimension:

Definition 2.1.1. A k-simplex is a convex hull of k+1 vertices σ := {λ0x0 +...+λkxk|
∑k
i=0 λi = 1, λi ≥ 0}.

A simplex is a k-dimensional generalization of a triangle. A 0-simplex is a point, 1-simplex a line segment,

2-simplex a triangle, 3-simplex a tetrahedron, etc. By definition, individual vertices are elements of vector

space Rn, n ≥ k, however their exact position is irrelevant, as long as there is a topological equivalence (a

homeomorphism) between simplices, in other words: a triangle is topologically equivalent to any other in
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Rn. Technically, the definition of a convex hull can be extended to a set of points on a Riemannian manifold

using geodesic polyhedra from given vertices, but it will be clear in the upcoming chapters that we will be

working with manifolds immersed in Rn.

A union of simplices homeomorphic to a k-sphere: Sk will be referred to as a polytope, and for k = 2 we

recognize such objects as polygons.

Definition 2.1.2. A simplical complex K is a finite collection of vertices V and simplices S ⊂ P(V ) = 2V

1 such that if σ ∈ S and τ ⊂ σ then τ ∈ S.

The combinatorial data (S, V ) is referred to as an abstract simplical complex, and due to finiteness, V can

be constructed in such fashion that a simplical complex is a topological space. For example, let K = (S, V )

be a simplical complex such that V = {v1, v2, v3, v4} and

S = {{v1}, {v2}, {v3}, {v4}, {v1, v2}, {v1, v3}, {v1, v4}, {v3, v4}, {v1, v3, v4}}
A geometric realization of K can be seen in Fig. 2.2

Figure 2.2: A simpli-

cal complex K = (V, S)

For S′ ⊂ S a set Cl(S′) := {τ ∈ S | τ ⊆ σ ∈ S′} is called the closure, St(τ) :=

{σ ∈ S | τ ⊆ σ} the star, and Lnk(τ) := {σ ∈ Cl(St(τ)) | τ ∩ σ = ∅} a link of a

simplex τ ∈ S.

In the above example, the link of {v4} is edge {v1, v3}, and the link of {v1} a

union of {v2} and edge {v3, v4}.
A homotopy-theoretic generalization of a simplical complex is a CW-complex.

Given a discrete collection of vertices, and successively attaching collections of (k+1)-

simplices homeomorphic to disks Dk+1 along their boundaries Sk, for each k =

0, 1, ..., n.

Definition 2.1.3. A triangulation of a topological space X is a homeomorphism

T : X → K onto a simplical complex K = (V, S).

Figure 2.3: A Triangulation of a

torus T

Not every CW-complex can be triangulated, but every such object

obtained by gluing polyhedral cells by piecewise-linear maps is triangu-

lable [17]. Take, for example, a triangulation of the torus T = S1 × S1

in Fig. 2.3 which is clearly based on a union of quad cells forming a

simplical complex K.

Now considering only topological manifolds, we distinguish between:

� general topological C0-manifolds with continuous transition maps.

� smooth manifolds with C∞ transition maps.

� piecewise linear (piecewise Euclidean) manifolds with piecewise

linear transition maps.

Links of simplices σ ∈ S of a triangulation T which are Piecewise-

linearly homeomorphic to a k-sphere are referred to as combinatorial.

In fact, every topological space which admits a combinatorial triangulation is a (piecewise-linear) manifold.

On the other hand, every piecewise-linear manifold can be shown to admit a combinatorial triangulation

[22].

On the verge of the 20th century, Poincaré himself asked a question whether every smooth manifold

admits a triangulation [28], until Cairns [6] (in 1935) and Whitehead [38] (in 1940) showed that every C∞-

manifold has a unique piecewise-linear structure, and therefore is triangulable. A question which followed

1P(V ) = 2V denotes a power set, i.e.: the set of all subsets of V .
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after Poincaré’s initial investigation, whether every topological manifold has a triangulation [19] was far

more difficult to answer. In fact, it was one of open problems in topology, called the triangulation conjecture.

It turns out that the answer depends on the dimension of a particular manifold. The conjecture is trivial

for 0 and 1-dimensional manifolds. Radó [29] and Moise [27] proved that for dimX = 2, 3 there always

exists a triangulation. The circumstances change for dimX = 4. In 1990, for example, Freedman’s E8

manifold has been shown to be an exception [9]. For dimX ≥ 5, Manolescu [22] refers to his 2013 work

on Pin(2)-equivariant Steinberg-Witten Floer homology and the triangulation conjecture, and shows that

general 5 and higher-dimensional manifolds do not admit a triangulation. A similar restriction to manifolds

of dimension up to 3 follows for the existence of a piecewise-linear atlas.

Although there is no agreed upon term for it, for dimX = 2 a homeomorphism Q : X → KQ onto

a complex KQ = (V, SQ) of quadrilateral elements q = {v1, v2, v3, v4} ∈ SQ is sometimes referred to as

a quadrangulation of X. The 3-dimensional analogue produces a hexahedral (cuboid) tesselation of a 3-

manifold, but the practical computational process is only referred to as hexahedral meshing. Theoretically,

the representation can be extended to all polytopes (polygons) even with holes, but with increasing topo-

logical complexity, the piecewise-linear aproximations using such structures become impractical to handle in

computational scenarios. We will, however, use a general definition of objects used throughout this work:

Definition 2.1.4. Let X be a smooth manifold, and P : X → X a (polytope) homeomorphism onto a

piecewise linear manifold X then X is called a mesh of X.

Since X is a piecewise linear manifold, it is homeomorphic to a simplical complex KP = (V, F ), where V

is the set of vertices V ⊂ X, and F the set of polytope cells f = {v1, ..., vm},m ∈ N. For dimX = 2 cells f

are called faces of X. Since vertices v ∈ V lie on X we can say that X is a piecewise linear approximation

of X.

In this work we deal with manifold geometries, that is: meshes of smooth manifolds. A general 3D model

in CG modeling can, of course, be a collection
⋃
iXi of polygonal 2-dimensional meshes of not necessarily

the same manifolds.

2.1.1 Piecewise-Linear Metric

Manifolds are fully abstract objects endowed with the property that their individual parts can be given

Euclidean coordinates. What we see when observing a surface mesh representation in X ⊂ R3 is a particular

embedding of parts of U ⊆ X as piecewise Euclidean (linear) submanifolds - simplices.

Practically, a metric gX : TX × TX → R in a discrete setting represented by a piecewise linear mesh

X inherits the metric of the manifold’s ambient space Rn, but only for the interior of individual simplices.

Tangent vectors on boundaries ∂f of elements f ∈ F are restricted to tangent spaces with the dimension of

boundary. For paths passing through simplex boundaries, there is no definite tangent vector. However, for

increasing discretization detail, they are expected to converge to tangent vectors v ∈ TX of smooth manifold

X from both sides of the boundary ∂f .

Therefore, all distances, angles and areas will be computed using the standard Euclidean metric gRn =

〈 · , · 〉 (the (inner) dot product).

2.2 Manifold and Simplex Orientation

Orientation of mesh elements is essential for computational geometry, since it determines the directions

of unit normal vectors to individual polytopes, and for the entire linear approximation of a manifold. Normal
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vectors to a 2-mesh X affect the colors of triangles with respect to a given lighting configuration. This is

vital for path-tracing as well as for ordinary shaders which process individual image pixels in real time.

The orientation of a manifold X is described as an equivalence class [$] of volume forms on X. Simply

put, a manifold equipped with an orientation is a manifold where volumes are computed via inner products

with basis vectors in a particular order. A permutation of inputs with an odd number of inversions changes

the sign of this volume. For a particular triangulation T of X the simplices σ ∈ S inherit the manifold’s

orientation on their boundaries in the same way as an oriented manifold with boundary induces an orientation

on its boundary.

Definition 2.2.1. An oriented k-simplex Σ is an ordered k-tuple of oriented (k − 1)-simplices: Σ =

(σ1, ..., σk), all the way down to 0-simplices (v) = {v} (which do not have an orientation). Multiplying

an oriented k-simplex: λΣ by a scalar value returns an oriented simplex of the opposite orientation when

λ < 0.

The simplest oriented simplex we can construct is an edge. Take vertices v1, v2 ∈ V and their correspond-

ing 0-simplices {v1}, {v2} ∈ S. We can easily induce orientation on an edge {v1, v2} (1-simplex) by writing

it as an ordered pair: (v1, v2). Additional complexity requires a more elaborate tool. An oriented edge

(v1, v2) = e ∈ S can be created by ”adding” 0-simplices {v1}, {v2} ∈ S using concatenation: {v1} ⊕ {v2},
but individual edges e1 = (v1, v2), e2 = (v2, v3) can also be added using the same operator, and they will

produce a connected oriented polytope - a 1-chain - represented as a triple (v1, v2, v3), as long as they share

a vertex. Adding a sequence of oriented edges: e1 ⊕ e2 ⊕ ...⊕ em ⊕ e1 will produce an oriented boundary ∂f

of a 2-polytope (polygon) f which can also be represented as an m-tuple (v1, v2, ..., vm) with the additional

property that the first and the last vertices v1 and vm are also connected by an oriented edge (vm, v1).

Extending the concatenation operator to polygons f , we can create 3-polytopes generated by adding

polygons as long as they share edges in such way that every polygon f1 has an oriented connection to

another polygon f2 (sharing at least one edge). The amount of possible resulting geometries matches all

geometries that can be created using 2-dimensional surface meshes.

Definition 2.2.2. Let σ1, σ2 ∈ S be k-simplices of a simplical complex K = (V, S). A concatenation

operator ⊕ : S × S → K returns an oriented k-polytope (σ1, σ2) if σ1 ∩ σ2 is a (k − 1)-polytope.

Figure 2.4: A boundary operator

on simplices, modified for possible

orientation errors.

There is no reason to define ⊕ for (k−1)-disjoint simplices, since there

is no uniqueness in inducing orientation for example from a polygon to

another which only share a single vertex, let alone for fully disconnected

configurations.

A boundary of an oriented k-simplex Σ = (σ1, ..., σk) ∈ S is usually

defined as

∂Σ = ∂(σ1, ..., σk) =

k⊕
j=1

(σ1, ..., σj−1, σj+1, ..., σk) (2.1)

However, Desbrun et. al. [11] defines the boundary operator ∂ on (ori-

ented) 2-simplices as follows:

∂(v1, ..., vk) =

k⊕
j=1

(−1)j−1(v1, ..., vj−1, vj+1, ..., vk)

to account for possible orientation errors in lower 1-simplices (edges). For

example, the boundary of triangle {v1, v2, v3} with oriented edges (v2, v3),

(v3, v1), and (v2, v1) in Fig. 2.4 will have correct orientation by using

signed concatenation: ∂{v1, v2, v3} = (v2, v3)	 (v1, v3)⊕ (v1, v2).
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2.3 Implementation Conventions

A good practice for developing a computational mesh framework involves saving as much memory and

storage space, as possible. Meshes X ⊂ Rn with large amounts of vertices already require one to store at

least NV n (where NV is the vertex count) floating point values. Individual vertices have to be stored in an

array of size NV containing vector objects, or as a flat array of 3NV values, considering that vectors can be

accessed individually with a stride of 3. Polygons are then represented as tuples (arrays) of indices, that is:

positions in the vertex array.

It is often the case that a mesh geometry object stores overlapping triples of indices corresponding to

triangles, and on top of that there is a dynamic array of ”triangulations” which stores indices of triangles

adjacent within polygons. Retrieving indices of boundary vertices of a polygon given by a triangulation

array of triangles usually requires specialized procedures. WebGL frameworks such as three.js even go as

far as storing all vertex coordinates in a linear array as many times as they are indexed in a triangle index

buffer, in their indexing order.

Figure 2.5: Indexing of an icosahedron

mesh.

Due to the properties of the Euclidean cross product between

polygonal edge vectors, the order of multiplication matters, and

produces two outcomes with opposite signs. In order to simulate

the light interaction properties of a real-world surface, for meshes

of closed manifolds without boundary, the surface normals are sup-

posed to point outwards, and for that reason polygons in polygonal

meshes are positively oriented.

The C++ implementation for this thesis uses the following defini-

tion of a polygonal mesh:

X = (V, S, T ) , where V = (v1, ...,vNV
), vi ∈ R3,

S =
(
(i1,1, i1,2, i1,3), ..., (iNT ,1, iNT ,2, iNT ,3)

)
with T =

(
(t1,j1 , ..., t1,jq ), ..., (tNP ,j1 , ..., tNP ,jq )

)
, q = 1, 2, ...

with additional data, such as vertex normals and edges, derived from

the essential data when necessary. Array V is the unique vertex

array, S the array of NT 2-simplices (triangles), and T the array of

NP triangulation indices (polygons - triangles for q = 1 and quads

for q = 2).

As an example take a regular icosahedron mesh X as an approx-

imation of S2 as in Fig. 2.5. Since the length between two opposing

edges is given by the golden ratio: ϕ = 1
2 (1 +

√
5), we can put

V =
(
(−1, ϕ, 0), (1, ϕ, 0), (−1,−ϕ, 0), (1,−ϕ, 0), (0,−1, ϕ), (0, 1, ϕ), (0,−1,−ϕ), (0, 1,−ϕ), (ϕ, 0,−1),

(ϕ, 0, 1), (−ϕ, 0,−1), (−ϕ, 0, 1)
)

T =
(
(0, 11, 5), (0, 5, 1), (0, 1, 7), (0, 7, 10), (0, 10, 11), (1, 5, 9),

(5, 11, 4), (11, 10, 2), (10, 7, 6), (7, 1, 8), (3, 9, 4), (3, 4, 2),

(3, 2, 6), (3, 6, 8), (3, 8, 9), (4, 9, 5), (2, 4, 11), (6, 2, 10),

(8, 6, 7), (9, 8, 1)
)

while indexing vertices from 0.
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Chapter 3

Manifold Evolution

Because surface meshes are piecewise-linear approximations of 2-manifolds, there is a possibility of

acquiring an approximation of higher quality, by using a process which manifests itself in various natural

phenomena. Almost all systems we describe by modern mathematics tend to minimize some form of energy

functional. Elastic membranes, such as soap foam bubbles, admit the shape which minimizes the energetic

costs of the material. Closed bubbles tend to fluctuate around a spherical equilibrium, while configurations

fixed by Dirichlet boundary conditions admit a form which will later be described as a minimal surface.

The transient formulation of the energy minimization problem reduces to a parabolic geometric flow of the

manifold of interest.

Figure 3.1: An evolving curve in mani-

fold Y with velocity vt at each point.

Manifolds are entirely abstract objects whose ”shape” is deter-

mined only locally by a metric (inner product on tangent vector

spaces), or a connection (a generalized differential operator on tan-

gent vector or tensor fields). Formally, the manifold evolution prob-

lem requires a target space Y into which our manifold of interest

X is immersed1 so that it acquires all the additional differential

properties (for example the unit normal vector field ν), additional

to intrinsic attributes (such as metric, or a connection). And while

it is entirely possible to describe manifold evolution in terms of fully

intrinsic properties, for the purposes of computational geometry, a

formulation with some essential extrinsic features suffices.

Definition 3.0.1. Consider Riemannian manifolds (X, gX) (pos-

sibly with a boundary ∂X) and (Y, gY ) such that m = dimX ≤
dimY = n. The evolution of X in Y is a smooth map:

F : X × [0, ts]→ Y (3.1)

such that F t = F (·, t) is an immersion for every t ∈ [0, ts].

(3.1) is the solution to a parabolic evolution problem ∂tF = v with additional information on the nature

of velocity v including boundary and initial conditions. It should be noted that by F t being an immersion,

self-intersections in the ambient manifold Y are, for all intents and purposes, not excluded.

The velocity of immersion F t can be decomposed into a normal and a tangential component for all points

and all t ∈ [0, ts]:

∂tF = vN + vT (3.2)

1a map F : X → Y whose push-forward (differential) F∗ = dF : TX → TY is everywhere injective.
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Both vector fields are smooth sections of tangent bundle TY . For every point p ∈ X the tangential velocity vT
lies in (F t)∗(TpX) ⊂ TF t(p)Y while the normal velocity vN ∈ (F t)∗(TpX)⊥ ⊂ TF t(p)Y (the orthocomplement

of the push-forward of tangent space TpX along F t).

Evolution equations of form (3.2) are used in a plethora of mathematical models in physics, computer

vision, image processing, and biology. Notable examples include phase interface evolution, forest fire front

propagation, image segmentation, modeling of molecular surfaces, and minimal surface construction in ar-

chitecture [24]. The practical approaches to solving evolution equations of this type can be divided into two

categories:

� Eulerian (level set) approach - considers immersions Im(F t) to be level sets of a function (of n variables)

on Y .

� Lagrangian approach - evolves points of Im(F t) directly.

Daniel et al. [10] use the Lagrangian approach to reconstruct surface models from point cloud data. In this

work we will adopt the same method with suitable modifications for input mesh data.

3.1 Mean Curvature Flow

Diffusion is a well-known natural process with a multitude of manifestations in which it evolves a system

from a lower entropy state towards a state of maximum entropy. In other words, it evolves a system into

its steady state, or an equilibrium2. A ”textbook” example is the linear heat equation ∂tu − ∆u = 0 on

Ω ⊆ Rn with initial condition u0 and boundary conditions on ∂Ω. Its various mutations found their use

also in models of non-physical phenomena, such as image processing [18] or optimal evaluation of financial

derivatives [4].

The heat equation has specific properties which apply even to more general parabolic equations:

� The Maximum Principle: At a point x∗ ∈ Ω where ∂tu admits a maximum, the second derivatives

are non-positive, hence the time derivative is non-positive. It follows that the maximum temperature

umax(t) = supx∈Ω u(x, t) does not increase for increasing time.

� Gradient Flow : The solution u is the flow of the steepest decrease of the Dirichlet energy :

E(u) =
1

2

∫
Ω

||∇u||2dx (3.3)

The same diffusion equation can be formulated for an immersion F of a smooth manifold X. The Euclidean

Laplace operator then changes into its ”geometric” counterpart, namely ∆gFF - the Laplace-Beltrami oper-

ator.

For a manifold-valued function f : X → R the Laplace-Beltrami operator can be expressed in terms of

metric gX and individual chart components as:

∆gXf = gij∇i∇jf = gij
(

∂2f

∂xi∂xj
− Γkik

∂f

∂xk

)
=

1√
|det gij |

∂f

∂xi

(√
|det gij |gij

∂f

∂xj

)
Where ∇ is the Levi-Civita connection and Γkij the connection coefficient functions (Christoffel symbols)

which arise as a consequence of the product rule. However since ∆gF acts on an immersion F , it is expressed

in terms of its components in Y . Specifically, if F determines a regular parametrization of a surface in

2from a physical standpoint, a steady state is not the same as an equilibrium, since the former still involves a flow of some
physical quantity, e.g.: heat.
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Y = R3, all of its three components are expressed as: ∆gFF = (∆gF x,∆gF y,∆gF z). With a given initial

immersion F 0, the resulting evolution equation takes form:

∂tF −∆gFF = 0

F (·, 0) = F 0
(3.4)

A classical formula by Weierstrass states that an orientable hypersurface in Euclidean space yields ∆gFF = h,

where h = Hν is the mean curvature vector while ν is the outward-pointing unit normal to F [X] with

H = gijhij = tr(II) = κ1 + ... + κm being the mean curvature. Specifically, the second fundamental form

is defined as II(χ, Υ ) = −〈SχΥ, ν〉 = 〈Υ,∇χν〉 where χ and Υ are smooth vector fields from TY , and the

shape operator SχΥ = (∇χΥ )⊥ is an orthogonal projection of the covariant derivative ∇χΥ onto the normal

bundle of X. Given a coordinate chart, the components of II are defined as:

hij = −
〈

∂2F

∂xj∂xi
, ν

〉
Y

=

〈
∂F

∂xi
,
∂

∂xj
ν

〉
Y

The matrix of the Weingarten map W (χ) = ∇χν : TpX → TpX is given by hij = gilhlj . Eigenvalues κj
of hij are the principal (geodesic) curvatures and for m = 2 they can be thought of as reciprocal lengths of

semi-major axes of an osculating ellipsoid tangent to each point of F [X].

The mean curvature H is known to be the first variation of the area functional X 7→
∫
X

dµgtF , namely:

∂tA(U t) = −
∫
Ut

H2dµgtF , U t ⊆ F t[X]

In other words, the mean curvature flow is the gradient flow of the area functional. And evolving the manifold

in the direction of h will maximally decrease (surface) area.

Theorem 3.1.1. (Maximum/Comparison Principle) If two hypersurfaces immersed into a Euclidean space

are initially disjoint, they remain so. Furthermore, embedded hypersurfaces remain embedded.

Specifically, the above theorem states that if the initial hypersurface F [X] is convex (κj < 0) then F t is

convex for all t ∈ [0, ts]. Furthermore, Huisken [2] shows, that:

Theorem 3.1.2. Convex embedded compact hypersurfaces converge to points. After rescaling to keep the

area constant, they smoothly converge to round spheres.

There are only a few examples of analytic solutions to (3.4). The most elementary is the shrinking sphere

evolution. Let r0 be its initial radius. With spherical symmetry, the evolution problem can be transformed

into an ordinary differential equation:

dr

dt
= −m

r
, r(0) = r0 (3.5)

Figure 3.2: A shrinking 2-sphere solution to mean curvature flow in R3.
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Figure 3.3: Minimal surfaces generated as solutions to a Dirichlet problem on a circle, using the Poisson integral

formula in the complex plane.

Where m is the embedding dimension of the sphere. The radial solution r is then obtained by direct

integration as: r(t) =
√
r2
0 − 2mt. Not that the maximum time of existence of the solution r is tmax =

r20
2m .

By only considering k < m radii in the shrinking sphere equation (3.5) we obtain a shrinking cylinder

solution r(t) =
√
r2
0 − 2kt. These are examples of, so called, self-similar shrinkers, namely solutions to the

mean curvature flow (MCF) which only move by scaling.

Another class of examples are translating solutions which translate in direction τ , satisfying an elliptic

equation H = −〈τ, ν〉. These involve so called graphical MCF solutions u : Rn×[0,∞[→ R to graphical MCF

equation: ∂tu =
√

1 + ||∇u||2 ∇ ·
( ∇u√

1+||∇u||2
)
, such as the grim reaper surface. Unlike for the shrinking

solutions, the existence of translating solutions is not bounded in time (for more details see [15] and [37]).

The behavior of immersions F of 1-manifolds into R2 (plane curves) has been studied analytically as well

as numerically in [16] and [25].

According to numerical experiments [34, 36], given Dirichlet boundary conditions F
∣∣
Γ

= FΓ where Γ

is a finite set of Jordan curves in R3 evolves towards a minimal surface. There are multiple independent

definitions of a minimal surface (an overview of which can be found in [1, 8]). Since it is the limit immersion

of MCF, we view a minimal surface as a 2-manifold which minimizes its area functional by vanishing mean

curvature:

Definition 3.1.1. A surface F [X] ⊂ R3 is minimal if H ≡ 0 for all p ∈ F [X \ ∂X].

A plane is the most trivial example of a minimal surface. Other such surfaces arise as graphs of solutions

to the Laplace equation ∆u = 0 with Dirichlet boundary conditions (see Fig: 3.3), or more generally,

solutions to the minimal surface equation

∇ ·
(

∇u√
1 + ||∇u||2

)
= 0

There is no shortage of solutions to the so called Plateau’s problem, that is: surface immersions into R3 with

Dirichlet boundary conditions with minimized (steady state) mean curvature. Some of which admit rather

complicated (even periodic) 3-dimensional shapes [1]. In [31] minimal surfaces are used as base mesh for

Riemann surfaces, and also minimal surfaces are used as an initial condition for a remeshing procedure in

chapter 3 of [23].
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3.2 Evolution In the Normal Direction

Figure 3.4: One particular form of an

edge detector is the distance function.

Consider (3.4) with an additional advection term:

∂tF = ε∆gFF + ηN (3.6)

where N is the outward-pointing unit normal to F [X] = X and ε, η

are control functions which weigh the effect of mean curvature flow

by the Laplace-Beltrami operator ∆gF and flow in the direction of

N respectively. With η ≡ 0 the evolution becomes a mean curvature

flow accelerated by ε. The advection term ηN gives rise to more

sophisticated applications of surface evolution. Most importantly, it

forces a desired shape onto the surface immersion F .

In section 3.2 Mikula et. al [24] give a particular example from

image processing previously used in [26] for the segmentation of cell

nuclei images. Given an image intensity function I : Ω → R, Ω ⊂
R3 and an edge detector e : Ω → R of I, in particular e(x) =

1
1+K‖∇I(x)‖2 for x ∈ Ω and K > 0, the resulting evolution model

(without tangential redistribution) is

∂tF = b e∆gFF + a(∇e ·N)N , a, b > 0

Daniel et. al [10] utilize this model for surface reconstruction from point cloud data, replacing the edge

detector e with d = Gσ ∗ d+ and using gradient field −∇d where Gσ is a smoothing Gaussian kernel, and d+

is the distance function to the (sufficiently ”dense”) target point set forming a closed surface. Since d+ is

not differentiable at the boundary Γ (see Fig. 3.4) of the target surface, we consider a Gaussian-smoothed

convolution d.

On the other hand, Meďla [23] (chapter 3) develops a remeshing procedure which first partitions the mesh

into topologically simple partitions (a topology skeleton), generates minimal surfaces suspended on partition

boundaries, and evolves each surface outward towards the target mesh. It turns out that the dot product

(−∇d ·N) is insufficient for configurations where it vanishes (−∇d and N are perpendicular). For this reason

an additional advection term is used to evolve the surface proportionally to the distance function d, namely:

η(d(F ))N = d(F )
(
| − ∇d(F ) ·N |+

√
1− (∇d(F ) ·N)2

)
N

where the absolute value secures the outward direction of evolution, and subsequent backward relaxation

towards the surface in case F overflows the target mesh. The mean curvature control function is constructed

so that the surface evolves faster when farther away from the target mesh, in particular:

ε(d(F )) := C1

(
1− e−

d(F )2

C2

)
, C1, C2 > 0 (3.7)

In this work, however, we evolve surfaces inward, that is: we consider the advection control function:

η(d(F )) := C d(F )
(
(−∇d(F ) ·N) +D

√
1− (∇d(F ) ·N)2

)
, C > 0, D ≥ 0 (3.8)

Real parameters C1, C2, C, and D are adjustable in the full model:

∂tF = ε(d(F ))∆gFF + η(d(F ))N

F (·, 0) = F 0
(3.9)
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Figure 3.5: Tan-

gential redistribution of

surface points.

3.3 Evolution With Tangential Redistribution

The numerical realization of the previously mentioned models encounters an ob-

stacle when we test different configurations and types of immersion F . Since the

mean curvature flow evolves parts of the surface with highest mean curvature H

fastest, it is not surprising that a discretized surface X will evolve into a degener-

ate configuration with accumulating numerical singularities driven by the underlying

flow. Hence the tangential velocity term vT becomes essential to ensure numerical

stability.

The evolution of points p ∈ X by the means of an immersion gives rise to the

evolution of metric gF induced by F t. In particular gF t = (F t)∗(gY ) (as a pull-back

of gY along F t). Let µgX be the measure on the Borel subsets of X induced by gX .

For every t ∈ [0, ts] we can define measure µtgF induced by gF t , specifically for U ⊆ X:

µtgF (U) =

∫
U

dµtgF =

∫
U

GtdµgX with Gt =
dµtgF
dµgX

(3.10)

Quantity Gt is referred to as the volume density of F t expressing how the immersion shrinks or expands

local volumes.

Besides the volume density, any desired metric-induced quantity can be used. We will expand upon the

notion of volume-based tangential redistribution, as well as length-based and angle-based approach.

Figure 3.6: A regular surface

patch F [U ] with a tangent ellip-

soid at p ∈ F [U ] locally depicting

principal curvatures.

3.3.1 Volume-Based Tangential Redistribution

Let G be a volume density given by (3.10), and wtT = (F t)∗(vtT ) a vector

field given by the tangential velocity field vT pulled back onto X along F t.

Then G satisfies the following equation:

∂tG = (−gY (h, vN ) + divgFwT )G (3.11)

A generalized form of (3.11) is shown in Lemma 5.7 of Bauer, Harms, and

Michor [3], yet we adequately resort to our assumption that Y = R3 with

all necessary vector space structure.

Let F [U ] be a regular surface patch with chart map (local parametriza-

tion) (λ, ζ) 7→ F (λ, ζ). Then the time derivative of volume density can be

obtained by differentiating a differential surface area element:

∂tG = ∂t‖∂λF × ∂ζF‖ =
∂λF × ∂ζF
‖∂λF × ∂ζF‖

· ∂t(∂λF × ∂ζF ) (3.12)

and further expanding the derivative of the cross product:

∂t(∂λF × ∂ζF ) = ∂tλF × ∂ζF + ∂λF × ∂tζF = ∂λ(∂tF )× ∂ζF + ∂λF × ∂ζ(∂tF )

where the last form is given by the surface patch regularity when we then apply the Schwarz rule for mixed

partial derivatives. At this point, the time derivative of immersion could be a linear combination, say:
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∂tF = α0N + α1∂λF + α2∂ζF where, in general, αj : F [U ]→ R, j = 0, 1, 2. Hence upon further expansion:

∂t(∂λF × ∂ζF ) = ∂λ(N + α1∂λF + α2∂ζF )× ∂ζF + ∂λF × ∂ζ(N + α1∂λF + α2∂ζF ) =

= ∂λN × ∂ζF + ∂λ(α1∂λF + α2∂ζF )× ∂λF+

∂λF × ∂ζN + ∂λF × ∂ζ(α1∂λF + α2∂ζF )

First, we substitute terms with derivatives of the surface normal N into (3.12) and express:

=N︷ ︸︸ ︷
∂λF × ∂ζF
‖∂λF × ∂ζF‖

·
(
∂λ(α0N)× ∂ζF + ∂λF × ∂ζ(α0N)

)
=

N ·
(
(∂λα0)���

��N × ∂ζF + α0∂λN × ∂ζF + (∂ζα0)���
��

∂λF ×N + α0∂λF × ∂ζN
)

=

α0N ·
(
∂λN × ∂ζF + ∂λF × ∂ζN

)
= −α0G(h · vN ) = −α0G gY (h, vN ) (3.13)

and afterwards, we take

∂λF × ∂ζF
‖∂λF × ∂ζF‖

·
(
∂λ(α1∂λF + α2∂ζF )× ∂λF + ∂λF × ∂ζ(α1∂λF + α2∂ζF )

)
=

=
∂λF × ∂ζF
‖∂λF × ∂ζF‖

·
(
(∂λα1∂λF + α1∂λλF + ∂λα2∂ζF + α2∂ζλF )× ∂ζF+

∂λF × (∂ζα1∂λF + α1∂λζF + ∂ζα2∂ζF + α2∂ζζF )
)

=

=
∂λF × ∂ζF
‖∂λF × ∂ζF‖

·
(
∂λα1∂λF × ∂ζF + α1∂λλF × ∂ζF + ∂λα2

=0

���
��∂ζF × ∂ζF + α2∂ζλF × ∂ζF+

∂ζα1

=0

((((
((

∂λF × ∂λF + α1∂λF × ∂λζF + ∂ζα2∂λF × ∂ζF + α2∂λF × ∂ζζF
)

=(
∂λα1‖∂λF × ∂ζF‖+ α1

(∂λF × ∂ζF ) · (∂λλF × ∂ζF + ∂λF × ∂λζF )

‖∂λF × ∂ζF‖
+

∂ζα2‖∂λF × ∂ζF‖+ α2
(∂λF × ∂ζF ) · (∂λF × ∂ζζF + ∂ζλF × ∂ζF )

‖∂λF × ∂ζF‖

)
=

=

(
∂λα1‖∂λF × ∂ζF‖+ α1

(∂λF × ∂ζF ) · ∂λ(∂λF × ∂ζF )

‖∂λF × ∂ζF‖
+ ∂ζα2‖∂λF × ∂ζF‖+ α2

(∂λF × ∂ζF ) · ∂ζ(∂λF × ∂ζF )

‖∂λF × ∂ζF‖

)
=

=
(
∂λα1‖∂λF × ∂ζF‖+ α1∂λ‖∂λF × ∂ζF‖+ ∂ζα2‖∂λF × ∂ζF‖+ α2∂ζF‖∂λF × ∂ζF‖

)
=

=
‖∂λF × ∂ζF‖
‖∂λF × ∂ζF‖

(
∂λ(α1‖∂λF × ∂ζF‖) + ∂ζ(α2‖∂λF × ∂ζF‖)

)
= G ∇ · wT = G divgFwT

(3.14)

Taking α0 ≡ 1 and finally combining (3.13) with (3.14) yields ∂tG = G(−gY (h, vN ) + divgFwT ). The dot

product (h · vN ) becomes the mean curvature scalar: H = gY (h, vN ) when we consider the mean curvature

flow model: ∂tF = h.

Now consider area measure At of X evolving in time. Then

∂tA =

∫
X

(−gY (h, vN ) + divgFwT )dµtgF =

∫
X

(−gY (h, vN ))dµtgF +

∫
∂X

gF (wT , ν)dHµt
F

(3.15)

where ν is the outward-pointing unit normal to the manifold’s boundary ∂X with respect to gF and Hµt
F

is the (dimX − 1)-dimensional Hausdorff measure on the boundary. Clearly, when ∂X = ∅ (X is without

boundary) or wT
∣∣
∂X

is tangential (that is: gF (wT , ν) = 0), the boundary integral vanishes.
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To control volume density, we require the conservation of relative volume of any surface patch U ⊆ X:

µtgF (U)

At
=
µ0
gF (U)

A0
, for any t ∈ [0, ts]

which, of course, implies the conservation of volume density:

Gt(U)

At
=
G0(U)

A0
⇒ ∂t

(
G

A

)
= 0 (3.16)

for almost all p ∈ X. Combining the above law with (3.11) and (3.15) we get

0 = ∂t

(
G

A

)
=

1

A2

(
∂tG A−G ∂tA

)
=

=
1

A2

(
(−gY (h, vN ) + divgFwT )GA−G

[ ∫
X

(−gY (h, vN ))dµtgF +

∫
∂X

gF (wT , ν)dHµt
F

])
=

= −gY (h, vN ) + divgFwT +
1

A

∫
X

gY (h, vN )dµtgF −
1

A

∫
∂X

gF (wT , ν)dHµt
F

⇒ divgFwT = gY (h, vN )− 1

A

∫
X

gY (h, vN )dµtgF +
1

A

∫
∂X

gF (wT , ν)dHµt
F

(3.17)

Condition (3.16) achieves a conservation of relative volume density based on the initial immersion F 0[X]

(the initial mesh X
0
). However if we are not satisfied with the initial state, the above redistribution will not

improve the configuration. For this reason, we define an immersion F t volume-uniform with respect to gX :

Gt(p)

At
= C , C > 0

for almost all p ∈ X. An asymptotically uniform evolution F then satisfies

Gt

At
−→
t→∞

C

which can be achieved, for instance, when

∂t

(
G

A

)
=

(
C − G

A

)
ω , ω : [0, ts]→ R+ (3.18)

or the global volume A might converge to a given value A∞ with:

∂tG

A∞
=

(
C − G

A∞

)
ω

Using the same substitution as in (3.17) with (3.18) gives

divgFwT = gY (h, vN )− 1

A

∫
X

gY (h, vN )dµtgF +
1

A

∫
∂X

gF (wT , ν)dHµt
F

+

(
C
A

G
− 1

)
ω, C > 0

Now we are left with the task of finding a suitable vector field wT on X. The problem at hand is that

there are uncountably many ways of pushing an arbitrary smooth section wT on X forward along F to

obtain vT . One possibility is to find a unique gradient field wT = ∇gFψ of some redistribution potential

ψ : X → R for each t ∈ [0, ts]. More precisely, taking a smooth section χ ∈ TX and gF (∇gFψ, χ) = ∂ψ
∂χ

20



Figure 3.7: Redistribution potential ψ on a closed surface evolving under mean curvature flow with ω = 200.

defines its directional derivative, and with divgFwT = divgF∇gFψ = ∆gFψ we acquire an elliptic problem

for the redistribution potential:

∆gFψ = gY (h, vN )− 1

A

∫
X

gY (h, vN )dµgF +
1

A

∫
∂X

gF (∇gFψ, ν)dHµF
+

(
C
A

G
− 1

)
ω (3.19)

for each t ∈ [0, ts].

Furthermore, we choose C = 1/AX according to Daniel et. al [10] where G→ A/AX as t→∞ where

AX = µX(X) =

∫
X

dµX and A = µgF (X) =

∫
X

G dµX (3.20)

Figure 3.8: Mean curvature con-

trol function types.

which secures area-uniformity of the redistribution. An immersion of

this type is a convenient approach to construct meshes with uniformly-

sized polygonal elements, specifically for target surfaces without dominant

concavities. However, to represent more intricate features of most target

meshes, we might need to concentrate more mesh vertices into areas with

high curvature. In particular it is desired to find a tangential velocity

field vT such that for G constant over a surface patch U ⊂ X we have

µgF (U) = GµX(U), which implies that higher value of G causes local

expansion of area while lower G shrinks surface patches. One possibility

is taking G(p)f(H(p)) = const for every point p ∈ X at all times, where

f is a positive increasing function of mean curvature scalar H which can

take forms

f(H) = H1/3

f(H) = H2/3

f(H) = eαH , α > 0

(3.21)

and consequently

Gt

At
−→
t→∞

C =

1
f(H)∫

X
1

f(H)dµX
(3.22)
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For manifolds with boundary ψ
∣∣
∂X

needs to be prescribed. For example when constructing minimal

surfaces as in [34] we impose zero Neumann condition gF (∇gFψ, ν)
∣∣
∂X

= 0. Also for closed manifolds, we

need to ensure uniqueness of solution ψ by defining it at one selected point (say, for example, that ψ(v1) = 0

for the first mesh vertex v1 ∈ X).

Figure 3.7 shows a mean curvature flow evolution of a closed surface with the values of redistribution

potential ψ. The initial distorted state has much larger gradient ∇gFψ in some parts. The volume-based res-

distribution of points spreads individual vertices apart in such way that the potential ψ becomes increasingly

more homogeneous.

3.3.2 Length-Based Tangential Redistribution

A natural approach to controlling distances on a manifold is to focus on the evolution of curves γ : [0, 1]→ X

whose images can be thought of as 1-manifolds immersed into Y . Considering a single curve will simplify the

above procedure, since we can directly obtain the tangential velocity given by divgFwT and an appropriate

boundary condition:

vT = ‖vT ‖gY
vT

‖vT ‖gY
= αTY

where α : Im(γ) × [0, ts] → R and TY = F∗(TF ) with unit vector field TF on Im(γ) with respect to metric

gF . The divergence of wT then becomes a directional derivative:

divgFwT =
∂α

∂TF

substituting into (3.17) and adding the term for asymptotically uniform redistribution gives

∂α

∂TF
= gY (vN , h)− 1

L(γ)

∫
X

gY (h, vN )dµtgF +
α(γ1)− α(γ0)

L(γ)
+

(
C
A

G
− 1

)
ω (3.23)

where γ0 and γ1 are endpoints of Im(γ) (if any). It is clear that in order to obtain a unique solution to

(3.23), it suffices to define the value of α at one of the points in Im(γ).

For curves γ and σ intersecting at p ∈ X the tangential velocity becomes

vT (p, t) =
1

2
(vT,γ(p) + vT,σ(p))

with components computed individually using (3.23) for each curve. If the tangent vectors of γ and σ at p

are linearly independent, then vT (p, ·) 6= 0 if the corresponding immersions are non-uniform. We can have

up to m curves intersecting at p and still obtain an asymptotically uniform immersion for all of them.

The reasoning extends to a network of intersecting curves on X. If each m-tuple of curves intersecting

at p spans TpX with their velocities, we can apply the asymptotically uniform redistribution to all curves in

the network. Specifically, in the discrete case, the intersection points are the mesh vertices.

3.3.3 Angle-Based Tangential Redistribution

Let γ1, ..., γM be a finite set of curves intersecting at p ∈ U ⊆ X with velocities γ′j such that no velocity is

ever a positive scalar multiple of any other, namely if γ′j = Cγ′k, then C < 0. This means that the velocity

vectors γ′j ∈ TpX form a 1-ring, just like for vertices of a polygonal mesh.
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Figure 3.9: Tangential velocity

transporting a vertex so that it

homogenizes angles with adjacent

mesh vertices.

Then we would expect an optimal tangential redistribution to make

the angles between two consecutive curve velocities more homogeneous,

that is: when more vectors are bundled in one particular direction, the

central vertex should move towards it to increase the relative angles of

those polygonal regions, and decrease the relative angles of the remaining

regions. More specifically

ṽT =
ω

M

M∑
j=1

(
1 +

γ′j
‖γ′j‖

·
γ′j+1

‖γ′j+1‖

)
(γ′j + γ′j+1) (3.24)

With a control parameter ω : [0, ts] → R+. Clearly, this only holds for

points p in a locally flat neighborhood U . For discrete configurations we

count edges ej of a polygonal 1-ring which are not necessarily tangent to

the surface at the central vertex. Thus we need to project ṽT onto the tangent plane: vT = ṽT − (N · ṽT )N .

When applied to all mesh vertices, we obtain a tangential velocity vector field.
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Chapter 4

A Finite Volume Formulation

Similarly to other numerical techniques for solving partial differential equations, the finite volume

method subdivides the computational domain into simple elements - finite volumes. The unique property of

this approach is that its underlying mathematics simulate the differential properties of flow of an unknown

quantity, say: temperature, concentration, or mean curvature, in a wide variety of conservation laws.

Note that finite volumes are not necessarily 3-dimensional partitions. They can take form of any (usually

the simplest available) partition of the computational domain with a representative point inside where the

unknown value is defined. Secondary quantities (for example, heat flux, velocity, etc.) are formulated as

normal derivatives of the primary quantity at the boundary of each finite volume. Adjacent volumes then

transmit and receive the primary scalar quantity through their boundaries. This leads to a sparse, and

usually diagonally dominant, linear system whose matrix elements are non-zero only when they multiply

adjacent nodes.

In section 3.3.1, the redistribution potential ψ is a single-valued unknown quantity, but the unknown

variable of full surface evolution model:

∂tF = ε∆gFF + ηN + vT

F (·, 0) = F 0
(4.1)

with ε and η defined by (3.7) and (3.7), is the immersion F : X×[0, ts]→ R3 which has three real components

(within the standard basis) for each representative point.

In this chapter, we formulate the fully discrete finite volume representation of (4.1), and discuss its

computational properties.

4.1 Discrete Laplace Operators

Real-valued functions on polygonal meshes X are given by their values at individual vertices: f : V → R
where V is the (ordered) set of mesh vertices. If NV = |V | is the number of vertices, then a linear operator:

∆X : RNV → RNV : fi 7→
NV∑
j=1

wij(fi − fj)

is a general form of the discrete Laplace operator on mesh X = F [X] given by an immersion F into R3.

Theoretically, each mesh vertex is influenced by all other vertices via weights wij . However, due to increasing
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computational costs, the influence is generally believed to vanish beyond vertices directly adjacent to i-th

vertex.

To achieve satisfying results, the discrete Laplacian should possess as many of the following properties,

as possible:

� Symmetry - The continuous Laplace operator is self-adjoint, and so should be ∆X . Namely, it should

have real eigenvalues and orthogonal eigenvectors.

� Locality - The support for evaluation at each vertex should be small enough to mimic the differential

properties, as well as save computation time. Discrete Laplacians are thus generally restricted to

Laplacians with 1-ring support, that is: wij = 0 if j /∈ N (i) where N (i) is the index set of neighboring

vertices.

� Positive Off-Diagonal Weights - wij > 0 for i 6= j to ensure the maximum principle for discrete

harmonic functions. Consider a discrete harmonic function f and w̃ij = wij/
(∑

k∈N (i) wik
)
. Then

fi =
∑
j∈N (i) w̃ijfj with w̃ij ∈ [0, 1], there exist j′, j′′ ∈ N (i) for which we have fj′ ≤ fi ≤ fj′′ , hence

the value fi is never an extremum at any vertex.

� Positive Semi-Definiteness - Just like for the continuous ∆ operator, the positive semi-definiteness

ensures the non-negativity of the Dirichlet energy E(f) = 〈∆Xf, f〉. Clearly, the smooth Dirichlet

energy vanishes for linear functions f . As a consequence: dim (Ker(∆X)) = 1 for a closed mesh.

� Linear Precision - The operator should be linearly precise, that is: (∆Xf)i = 0 whenever

(a) all incident polygons to vertex vi are coplanar.

(b) f is linear on vi as well as all vj , j ∈ N (i).

(c) vi is not a boundary vertex.

Note that this condition does not contradict positive semi-definiteness because a planar immersion X

will have boundary vertices and linear functions are not required to vanish at ∂X since they will not

appear in Ker(∆X).

� Convergence - Clearly, as NV → ∞, all properties of ∆X should, under reasonable refinement condi-

tions, converge to the continuous Laplacian ∆X .

The simplest discrete Laplacian is the umbrella operator, with weights wij ∈ {0, 1} such that wij = 1

whenever vi and vj share an edge. It satisfies all the properties except linear precision. Another possibility

is to normalize the umbrella operator row-wise to produce the Tutte Laplacian, which however, destroys

symmetry for meshes with irregular connectivity. These are examples of the so called combinatorial Lapla-

cians. The compliance of the given discrete operator on meshes relies heavily on their topological properties.

Additional forms of ∆X are examined in [13] where the difficulty to satisfy all properties is emphasized.

Since in this work, we utilize the finite volume method (FVM) for solving (3.2) with some initial (and

boundary) condition, specifically for triangular and quadrilateral meshes, we require a discrete Laplacian of

type:

∆X : R3NV → R3NV : Fi 7→
∑

j∈N4,�(i)

wij(Fi − Fj) (4.2)

where Fi ∈ R3 are mesh vertices and N4,�(i) are indices of the vertices neighboring in triangular 4 or

quadrilateral � mesh elements coincident with vertex Fi. Clearly, linear systems produced by (4.2) can be

divided into three independent systems of dimension NV . Their weights wij will satisfy the discrete Laplacian

properties in such manner that the resulting operator matrix is symmetric, and diagonally dominant.
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4.2 The Cotangent Scheme for Triangular Meshes

Figure 4.1: The outline of the

Desbrun cotan operator on mesh

interior vertices and on boundary

vertices Fi.

Also known as the Desbrun cotan operator, named by one of the co-authors

of [12] - Mathieu Desbrun - is considered to be the most widespread mesh

Laplacian as well as mean curvature estimator for triangulated meshes X.

Let Vi be the finite volume generated by the voronoi region1 around vertex

Fi restricted to the piecewise-linear metric of X (see Fig. 4.1). Desbrun

[12] suggests voronoi regions to be computed using a circumcenter of each

triangle. This approach has to be corrected for triangles with obtuse

angles. Desbrun et. al. point out that using barycenters Bi,p of triangles

Ti,p is a suitable substitute for fully voronoi finite volume scheme, which

is utilized by [24].

Let Fip and Fip+1
be adjacent mesh vertices forming a triangle Ti,p =

(Fi, Fip , Fip+1
), and let Fip−1

be another vertex adjacent to Fi which forms

a triangle (Fi, Fip−1
, Fip) neighboring with the former triangle from the

left (clockwise direction) along edge (Fi, Fip).

Our goal is to approximate the integral formulation:∫∫
Vi

h dµgF =

∫∫
Vi

∆gFF dµgF =

m∑
p=1

∫∫
T p
i ∩Vi

∆λ,ζF dλ dζ (4.3)

where µF is the measure induced by metric gF (of immersion F ) and (λ, ζ) is the local parametrization of each

triangle T pi forming a 1-ring neighborhood (of m triangles), given by F (λ, ζ) = (1−λ− ζ)Fi +λFip + ζFip+1

with λ ∈ [0, 1] and ζ ∈ [0, 1− λ] (see Fig. 4.2).

By the divergence theorem we write (4.3) as

m∑
p=1

∫∫
T p
i ∩Vi

∆λ,ζF dλ dζ =

m∑
p=1

∫
∂(T p

i ∩Vi)

gF (∇λ,ζF, νλ,ζ)dHµgF
=

m∑
p=1

∫
∂(T p

i ∩Vi)

〈∇λ,ζF, νλ,ζ〉R3ds (4.4)

where νλ,ζ is the outward-pointing normal of the finite volume Vi given by (λ, ζ)-parametrization and

HµgF
is the 1-dimensional Hausdorff measure induced by µF which just yields a line integral of an inner

product 〈∇λ,ζF, νλ,ζ〉 in R3.

Regardless of the type of finite volume tessellation of X, the integral along the boundary ∂(T pi ∩ Vi)
within a triangle T pi will yield the same result as integrating along an edge between midpoints Mi,p,1 and

Mi,p,2. The reason for this is mentioned in Appendix A of [12] and [35].

Denote Ω the region enclosed by curve ∂(T pi ∩ Vi) and edge (Mi,p,1,Mi,p,2) with a positively oriented

boundary. By linearity of the immersion F on each triangle we have

0 =

∫∫
Ω

∆gFFdµgF =

∫
∂Ω

gF (∇gFF, ν)dHµgF
(4.5)

The boundary integral can then be expanded into∫
σp

gF (∇gFF,−νp)dHµgF
+
∑
s=1,2

∫
σp,s

gF (∇gFF, νp,s)dHµgF
(4.6)

Where σp is the edge (Mi,p,1,Mi,p,2) and −νp its outward-pointing normal to region Ω, while the boundary

partition ∂(T pi ∩ Vi) of finite volume Vi is composed of edges σp,1 and σp,2 with outward-pointing normals

νp,1 and νp,2.

1the set of points whose closest mesh vertex is Fi and no other.
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Figure 4.2: A local

parametrization of triangle

T pi = (Fi, Fip , Fip+1)

Since (4.6) given by (4.5) amounts to zero, we move the integral along σp
to the left-hand side and obtain∫

σp

gF (∇gFF, νp)dHµgF
=
∑
s=1,2

∫
σp,s

gF (∇gFF, νp,s)dHµgF
(4.7)

The result would hold even if we replaced σp by an arbitrary curve contained

in the finite volume Vi. Hence (4.4) is path-independent and the ”interior

sampling point” can either be a barycenter Bi,p = 1
3 (Fi + Fip + Fip+1) or a

circumcenter as in [12].

Denote νp =
[
Mi,p,1 − Mi,p,2

]⊥
λ,ζ

with respect to parametrization (λ, ζ).

Note that operator [·]λ,ζ binds the argument vector onto the plane of triangle

Ti,p and ·⊥ rotates a vector by π/2 in counter-clockwise direction to obtain a

perpendicular vector of the same length. Then by path independence (4.7):∫
∂(T p

i ∩Vi)

〈∇λ,ζF, νλ,ζ〉ds ≈ ∇λ,ζF ·
[
Mi,p,1−Mi,p,2

]⊥
λ,ζ

=
1

2
∇λ,ζF ·

[
Fip−Fip+1

]⊥
λ,ζ

(4.8)

To obtain gradient ∇gFF we compute the gradient of parametrization

∇gFF = ∇λ,ζF =
(
∂λF , ∂ζF

)
=

∂λF 1 ∂ζF 1

∂λF 2 ∂ζF 2

∂λF 3 ∂ζF 3

 =

Fip,1 − Fi,1 Fip+1,1 − Fi,1
Fip,2 − Fi,2 Fip+1,2 − Fi,2
Fip,3 − Fi,3 Fip+1,3 − Fi,3

 =
(
Fip − Fi, Fip+1

− Fi
)

(4.9)

which is a differential (push-forward) map dF (λ, ζ) = F∗
∣∣
Ti,p

of the immersion on triangle Ti,p. The dot

product with the gradient (3× 2) matrix in (4.8) is then given by

(
Fip − Fi, Fip+1

− Fi
)>

[Fip − Fip+1
]⊥λ,ζ =

(
(Fip − Fi)>[Fip − Fip+1 ]⊥λ,ζ

(Fip+1
− Fi)>[Fip − Fip+1

]⊥λ,ζ

)
(4.10)

whose two components are the linear combination coefficients such that area-normalized vectors

u =
1

ATi,p
(Mi,1,p − Fi) =

1

2ATi,p
(Fip − Fi)

v =
1

ATi,p
(Mi,2,p − Fi) =

1

2ATi,p
(Fip+1 − Fi)

(4.11)

span points F (λ, ζ) ∈ Ti,p. Note that triangle area can be equivalently expressed as

ATi,p =
1

2
‖(Fi − Fip)× (Fip − Fip+1

)‖ =
1

2
‖Fi − Fip‖ ‖Fip − Fip+1

‖ sin θi,p,1 =

=
1

2
‖(Fi − Fip+1)× (Fip − Fip+1)‖ =

1

2
‖Fi − Fip+1‖ ‖Fip − Fip+1‖ sin θi,p,2

(4.12)

Where θi,p,1 and θi,p,2 are internal angles at vertices Fip and Fip+1
respectively.

Hence combining (4.9) with (4.11) in approximation (4.8), the integral along finite volume boundary in
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(4.4) is given by:

m∑
p=1

∫
∂(T p

i ∩Vi)

〈∇λ,ζF, νλ,ζ〉ds ≈

≈ 1

2

m∑
p=1

(
1

2ATi,p

[
(Fip − Fi)>[Fip − Fip+1 ]⊥λ,ζ

]
(Fip − Fi) +

1

2ATi,p

[
(Fip+1 − Fi)>[Fip − Fip+1 ]⊥λ,ζ

]
(Fip+1 − Fi)

)
=

=
1

2

m∑
p=1

(‖Fip − Fi‖ ‖Fip − Fip+1‖ cos θi,p,1

‖Fi − Fip‖ ‖Fip − Fip+1
‖ sin θi,p,1

(Fip − Fi) +
‖Fi − Fip+1‖ ‖Fip+1 − Fip‖ cos θi,p,2

‖Fi − Fip+1
‖ ‖Fip − Fip+1

‖ sin θi,p,2
(Fip+1

− Fi)
)

=

=
1

2

m∑
p=1

(
cot θi,p,1(Fip − Fi) + cot θi,p,2(Fip+1

− Fi)
)

(4.13)

Figure 4.3: Finite volume

scheme for boundary vertices.

For adjacent edges in the triangle 1-ring we can combine the terms using

Fip = Fip+1 and Fim = Fi1 to obtain the final result:∫∫
Vi

h dµgF ≈
1

2

m∑
p=1

(
cot θi,p−1,1 + cot θi,p,2

)
(Fip − Fi) (4.14)

For vertices of the mesh boundary ∂X the mean curvature vector is not de-

fined. For example for minimal surface construction, boundary vertices have

fixed support (Dirichlet conditions) for all time steps, which is implemented

in the linear system. For scalar or vector fields on X there is no longer a

closed loop of finite volume partitions T pi ∩Vi, so a ”raw” version of the mean

curvature integral (4.13) has to be used, and boundary conditions have to be

imposed on adjacent boundary vertices on the leftmost and rightmost triangle

(see Fig. 4.1).

The specific formulas for geometric entities are shown in (4.21), (4.22), and (4.23).

4.2.1 Implementation of the 1-Ring Neighborhood

In sections (2.2) and (2.3) we discuss the practical development of piecewise-linear approximations of man-

ifolds. It is clear that unless the constructed mesh surface is fully structured, the vertex and polygon

adjacency relations have to be obtained a posteriori. This can be automated using suitable data structures.

Not only are the 1-ring vertex neighborhoods vital for the cotangent finite volume scheme, but they are

also essential for computing unit normals Ni to mesh vertices. In this section we elaborate on another set of

conventions, widely used in computational geometry. More specifically, we establish the following rules

� Assume that the set of mesh vertices (v1, ..., vNV
) is ordered randomly, and the polygonal indices are

the only topological information available for the object.

� All polygons are tuples of indices to vertices which form positively-oriented polytopes2

� The adjacent 1-ring vertices form a positively-oriented (counter-clockwise) polytope when the central

vertex is not a boundary vertex.

2a general requirement for most 3D models to be properly rendered on the scene.
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� When the central vertex is a boundary vertex, the neighbors follow the same (counter-clockwise)

orientation from the first (leftmost) boundary neighbor to the last (rightmost).

Since the 1-ring elements overlap, it might be desirable to save as much storage space as possible by only

storing tuples of indices to adjacent vertices, indexed by the index of each central vertex. First step is to

acquire the adjacency information from the polygonal vertex index set:

Algorithm 1: Get vertex-to-polygon multi-map

Result: A multimap MX : v → Pv indexing adjacent polygons Pv to each vertex v

foreach P ∈ X do

foreach vj ∈ P do
MX .insert(vj → Pv);

end

end

Note that Pv is a polygon with marked vertex v because the central vertex is not necessarily the first in

each triangulation, which means that we need to iterate through polygon vertices until we find the marked

vertex, and set its index to 0 (or 1). The insert() operation implemented, for example, for std::multimap

object in the C++ standard template library inserts a new key-value pair element for each polygon, but allows

easy search by vertex afterwards.

The obvious application of the vertex-to-polygon multi-map is to compute a vertex normal Ni as a

superposition of adjacent triangle normals. Simply adding and normalizing the triangle normal vectors

might produce incorrect results, for vertices with high valence. For this reason, we use angle-weighted

pseudonormals for each vertex:

Algorithm 2: Get angle-weighted pseudonormals

Result: A set of normal vectors Ni to each vertex

Data: a vertex-to-triangle multimap MX

foreach v ∈ V do
N ← 0

while MX contains triangles Tv marked by v do
Tv ←MX .find(v);

obtain adjacent vertices v0, v1 6= v;

NT ← e0×e1
‖e0×e1‖ ; // compute triangle normal from adjacent edges

α← arccos
(
e0
‖e0‖ ·

e1
‖e1‖

)
;

N ← N + αNT ;

MX .erase(v → Tv);
end

N ← 1
2πN ; N ← N/‖N‖;

end

The angle-weighted pseudonormals are widely used in computer graphics, specifically for correct compu-

tation of the signed distance function to meshes which could contain holes [5].

Constructing co-volume (finite volume) polytopes would be relatively straight-forward if the values of

MX for each vertex v were ordered in counter-clockwise direction. Orientation of a 1-ring neighborhood

inevitably conflicts with the orientation of a 1-ring neighborhood of a neighboring vertex. Again, we assume

a random ordering of vertices v which means, the polygons Pv with marked vertex v first need to be sorted

by adjacency.
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Figure 4.4: A finite volume network and angle-weighted pseudonormals on the Stanford bunny model.

This requires a specific case of a topological sort without any connectivity information for individual

nodes (adjacent polygons), so the simpler version of our algorithm assumes v is not a boundary vertex,

which means that adjacent polygons form a cycle.

Algorithm 3: Sort 1-ring polygons by adjacency

Result: an array of polygons (Pv) with marked vertex sorted by edge adjacency in

counter-clockwise direction.

Data: an (unordered) array of polygons {Pv} with marked vertex

Pcurrent ← {Pv}.pop(); // take out the first polygon

while {Pv} contains polygons do
(Pv).push(Pcurrent);

v ← Pcurrent.v;

v1 ← Pcurrent.previousVertex(v); // get right edge (v, v1)

foreach Pv ∈ {Pv} do
ṽ0 ← Pv.nextVertex(v);

if v1 == ṽ0 then

Pcurrent ← Pv // next for processing

break
end

end

end

The above algorighm requires a modification for processing 1-rings for boundary vertices. Since the first

processed polygon is taken from the top of container {Pv}, and has a random position in the 1-ring, we

must first iterate in one direction (counter-clockwise) until we reach a triangle with no edge, and then search

through left neighbors of the first processed polygon towards the boundary again.

When we reach the end of container {Pv} when searching for right neighbor candidates, we exit the search

and return to the first processed polygon, completing the adjacency from the left. Note that for iterating in

the clockwise direction we compare the left edge vertices of current polygon Pcurrent with right edge of the

left neighbor candidate Pv.
The computation of the co-volume network is straight-forward when given an array (Pv) sorted by

adjacency for each vertex v. It should be noted that topologies with multiple boundary vertices joined at a

single vertex are not supported, nor should they be used as initial conditions for surface evolution.
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4.3 A Discrete Formulation of the Evolution Model

Consider now model (3.9) without tangential redistribution. In this work, we utilize a semi-implicit finite

volume scheme, that is: we use forward time difference, and all terms containing geometric information

such as angles and areas, will be considered from the previous time step. Let Vi be a co-volume with Fi
as representative vertex, and let τ > 0 be the length of a time step, then from (3.9) the following integral

formulation holds: ∫∫
Vi

F t+τi − F ti
τ

dµgtF =

∫∫
Vi

εt∆gFF
t+τ
i dµgtF +

∫∫
Vi

ηtiN
t
i dµgtF

where control functions εti and ηti are obtained for each vertex from the current geometry state from (3.7)

and (3.8) for example3. From an assumption of the finite volume formulation that integrands (except for

the mesh Laplacian) are constant on Vi we obtain an approximation

µgtF (Vi)
F t+τi − F ti

τ
=
εti
2

m∑
p=1

(
cot θti,p−1,1 + cot θti,p,2

)
(F t+τip

− F t+τi ) + ηtiN
t
iµgtF (Vi) (4.15)

Factoring the unknown vertex immersion positions from (4.15) for the next time step F t+τi and F t+τip
we

acquire a linear system

At
iiF

t+τ
i +

m∑
p=1

At
iipF

t+τ
ip

= F ti + τηtiN
t
i (4.16)

with coefficients

At
ii =

(
1 +

τεti
2µgtF (Vi)

m∑
p=1

(
cot θti,p,1 + cot θti,p,2

))

At
iip = − τεti

2µgtF (Vi)

(
cot θti,p−1,1 + cot θti,p,2

) (4.17)

Given a Dirichlet boundary condition F t
∣∣
∂X

= F ∂X for all t ∈ [0, ts] reduces to trivially putting At
ii = 1 and

At
iip = 0 with the right-hand side containing the fixed positions of the boundary vertices F ∂Xi [34].

Clearly, matrix At is diagonally dominant and the resulting linear system AtFt+τ = bt with right-hand

side bt given by (4.16) for each vertex coordinate is solved using the stabilized bi-conjugate gradient method

(BiCGStab). However, the BiCGStab method (especially with good preconditioning) is a tool which is often

stronger than required for most meshes (with low vertex valence). Based on the system’s diagonal dominance

[24] had successfully tested convergence for an SOR method as well.

4.4 Discretization of Tangential Velocity

The tangential velocity term adds additional information to the right-hand side of the linear system. For

angle-based redistribution, the computation of vtT,i for each time step is relatively straight-forward using

formula (3.24) projected, of course, onto the tangent plane at vertex F ti by vtT,i = ṽtT,i − (N t
i · ṽtT,i)N t

i .

3for scalar grids with discrete sampling, the values of the distance function, for example, need to be interpolated using
trilinear interpolation.
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On the other hand, the asymptotically uniform volume-based tangential redistribution requires one to

solve a single linear system based on (3.19) integrated in the same way along each co-volume:∫
Vi

∆F tψt dµgtF =

=

∫
Vi

(vtN,i · hti)dµgtF −
∫
Vi

1

At

(∫
X

(vtN,i · hti)dµgtF

)
dµgtF +

∫
Vi

ω

(
A

GAX
− 1

)
dµF t

The area density G is approximated using the fact that

At =

∫
X

GtdµX ≈
NV∑
i=1

GtiµX(Vi) ⇐⇒ At ≈
NV∑
i=1

µgtF (Vi)

and using formulas (3.20) we put

Gti =
NV
AX

, with AX = µX(X) = 1 and µX(Vi) =
1

NV
(4.18)

for convenience, which gives rise to discrete formulation:

1

2

m∑
p=1

(cot θti,p−1,1 + cot θti,p,2)(ψti − ψtip) =

= µgtF (Vi)(v
t
N,i · hti)−

µgtF (Vi)

At

NV∑
j=1

µgtF (Vj)(v
t
N,j · htj) + µgtF (Vi)ω

(
At

NV µgtF (Vi)
− 1

) (4.19)

or alternatively:

1

2

m∑
p=1

(cot θti,p−1,1 + cot θti,p,2)(ψti − ψtip) =

= µgtF (Vi)(v
t
N,i · hti)−

µgtF (Vi)

At

NV∑
j=1

µgtF (Vj)(v
t
N,j · htj) + µgtF (Vi)ω

(
At

NV µgtF (Vi)

1
f(Ht

i )∑NV

j=1
µX(Vj)
f(Ht

j)

− 1

) (4.20)

where mean curvature and normal velocity are approximated as:

hti ≈
1

2µF t(Vi)

m∑
p=1

(cot θti,p−1,1 + cot θti,p,2)(F ti − F tip)

vtN,i := ε(d(F ti ))hti + η(d(F ti ))N t
i

The cotangents of angles opposing to each edge as well as all auxiliary geometric quantities can be calculated

directly from the derivation of scheme:

cot θti,p−1,1 =
(F tip−1

− F ti ) · (F tip−1
− F tip)

||(F tip−1
− F ti )× (F tip−1

− F tip)||

cot θti,p,2 =
(F ti − F tip+1

) · (F tip − F
t
ip+1

)

||(F ti − F tip+1
)× (F tip − F

t
ip+1

)||

(4.21)
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µgtF (Vi) =
1

2

m∑
p=1

(
||(M t

i,p,1 − F ti )× (Bti,p − F ti )||+ ||(Bti,p − F ti )× (M t
i,p,2 − F ti )||

)
(4.22)

M t
i,p,1 =

1

2
(F tip + F ti ) , M t

i,p,2 =
1

2
(F tip+1

+ F ti ) , Bti,p =
1

3
(F ti + F tip + F tip+1

)

M̃ t
i,p,1 =

1

2
(M t

i,p,1 +Bti,p) , M̃ t
i,p,2 =

1

2
(M t

i,p,2 +Bti,p)

(4.23)

Figure 4.5

Afterwards a linear system is composed from (4.19):

Aψ,t
i,i ψ

t
i + Aψ,t

i,p ψ
t
ip = bψ,ti (4.24)

such that:

Aψ,t
1,1 = 1

Aψ,t
i,i =

1

2

m∑
p=1

(cot θti,p−1,1 + cot θti,p,2) , i = 2, ..., NV

Aψ,t
i,p = −1

2
(cot θti,p−1,1 + cot θti,p,2) , i = 2, ..., NV

Aψ,t
i,j = 0 (everywhere else)

because potential ψ requires a reference value which we

chose to be ψt0 = 0. The right-hand side components are

then computed by:

bψ,t1 = 0 , and for i = 2, ..., NV with Ãt =

NV −1∑
i=1

µgtF (Vi) :

bψ,ti = µgtF (Vi)(v
t
N,i · hti)−

µgtF (Vi)

Ãt

NV −1∑
j=1

µgtF (Vj)(v
t
N,j · htj) + µgtF (Vi)ω

(
Ãt

µgtF (Vi)(NV − 1)
− 1

) (4.25)

or, for curvature-controlled redistribution:

bψ,ti = µgtF (Vi)(v
t
N,i · hti)−

µgtF (Vi)

Ãt

NV −1∑
j=1

µgtF (Vj)(v
t
N,j · htj) + µgtF (Vi)ω

(
Ãt

µgtF (Vi)

1
f(Ht

i )∑NV −1
j=1

1
f(Ht

j)

− 1

)
(4.26)

A convenient way to verify the underlying geometric calculations is to take a sum of the right-hand side

over all vertices:

NV∑
i=1

bψ,ti =

NV −1∑
i=1

[
µgtF (Vi)(v

t
N,i · hti)−

µgtF (Vi)

Ãt

NV −1∑
j=1

µgtF (Vj)(v
t
N,j · htj) + ω

(
Ãt

NV − 1
− µgtF (Vi)

)]
=

=

NV −1∑
i=1

µgtF (Vi)(v
t
N,i · hti)−

1

Ãt

(NV −1∑
i=1

µgtF (Vi)

)NV −1∑
j=1

µgtF (Vj)(v
t
N,j · htj) + ω

(
(NV − 1)

Ãt

NV − 1
−
NV −1∑
i=1

µgtF (Vi)

)
=

= ω

(
Ãt − Ãt

)
= 0
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which, of course, holds for (4.26) as well. Summing up bψ,ti numerically should therefore be ”almost zero”

when considering round-off errors.

To obtain the tangential velocity field from ψ assume wtT = ∇gtFψ
t and (F t)∗(vtT (p)) = wtT (p) =

(∇gtFψ
t)(p) for points p ∈ X implies

vtT (p) = (F t)∗(w
t
T (p)) = (F t)∗(∇gtFψ

t(p))

which means that Im(vtT ) = ∇Im(F t)((F
t)∗ψ

t) with the specialized push-forward gradient ∇Im(F t) is defined

so that diagram

F(Im(F t)) V(Im(F t))

F(X) V(X)

∇Im(Ft)

(F t)∗
∇gt

F

(F t)∗

commutes with F(X) and V(X) spaces of functions and vector fields4 respectively on manifold X. Note

that Im(F t) = F t[X] by the previous notation. Clearly, ∇Im(F t) represents the gradient on F t[X]. Given

a scalar field ϕ : F t[X] → R, its gradient is then projected into the tangent space of the image F t[X] of

immersion F t:

∇Im(F t)ϕ = ∇Y ϕ− gY (∇Y ϕ,N)N

with ϕ being a smooth extension of ϕ to the neighborhood of F t[X]. Thus the finite volume integral

formulation assumes form [24]:∫∫
Vi

vtT dµgtF =

∫
∂Vi

ψtνti dHµgt
F

−
∫∫

Vi

ψtht dµgtF (4.27)

with co-volume approximation:∫
Vi

vtT dµF t ≈
m∑
p=1

(
||σti,p,1||ψti,p,1νti,p,1 + ||σti,p,2||ψti,p,2νti,p,2

)
− µF t(Vi)ψ

t
ih
t
i

where according to Fig.4.5 we define:

σti,p,1 = Bti,p −M t
i,p,1 , σti,p,2 = Bti,p −M t

i,p,2 (co-volume edges)

eti,p,1 = M t
i,p,1 − F ti , eti,p,2 = M t

i,p,2 − F ti (triangle half-edges)

τ ti,p,1 = Bti,p −M t
i,p,1 , τ ti,p,2 = Bti,p −M t

i,p,2 (co-volume tangents)

νti,p,1 =
eti,p,1 −

(eti,p,1·τ
t
i,p,1)

(τt
i,p,1·τt

i,p,1)
τ ti,p,1∥∥∥∥eti,p,1 − (eti,p,1·τt

i,p,1)

(τt
i,p,1·τt

i,p,1)
τ ti,p,1

∥∥∥∥ , νti,p,2 =
eti,p,2 −

(eti,p,2·τ
t
i,p,2)

(τt
i,p,2·τt

i,p,2)
τ ti,p,2∥∥∥∥eti,p,2 − (eti,p,2·τt

i,p,2)

(τt
i,p,2·τt

i,p,2)
τ ti,p,2

∥∥∥∥ (co-volume edge normals)

and

ψti,p,1 =
5ψti + 5ψti,p + 2ψtip+1

12
, ψti,p,2 =

5ψti + 2ψti,p + 5ψtip+1

12

are interpolated values of ψt in co-volume edge midpoints M̃ t
i,p,1, M̃ t

i,p,2.

4commutative and associative algebras
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Chapter 5

Signed Distance Computation

Figure 5.1: Distance function to a mesh using

the brute force approach requires us to compare

distances to all mesh triangles for each sampled

point x.

The advection term controlled by (3.8) contains a

scalar field which determines the shape of target geometry.

The distance function to a set, say X ⊂ R3 is defined as:

d+ : R3 → R+ : x 7→ inf
p∈X

{
‖p− x‖

∣∣ x ∈ R3
}

and its modification:

d± : R3 → R : x 7→ sgnX(x) inf
p∈X

{
‖p− x‖

∣∣ x ∈ R3
}

with

sgnX(x) =


1, for x ∈ Int(X)

−1, for x ∈ Ext(X)

where Int(X) and Ext(X) are the interior and exterior of a

closed surface mesh X, is called the signed distance function.

Sampling d+ (or d±) in a regular grid allows us to triangu-

late individual level sets (points which are the same distance

from mesh) as seen in Fig. 5.1, or to interpolate between grid

node values using trilinear interpolation. The sampling pro-

cess, however, can turn out to be computationally demanding

for practical purposes.

Consider a regular 3D grid with 100× 100× 100 = 106 voxels and a mesh with ≈ 5× 103 triangles, as it

is in case of the Stanford bunny model in Fig.5.1. Sampling d+ for all 106 grid nodes requires us to make

103 calculations of 3D distance to a mesh triangle, after which each resulting new distance is compared with

the previous iteration and kept for the grid node when smaller. This makes 5 × 109 calculations total for

what will be referred to as the brute force approach, taking several minutes even when computed on multiple

threads.

The problem of accelerating the, so called, distance query for 3D models has been approached in a large

number of publications dedicated to implementing the procedure for their particular purposes. A thesis by

Sanchez [33], for example, tests multiple possibilities and compares their computational efficiency.

In this chapter, we discuss our approach to accelerating distance function in three steps:
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1. construct a binary (bounding volume) search tree hierarchy to accelerate voxel-triangle intersection

query.

2. subdivide the bounding space with an octree up to the desired resolution, and set its leaf nodes to the

exact mesh distance.

3. with the mesh distance outline computed, perform 8 iterations of the fast sweeping algorithm for

Eikonal equation ‖∇d(x)‖ = 1 to solve for d.

which require no parallel processing, and can be implemented using just the standard C++ template library.

5.1 Axis-Aligned Bounding-Box (AABB) Trees

Given a scene with many 3D models, as is usually the case in 3D computer games for example, testing

whether individual models intersect for collision detection is an operation which is in its brute-force form of

O(mn) complexity, where m and n are the numbers of triangles of respective models. Similarly, sampling

the distance grid has the same computational complexity. The trick used by virtually all game engines is to

only test parts of each model for intersection, say only a few triangles which occupy the same space.

The key is to construct a bounding volume hierarchy (BVH) with the root volume enveloping an entire

mesh model, and remaining nodes containing increasingly smaller volumes up to leaves which contain small

numbers of triangles. In contrast to the use of an octree, it is generally more convenient to partition the

space into a binary space partition (BSP) tree. The intersection queries then follow logarithmic complexity

O(log n) for each model, vastly accelerating the procedure.

The simplest approach is to use bounding boxes which intersect sets of non-interacting triangles (triangle

soup)1. The, so called, axis-aligned bounding boxes will be the key feature of search tree nodes. Only leaf

nodes will contain triangles, so the search algorithm need to recursively look for finer bounding boxes to get

to the leaf node and perform the subsequent calculations. The binary tree constructed from such nodes is

referred to as an axis-aligned bounding box tree (AABB tree).

1topological information such as adjacency is irrelevant for distance computation to individual triangles.

Figure 5.2: (left) all node boxes of an AABB tree, and (left) only AABB leaf nodes containing triangles of the

Stanford bunny model.
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There are many variants of this data structure. Specifically, similar search trees which store point cloud

data are referred to as KD-trees2. The distinction between terms AABB tree and KD-tree is often non-

existent.

Our method from constructing an AABB tree from a set of individual triangles can be summarized in

the following algorithm:

Algorithm 4: AABB Tree (Axis-Aligned Bounding Box Tree)

Data: A ”triangle soup” {T }
// this procedure is called recursively for each node N
B0 ←generate a bounding box around {T } and inflate it by a small amount;

set B0 as the box of the root node NB0 ;

if B0 does not meet the leaf conditions then
xsplit ← find optimal split position for B0 (by SAH and longest axis);

split B0 into B1 and B2 in xsplit;

distribute triangles in {T } into two (possibly overlapping) buckets NB1 and NB2 when they

intersect boxes B1 and B2;

break if max depth is reached;
end

The initial inflation of box B0 serves as a correction for possible numerical errors when computing

intersections. If intersection subroutine fails to find an intersection which should exist for B0 due to round-

off errors, a larger box B±ε0 ⊃ B0 with ε > 0 added in all directions will not fail this test.

The ”leaf conditions” we use can be summarized with inequality

NL +NR <
3

2
Ntotal

which quantifies the balance between the sum of the number of left node triangles NL and the right node

triangles NR and a multiple of the total number of triangles Ntotal. Note that since triangles can ”share

boxes” NL +NR ≥ Ntotal in general.

Figure 5.3: Split position sampling and min-

imization of fcost on parabolic segments (blue)

for the root node of the Stanford bunny model.

The search for optimal split position is the most significant

”bottleneck” for the construction of an AABB tree. Splitting

B0 in half would be insufficient for meshes with large concen-

trations of triangles in some areas because it would take much

longer for AABB nodes N to reach leaf conditions and when

the do, the search would have to process large amounts of tri-

angles in some nodes. Finding the longest axis of B0 is trivial,

but finding xsplit requires a measure of triangle concentration

for both child candidates.

We use a variant of a technique called surface area heuristic

(SAH) which minimizes a cost function

fcost(x) = CL(x)
SAL(x)

SA
+ CR(x)

SAR(x)

SA

where SA is the surface area of current box B0, SAL(x) and

SAR(x) are surface areas of left and right child boxes respec-

tively, and cost weights CL(x) and CR(x) evaluate the cost of

2as in k-dimensional trees.
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traversing the left and right node candidates respectively, all while considering split position x. The travers-

ing costs CL and CR are evaluated by counting triangle intersected by the left and right box candidates.

Clearly CL is non-decreasing with respect to x, since by moving the split position further to the right will

result in more triangles contained in the left node. Similarly CR is non-increasing for the same reason.

We used an optimized adaptive procedure for minimizing fcost from [14] on 32-bit float SIMD registers

for storing quadruples of split values x and processing them simultaneously, the result of which can be seen

in Fig.5.3.

5.2 Octree-Based Mesh-Cell Generation

Octree data structures are often used when processing 3D image data. They provide a way to find

adaptively finer regular subdivisions of 3D voxels (axis-aligned cubes). Our goal is to construct a scalar

grid (a 3D image), and smallest octree nodes (leaves) will serve as basis for grid voxels ”activated” by the

triangle mesh. The computational cost of extracting leaf cells and transforming their bounds to grid index

space with distance information is again O(log n).

Algorithm 5: Mesh Distance Octree

Data: An AABB tree TAABB of mesh X

// this procedure is called recursively for each node ON
C0 ←generate a bounding cube around X;

set C0 as the cube of the root node ON,0;

if C0.size() < minCellSize then
subdivide C0 into 8 subcells Ck, k = 1, ..., 8;

foreach Ck, k = 1, ..., 8 do

if Ck intersects mesh X using TAABB then
open node Ck;

else
discard Ck;

end

end

break if max depth is reached;
else

dmin ← min{ squared distance of the centroid of C0 to T ∈ TAABB.intersectsWith(C0)};
end

Where intersectsWith(C0) finds a leaf node of TAABB which intersects C0. In fact, the cell-mesh

intersection in the previous if block can be performed by the same routine.

Because the square root operation is computationally expensive, we compare squared distances to find

dmin. Using the octree leaves we assign the stored values dmin to cells gijk of a regular (Nx×Ny ×Nz)-grid

G using indices:

ix =

⌊(
1

2

(
Cmin,x + Cmax,x

)
−Gx,min

)
Nx
sx

⌋
(5.1)

and analogously for iy and iz, where Cmin,x ans Cmax,x are the minimal and maximal vertices of leaf cell C,
Gx,min is the minimal bound of grid G, Nx the number of cells and sx its dimension in the x-direction.

Given the grid’s index dimensions Nx, Ny, and Nz we can access grid cells with linear indexing ipos =

Nx Ny iz +Nx iy + ix and store all scalar data in a linear array.
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Figure 5.4: (left) full octree with all its cells, and (left) the octree leaves with centroids which serve as sampled

grids points for the Stanford bunny model.

Note that the mean between the minimal an maximal cell vertex in (5.1) implies that we sample the

space in the centroids of the octree leaves (see Fig. 5.4).

5.3 The Fast Sweeping Algorithm

The remaining (inactive) grid cells should, by default, contain a value larger than any value a distance

function d+ can admit in the sampled volume. This serves as an initial condition for the fast sweeping

algorithm for non-linear Eikonal3 equations which take general form ‖∇u(x)‖ = f(x) , x ∈ Rn with

u(x)
∣∣
Γ

= φ(x) , Γ ⊂ Rn. The distance function d+ is a specific form of Eikonal problem, namely:

‖∇d+(x)‖ = 1 , d+(x)
∣∣
Γ
≡ 0 (5.2)

Figure 5.5: 8 sweep directions of

the fast sweeping algorithm.

Clearly, the distance function d+ to a set Γ ⊂ Rn is linear with slope 1

in the normal direction from Γ. According to Zhao [39], given a set of grid

points xi,j,k ∈ [Gx,min, Gx,max]× [Gy,min, Gy,max]× [Gz,min, Gz,max] with

the initial condition approximated, or as in our case already computed

for a subset of grid points xΓ
i,j,k near Γ = X (the triangle mesh). We will

perform 2n=3 = 8 iterations (sweeps) in alternating index directions:

ix = 1, ..., Nx , iy = 1, ..., Ny , iz = 1, ..., Nz

ix = Nx, ..., 1 , iy = 1, ..., Ny , iz = 1, ..., Nz

ix = Nx, ..., 1 , iy = Ny, ..., 1 , iz = 1, ..., Nz

...

ix = 1, ..., Nx , iy = Ny, ..., 1 , iz = Nz, ..., 1

ix = 1, ..., Nx , iy = Ny, ..., 1 , iz = 1, ..., Nz

depicted in Fig. 5.5.

3a German form of Greek word εικων (eikon) which stands for ”likeness”, ”icon”, or ”image”
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Figure 5.6: A volume rendering of the distance function computation with the fast sweeping algorithm. First 3

iterations have high contrast (infinities are transparent) and the following are rescaled to view the full range of the

solution. The image of sweep 7 is omitted.
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Now for each sweep, use a Godunov upwind difference scheme:

[(dhi,j,k − dhx,min)+]2 + [(dhi,j,k − dhy,min)+]2 + [(dhi,j,k − dhz,min)+]2 = h2

where h > 0 is the grid’s cell size and

dhx,min = min{dhi−1,j,k, d
h
i+1,j,k} , dhy,min = min{dhi,j−1,k, d

h
i,j+1,k} , dhz,min = min{dhi,j,k−1, d

h
i,j,k+1}

(x)+ =


x, x > 0

0 x ≤ 0

(5.3)

For each grid cell xi,j,k we sort the neighboring min values given by (5.3) in ascending order: a1 ≤ a2 ≤ a3

and then find a solution x to
x− a1 = h

(x− a1)2 + (x− a2)2 = h2

(x− a1)2 + (x− a2)2 + (x− a3)2 = h2

until x ≤ ap , p = 1, 2, 3.

Figure 5.7: The numerical error Gε of

the fast sweeping algorithm on the Stan-

ford bunny with grid size 453.

As a result, the numerical solution d̃ to (5.2) will be completed in

the directions of each sweep with increasing accuracy, all of which

is completed in O(N) time (where N = dimG). The grid G, of

course, has to be expanded to the user’s desired dimension prior to

running the fast sweeping algorithm.

As we can see in Fig. 5.6, the most significant changes in the

numerical solution occur up to sweep 4. The resulting solution, of

course, deviates from the exact (brute-force) distance function (see

Fig. 5.7). We can compute numerical error estimates by taking

Gε = |GFS −Gexact| , L2-error =
1

NxNyNz

Nx,Ny,Nz∑
i,j,k=1

Gεi,j,k
2

The L2-error is reduced by the ratio of the number of new grid cells

over the number of old grid cells when increasing grid resolution.

The algorithm has been used, for example in [21] for recon-

structing surfaces from point cloud data using level sets, and can

be extended to an arbitrary number of dimensions (although in-

creasing computational demands).

5.4 Mesh SDF Algorithm and Results

Combining the above approaches, we are able to obtain results within computationally reasonable time.

All of this was implemented without any parallel processing. Using multiple CPU cores for demanding

operations like octree subdivision, the fast sweeping algorithm, or even the construction of an AABB tree

could make even the finest distance scalar grids fully interactive on changing the source mesh X.
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Figure 5.8: A sign of the distance func-

tion inside the bunny mesh (blue) and the

outer iso-contours rendered via the march-

ing cubes algorithm.

For our goals, we only need to compute the distance function

once to use it in control function (3.8), thus a few seconds of com-

putation is not too much of a drawback. The largest bottleneck is

the computation of the sign sgnX of d±. Meďla [23] uses an ap-

proach of flood filling the entire voxel grid. Prior to running the

fast sweeping algorithm, voxels which intersect Γ = X are marked

as frozen since they are no longer subject to processing. When

X is a closed surface or a surface with holes smaller than grid’s

cell size, the frozen voxels create a closed discrete representation

of Γ. Negating all values after fast-sweeping and seeding a flood

fill outside of Γ will result in all outside cells to get their respec-

tive positive values, while the interior of the mesh contains negative

distance values.

As was previously mentioned, the construction of an AABB

tree TXAABB relies on using float32 SIMD registers for parallel

processing of multiple split positions. Using 64-bit registers would

allow even better sampling at the same speed, but such framework is

not supported on most machines. The construction of both TXAABB

and octree OX can be accelerated using a linear array of nodes

with topological information stored in the form of indices to array

positions.

Our procedure is summarized in the following algorithm:

Algorithm 6: A distance function scalar grid G

Data: A mesh X with extractable triangle soup {T }, offset value o

TXAABB ← generate an AABB tree from {T };
generate OX given minCellSize > 0; // octree

create grid G with dimensions of the bounding box of X and given cell resolution;

expand G by given offset o;

set exact distance values gexact
i,j,k to grid cells that are centroids of octree OX ’s leaf cells;

set gi,j,k ←∞ everywhere else;

fastSweep(G); // 8 sweeps

compute sign of G using voxel flood fill;

Testing method from algorithm (6) on the Stanford bunny with increasing grid resolution gives the

following CPU time measurement results (in seconds):

grid resolution AABB tree Octree Fast-Sweeping Sign computation TOTAL

303 0.053611 0.027909 0.009959 0.021141 0.112620

603 0.049847 0.039661 0.042242 0.099734 0.231385

1203 0.047344 0.117273 0.338058 0.789032 1.289707

2403 0.043543 0.291580 2.325632 6.931647 9.590404
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Chapter 6

Surface Evolution as Remeshing

6.1 Numerical Experiments

Having implemented all procedures from previous chapters, we proceed to test our models. The first

step is to verify the numerical accuracy of the evolution model (3.4) on an available exact solution. Since

there are only a few examples of exact solutions to the mean curvature flow problem (3.4), and modeling

infinite or translating solutions (for example, the shrinking cylinder or grim reaper) we choose the shrinking

sphere solution for testing, as in [24].

For computing the error given by difference between the solution of (3.5), namely r(t) =
√
r0 − 4t, and

the numerical sphere immersion F t for all mesh vertices as well as all time steps, we use

ε =

√√√√ Nt∑
k=1

τ

( NV∑
i=1

(
‖F ti ‖ − r(t)

)2
µgtF (Vi)

)2

(6.1)

where Nt = ts/τ and t = kτ, k = 1, ..., Nt. We put r0 = 1 to perform the test on a unit sphere S2. The

sphere tessellation we use is given by recursive subdivision of an icosahedron (as seen in Fig.1.1). Each

subdivision step reduces geodesic edge length between vertices on S2 to a half of the previous step, which

means we can compute experimental order of convergence:

EOC = log2

(
εl
εl/2

)
where εl and εl/2 are given by (6.1) for discretizations with geodesic edge lengths l and l/2. Note that we

also reduce the length of time step τ by half. The results are summarized in tables (6.1), (6.2), and (6.3).

NV τ Nt L2-error EOC CPU time [s]

42 0.01 6 0.00306693 0.015400

162 0.0025 24 0.000867587 1.82171 0.109411

642 0.000625 96 0.000210629 2.04231 2.879498

2562 0.00015625 384 5.11243e-05 2.04262 66.822671

Table 6.1: the EOC for the shrinking sphere test without tangential redistibution.
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NV τ Nt L2-error EOC CPU time [s]

42 0.01 6 0.00284543 0.054055

162 0.0025 24 0.000859596 1.72692 0.147276

642 0.000625 96 0.000209863 2.03421 3.467786

2562 0.00015625 384 5.07569e-05 2.04777 113.075791

Table 6.2: the EOC for the shrinking sphere test with asymptotically uniform tangential redistibution with ω = 1.0.

NV τ Nt L2-error EOC CPU time [s]

42 0.01 6 0.00491455 0.062172

162 0.0025 24 0.00106504 2.20615 0.182325

642 0.000625 96 0.000238864 2.15665 3.122358

2562 0.00015625 384 5.71001e-05 2.06462 146.78901

Table 6.3: the EOC for the shrinking sphere test with asymptotically uniform tangential redistibution with ω =

100.0.

6.2 Mean Curvature Flow Evolution

As shown in the previous section, the validity of our model is verified on behalf of experimental order of

convergence (EOC). The general MCF model can be implemented as:

Algorithm 7: MCF of an input mesh

Data: A mesh X (preferrably of higher quality), τ , Nt;

Result: Meshes Xt for each time step, and the result Xts

// initialization (get bounds in case the solution explodes)

BX ← X.computeBoundingBox().expandByFactor(2.0);

// evolution

for k = 1; k < Nt; k + + do

X.computeNormalsAndCoVolumes();

if do volume-based tangential redistribution then

X.computeCurvatures();

compose and solve linear system Aψ,tψt = bψ,t;
end

compose and solve linear systems AtF t = bt + τvtT ;

X.updateVerticesFrom( F t, BX ) ;

end

When the volume-based redistribution flag is turned off, the tangential velocity vector vtT is either set to

the angle-based redistribution velocity vector for each vertex, or set to zero for no tangential redistribution.

Besides updating mesh vertices, the updateVerticesFrom( ·, · ) method also checks whether new vertices

F t are contained by inflated bounding box BX .

The lack of tangential redistribution becomes apparent (see Fig. 6.1 (top)), since vertices with higher

mean curvature tend to accumulate. Imposing asymptotically uniform volume-based redistribution results

in a decrease of cumulative effects on vertices, yet also the rate of contraction is no longer driven by mean
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Figure 6.1: A comparison of MCF evolution with τ = 0.03 of an irregular shape without tangential redistribution

(top) and with volume-oriented redistribution with ω = 200.

curvature. This may result in an elongated shape of the ellipsoid mesh shown in the second row of Fig.6.3,

or an accelerated shrinking evolution as in Fig.6.1 (bottom).

It should be noted that when time step τ differs significantly from 〈µgtF (Vi)〉 (where 〈·〉 stands for mean

value over NV co-volume elements) the semi-implicit method given by system (4.16) becomes unstable.

Despite being a characteristic feature of evolution with vT = 0, the angle-based redistribution velocity

Figure 6.2: Mean curvature flow of a sphere-like initial mesh with uneven distribution of vertices. The angle-based

velocity rapidly expands triangles with ”bad” angles. Tangential velocity vt also has a volume-based component with

ω = 200. The time steps shown are 0, 5, 10, 15, 20, and 25.
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Figure 6.3: A comparison of the effects of volume and angle based tangential redistribution. The top evolution

is without tangential redistribution and bottom evolution has a combination (sum) of tangential velocities from the

previous two.
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Figure 6.4: A gradient field with trajectories

for the signed distance function to the Stanford

bunny model.

formula (3.24) is only weighed by internal angles, not by

lengths of vertex edges.

As a result, not using the angle-based parameter carefully

may cause the solution to explode for some configurations, es-

pecially for meshes with high concentrations of vertices in some

parts more then other. An example of the power of the tan-

gential velocity is shown in Fig.6.2 with ωangle = 3.0. The dis-

tribution of vertices diffuses, but the transient state involves

rapid expansion of vertices with ”bad” angles whose tangential

velocity is of high magnitude for a short period of time.

It is also possible to combine tangential velocities which

arise from volume-based and angle-based, and taking their su-

perposition: vT = vT,vol + vT,angle. The resulting shape is

characterized by a combination of the traits given by both ve-

locities. That being said, the effect of vT,angle can still be

overwhelmingly more powerful than the gradient of redistri-

bution potential ψ, the result of which is that points tend to

get more concentrated in some parts of the mesh, specifically

around extraordinary vertices with valence different from their

neighborhood. These artifacts can be accounted for by making the effect of vT,angle inversely proportional

to co-volume area or by weighing this component by a scalar function such as d = Gσ ∗ d±;

Figure 6.5: Interpolated values of ∇d (green)

and surface normals (red) at vertices F ti

6.3 Gradient-Based Evolution

Extending our model to (4.1) we modify Algorithm 7 by

introducing an advection term given by d. The gradient of the

distance function is, however, defined only on grid points xijk ∈
G. Using trilinear interpolation with respect to surrounding

vertices for any (vertex) position F t within the bounding box

ofG solves this issue straightforwardly. Trajectories solving ini-

tial value problem F ′(t) = ∇d, F (0) = F 0 can be seen in Fig.

6.4. In section 3.2 we also mention that since we are starting

from an immersion F 0 the surface should evolve against ∇d
towards the mesh from outside. A simulation of the vectors

acting in η given by (3.8) can be found in Fig. 6.5, where we

show ∇d vectors (in green) instead of −∇d for visual purposes.

At first we implement a Lagrangian evolution with advec-

tion, but without additional tangential velocity. The results

follow the properties we discussed in the previous section. Ap-

parently, the advection term influences co-volume density to a

large extent, especially for convex meshes (Fig. 6.6 and 6.8).

Areas with considerably high mean curvature, with the most rapid change in −∇d, such as edges, corners

and other key features of the target mesh, seem to accumulate vertices in much the same way as areas with
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Figure 6.6: Evolution towards a cube model.

higher curvature for continuous models (ellipsoid in Fig.6.3, for example). As a result the triangles in these

areas seem to have disproportionately small angles. Which is visible in colored co-volume area in Fig. 6.7.

Moreover, the distance grid resolution influences the final product to a certain extent as well. As the

surface relaxes onto a region Γ which approximates the mesh, it follows the information provided by the

distance gradient. Low resolution voxel grids have a specific form of discontinuity which manifests itself as

roughness which can be seen in Figures 6.7 and 6.8.

We deal with the ”roughness” problem by applying additional smoothing steps via mean curvature flow.

To avoid the shrinking of key mesh features, we exponentially slow the mean curvature term by a modified

Figure 6.7: Evolution result after Nt = 150 steps with τ = 0.03 and 10 additional smoothing steps. The distance

field grid resolution is 120× 115× 96.

48



Figure 6.8: Convex meshes after Nt = 150 steps with τ = 0.03 and 10 additional steps of smoothing. The distance

grid resolution is geometry-dependent with the largest being 1203.
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Figure 6.9: Evolution towards the Stanford bunny model without tangential redistribution. The configuration is

the same as in previous examples, but with higher IcoSphere subdivision.

control function

ε(t) := S0e−λt, S0, λ > 0

Convex meshes have a significant advantage over non-convex target manifolds mainly because the regular

tesselation of the initial immersion F 0 contains no information about possible redistribution to concave areas

prior to successively reaching a point when the triangles are already ”too stretched” for further calculations.

This can be clearly seen in the ”arc” example (Fig. 6.7), and in an extreme case with the Stanford bunny

model (in Fig.6.9)

Applying tangential redistribution has its limitations as well. If not controlled, vT,angle can cause an

explosion of the solution. On the other hand the advection term and possibly an asymptotically uniform

volume-based redistribution velocity can still strongly influence the interior angles of triangular elements.

Higher amount of redistribution results in the mesh shrinking under a form of smoothing which is a combi-

nation of the redistribution terms and mean curvature flow.
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Figure 6.10: Evolution towards the arc mesh with angle-based tangential redistribution with ω = 3.0.

Figure 6.11: The highest quality attempt to

remesh the Stanford bunny model.

The redistribution terms, however, increase the mesh qual-

ity even for simple models, such as the arc in Fig.6.10. The ac-

cumulation around extraordinary vertices and triangle stretch-

ing is, however, still visible.

For models with large concavities, like the Stanford bunny,

a more robust approach is required.

6.4 Results and Discussion

Based on the results of this chapter, we conclude that al-

though Lagrangian surface evolution models with advection

can serve as a remesing tool for a small subset of (predomi-

nantly convex) meshes, an extension of this approach to general

geometries demands further inquiry.

Furthermore, we would like to point out that only a small

sample of possible approaches to tangential redistribution have

been tried. Perhaps a form of conformal map could prevent tri-

angle stretching with concave target meshes. The Lagrangian

evolution model fills all holes of models which have higher genus

with minimal surface membranes. Perhaps using iso-surfaces

generated by the marching cubes algorithm could adapt more

efficiently to model’s intricate features. All of this will be an

abundant area for further research and development.
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