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Abstract

Title: Correction of watercourses in maps using airborne laser scanning data
Abstract: In this thesis we deal with the use of evolving planar curves to create more accurate map
depiction of watercourses. For this purpose we use data from airborne laser scanning and from the
OpenStreetMap database. We introduce all the input data for our mathematical model which includes
classified point cloud, digital terrain model and sequence of watercourse’s nodal points. Then we describe
and explain all components of our mathematical model for curve evolution in detail, as well as demonstrate
its functionality in several numerical experiments using real data. All computations are implemented in
MATLAB software.

Keywords: watercourse, planar curve evolution, classified point cloud, digital terrain model, MATLAB

Abstrakt

Názov práce: Korekcia trasovania vodných tokov v mapách pomocou dát z leteckého laserového sken-
ovania
Abstrakt: V tejto práci sa zaoberáme využit́ım vyv́ıjajúcich sa rovinných kriviek na vytvorenie pres-
neǰsieho vyobrazenia vodných tokov na mapách. Na to využ́ıvame dáta z leteckého laserového skeno-
vania a OpenStreetMap databázy. Predstav́ıme všetky vstupné dáta pre náš matematický model, ktoré
zahŕňajú klasifikované mračno bodov, digitálny model reliéfu a postupnost’ uzlových bodov vodného toku.
Následne detailne oṕı̌seme a vysvetĺıme všetky časti nášho modelu pre vývoj krivky a taktiež ukážeme
jeho funkčnost’ s využit́ım reálnych dát. Všetky výpočty sú implementované v softvéri MATLAB.

Kl’́učové slová: vodný tok, vývoj rovinnej krivky, klasifikované mračno bodov, digitálny model reliéfu,
MATLAB



Preface

Goal of this thesis is to create a mathematical model for fixing inaccurate depictions of watercourses
on maps. For this model, we use planar curve evolution driven by a properly designed vector field using
data from airborne laser scanning. We implement our model in MATLAB software [8] with the use
of pre-existing code, which was developed as part of the project APVV-18-0247, titled ”Automation
of Building’s Electronic Documentation Verification Using Innovative Data Collection Techniques and
Virtual Models”.

The code I was provided with from my supervisor included code for curve evolution driven by signed
curvature which uses a stable semi-implicit IIOE (Inflow Implicit/Outflow Explicit) finite volume scheme,
code for the tangential redistribution which uses a finite difference method applied to the equation (3.23)
in section 3.4, code for the initial import of the terrain and OpenStreetMap data and the function
for the change of coordinates as described in section 2.3. My task was to expand this code with new
functionalities, including the design of the new normal speed for the curve evolution and the new stopping
criterion, multiple plotting functions and code for the backward transformation of the new coordinates
and subsequent export to GPX file.

The core of this thesis consists of four chapters. In chapter 1 we give a very basic introduction about
this thesis. This includes a simple explanation of our suggested approach for adjustments of watercourses’
mapping and the data we plan to use. We also state a few examples about the use of curve evolution in
other fields.

In chapter 2 we first provide details about the project ”Airborne Laser Scanning and DTM 5.0”
launched by the Geodesy, Cartography and Cadastre Authority of the Slovak Republic. Then we explain
how to export the terrain data (results of the airborne laser scanning) via the web application Map Client
ZBGIS. In section 2.1.1, we briefly describe how airborne laser scanning is performed. Then we explain
what precisely is a classified point cloud and how we can import it into MATLAB. We do the same for a
digital terrain model in section 2.1.2. In section 2.2 we describe the OpenStreetMap database from which
we download watercourse’s nodal points (a sequence of GPS coordinates that create a watercourse map
depiction). Since these nodal points are saved in a different coordinate reference system compared to the
terrain data, we need to transform them first. This process is described in detail in section 2.3, together
with some basics from geodesy regarding geodetic datums, different coordinates within a geodetic datum
and transformations between them.

At the beginning of chapter 3 in section 3.1 we start by defining an evolving parametric curve, the
backbone of our mathematical model. Then in section 3.2 we first introduce a very basic form of our
model (3.1) which we subsequently rewrite into form (3.4). In section 3.3 we define the normal speed β

by equation (3.3), then we describe how to construct a suitable velocity vector field V⃗ . In section 3.4 we
introduce the tangential speed α which improves the mesh quality.

In chapter 4 we first introduce three watercourses we have chosen for the numerical experiments. In
section 4.1 we explain the individual steps of our workflow, including the algorithm of the curve evolution
and then stopping criterion in section 4.1.1. Results of our numerical experiments are presented in sections
4.2, 4.3 and 4.4.

Throughout this thesis, in its electronic version, we have included multiple hyperlinks referencing
to the website www.freemap.sk. We encourage the reader to open each hyperlink to explore the map
zoomed to the area of interest.

We have also created a playlist on YouTube where we have uploaded the videos of evolving curves from
the numerical experiments. It is accessible via the link https://bit.ly/evolvingCurves_playlist.
The links to the specific evolution videos can be found in the corresponding sections of chapter 4.
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Chapter 1

Introduction

Watercourses are often plotted incorrectly on maps. However, thanks to the new Digital Terrain
Model, created as part of the project titled ”Airborne Laser Scanning and DTM 5.0” launched by the
ÚGKK SR1 (see [18, 19]), we can manually fix the inaccurate mapping of watercourses. This is possible
thanks to the high resolution (1m×1m) of the digital terrain model, meaning, we can see where the real
waterbed is located. Thus, we can contribute ourselves to having much more accurate maps for everyone.

On the other side, can we somehow automate this process with the use of mathematics and program-
ming? The answer is yes, we most certainly can. We will use the knowledge from the field of differential
geometry, specifically curve evolution to create a mathematical model which will do the fixing for us.
Models using the curve evolution can be found in many other areas, for instance in medicine for virtual
colonoscopy [12], for image segmentation [3, 13] or to model forest fire propagation [1, 2].

Our main focus will be to use the available terrain data (classified point cloud and digital terrain

model, both described in chapter 2) for construction of a suitable velocity vector field V⃗ . Then we will

place the current mapping of some watercourse as the initial curve γ0 into the velocity field V⃗ and let it
guide γ0, hopefully towards the real waterbed, see Figure 1.1.

Figure 1.1: Part of the stream Starý potok with the highlighted original mapping γ0 (red). Via the curve evolution
we then compute more accurate mapping (magenta).

Numerical part of this work is implemented in MATLAB software. Here we took advantage of the
already programmed code for curve evolution driven by signed curvature which uses the stable semi-
implicit IIOE (Inflow Implicit/Outflow Explicit) finite volume scheme [9, 13]. Additionally, to improve
mesh quality, this code also includes the tangential redistribution of curve points during the evolution
[2, 10, 14] as well as the curvature regularization described in section 3.3.3. Lastly, based on the results
presented in chapter 4 we will evaluate the overall functionality of our model. Meaning, whether it has
managed to sufficiently fix the inaccurate mapping of watercourses or if there is still some room for future
improvements.

1Geodesy, Cartography and Cadastre Authority of the Slovak Republic.
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Chapter 2

Data for the model

2.1 Terrain data

As the source of the input data for our model we used the results of the project titled ”Airborne
Laser Scanning and DTM 5.0” started in 2017 by the Geodesy, Cartography and Cadastre Authority of
the Slovak Republic (ÚGKK SR). Its goal is to create a new Digital Terrain Model (DTM) of the whole
territory of Slovakia based on the data obtained from airborne laser scanning (ALS). Entire territory of
Slovakia is divided into 42 regions, also called lots. The ALS is carried out by the private sector and the
lots are scanned separately, starting in the western Slovakia, then continuing eastwards. Current progress
can be seen in Figure 2.1. Already scanned lots are highlighted in green.

Figure 2.1: Division of Slovakia into individual lots. Source of the picture: [19].

As stated in [19], the process begins with the gathering of data using the ALS. The output data set,
called Point Cloud (PC), is then processed into a Classified Point Cloud (classified PC). Next step is to
compute the digital terrain and surface models (DTM and DSM) and subsequently, the quality control
is performed. As described in [18], the terrain data (DTM and classified PC) must meet the following
mandatory criteria:

• scanning density at least 5 points per m2,

• lots with 250 m swath on 95% of their overlap,

• terrestrial and vertical reference systems:

– S-JTSK(JTSK03)1 + HBpv
2,

1System of the Unified Trigonometrical Cadastral Network. In Slovak: Systém Jednotnej Trigonometrickej Siete
Katastrálnej.

2Baltic vertical reference frame after adjustment. In Slovak: Baltský výškový systém po vyrovnańı.

16
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– ETRS89-TM343 + hETRS89,

• absolute vertical accuracy of point cloud at ellipsoidal heights: |ETRS89−mh| ≤ 0.15m,

• absolute location accuracy of point cloud: |ETRS89-TM34−mXY| ≤ 0.30m,

• absolute vertical accuracy of DTM: |hETRS89 −mH| ≤ 0.20m,

• absolute vertical accuracy of DTM: |Bpv −mH| ≤ 0.25m,

where mh and mH stand for the measured elevation and mXY for the measured location. The terrain
data are freely available, but due to the substantial size, one has to provide own external hard-drive and
either send or deliver it to the offices of ÚGKK SR in Bratislava or Prešov. Alternatively, as we have
used in this work, smaller volumes of terrain data can be exported via the web application Map Client
ZBGIS, then the data are delivered to the email address provided by the user. Selected regions for export
are limited in size, 400 km2 for DTM and 2 km2 for classified PC. Source of all ALS products used in this
work: ÚGKK SR.

Figure 2.2: Map Client ZBGIS. For illustrative purposes we chose the area around Bratislava Castle. Individual
visualizations of DTM, DSM and classified PC are shown in Figures 2.6a, 2.6b and 2.5, respectively.

2.1.1 Classified point cloud

The scanning is done by using an aircraft attached with a LiDAR4 sensor, together with a GPS device
and a computer processing all the data. The basic principle of ALS is as follows. The LiDAR sensor
emits light energy (called a light pulse) towards the ground. Then the time it takes for the light pulse to
bounce from the ground and return back is measured. Using basic physics, the time measured multiplied
by the speed of light, then divided by two gives us the distance dGP between the spot on the Ground
the light pulse hit and the Plane. Last step is to subtract the distance dGP from the plane’s altitude to
calculate the actual elevation z at the place the light pulse hit. This information is subsequently saved
together with the corresponding GPS coordinates as a triplet (x, y, z) which is regarded as one distinct
point in the PC. The intensity of the returning light pulse can also be recorded and saved.

To be more accurate, a few more variables are included in the calculation. For instance, the light
pulses are emitted in more than one direction to cover larger area. Most pulses travel from the LiDAR
sensor at an angle, so the computer needs to account for this angle during the calculations. Additionally,
the computer also needs to compensate the changes recorded from the plane’s inertial measurement unit
(yaw, roll and pitch). This whole process is illustrated in Figure 2.3.

As stated in [18], the ALS is primarily performed during the winter season (from November to April).
The only exceptions are four mountainous regions 17 (Little Fatra), 19 (Great Fatra), 24 (Low Tatras)
and 26 (Tatras). In these regions the scanning is done from May to September. When the ALS is finished,
the scanned PC is then processed into the classified PC according to:

1) Mandatory classification into classes: 01-Unclassified and 02-Ground.

3European Terrestrial Reference System 1989 zone 34.
4LiDAR is an acronym for Light Detection And Ranging.

https://zbgis.skgeodesy.sk/mkzbgis/en/teren?pos=48.800000,19.530000,8
https://zbgis.skgeodesy.sk/mkzbgis/en/teren?pos=48.800000,19.530000,8
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2) Optional classification into classes: 01-Unclassified, 02-Ground, 03-Low vegetation, 04-Medium veg-
etation, 05-High vegetation, 06-Buildings, 07-Low noise, 09-Water, 11-Road surface, 17-Bridge deck
and 18-High noise.

In this work we will focus only on the PC points classified as 09-Water (simply called water points).

Figure 2.3: Airborne laser scanning. Source of the picture: [6].

Individual PC points with the corresponding properties are saved in LAS (LASer) file format, which
is designed to store LiDAR PC data. In MATLAB Lidar Toolbox, the function readPointCloud() can
read PC data from a LAS file, then returns it as a pointCloud object, see Figure 2.4.

Figure 2.4: Example of the pointCloud object created from a loaded LAS file in MATLAB.

Under the Location there is an array of size n by 3 for storing the x, y, z coordinates of the individual
PC points as single precision floating point values. The value of n (the total number of PC points stored
in the loaded LAS file) is specified in the second row by the Count. Then there are also ranges for each
coordinate, information about the light pulse intensity and color. Classification of each point is stored in
a separate array as uint8. To visualize the classified PC we can use the function pcshow(), see Figure
2.5.

Figure 2.5: Classified PC scanned around Bratislava castle.
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2.1.2 Digital terrain model

As described in [7], DTM is a digital representation of a specified reference terrain, which is commonly
approximated by a set of discrete terrain points5 arranged in a uniform rectangular grid (in a form of
matrix). Each point is then prescribed with a single value of the terrain elevation6 (height) at that
specific place. DTMs have many applications, for instance in geodesy, civil engineering, hydrology or as
an input data for topographic maps visualization.

DTM is calculated by interpolation over the PC points classified as 02-Ground. The output is a
raster which according to [18] can be in ASC (Esri ASCII Grid file), TIFF (Tag Image File Format) or
ESRI GRID format with high resolution, where 1 pixel = 1m× 1m. At the beginning of section 2.1 we
also mentioned the DSM (Digital Surface Model). Very briefly, in comparison to DTM, DSM is a result
of interpolation which takes into consideration also classified PC points from these additional classes:
01-Unclassified, 03-Low vegetation, 04-Medium vegetation, 05-High vegetation, 06-Buildings, 09-Water
and 17-Bridge deck. It will therefore include heights of objects such as buildings or various vegetation.
Differences between DTM and DSM can be seen in Figure 2.6. For the purposes of this work we only
used DTM exported in TIFF format.

(a) Digital Terrain Model. (b) Digital Surface Model.

Figure 2.6: Comparison of DTM and DSM around Bratislava castle.

To load DTM into MATLAB, we can use the function readgeoraster() from the Mapping Toolbox.
It returns two objects, first being the heightMatrix which is a 2-dimensional array containing the
terrain elevation values. Second one is rasterReference (see Figure 2.7a) which is an object of type
MapCellsReference and contains information such as the raster size, limits for x and y coordinates,
type of projection, etc. To obtain additional information regarding the DTM we can use the function
georasterinfo() which returns an object of type RasterInfo (see Figure 2.7b). This one is focused
more on the details about the specified TIFF file.

(a) MapCellsReference object. (b) RasterInfo object.

Figure 2.7: Objects containing information about DTM. Part of this specific TIFF file is shown in Figure 2.8.

If we look closely at the original DTM in Figure 2.8a, a certain raggedness is present which can be
regarded as a form of noise. We can use, for instance, the Gaussian blur filter to smooth out the original

5Expressed in some coordinate system, in this case the S-JTSK(JTSK03) - Krovak East North.
6With respect to some vertical reference system, in this case the Bpv.
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DTM. In MATLAB one can simply use the function imgaussfilt() from the Image Processing Toolbox.
It filters an image using a 2-dimensional Gaussian smoothing kernel Gσ with specified standard deviation
σ, the default value of standard deviation is set as σ = 0.5. In Figure 2.8 there is a comparison of the
original DTM with several filtered DTMs with various parameters σ. However, setting the parameter σ
too high may result in severe loss of DTM quality. Meaning, the waterbed, which is visible in Figures 2.8a,
2.8b and 2.8c, will be lost. This can be seen in Figure 2.8d where the waterbed has almost completely
disappeared.

(a) Original DTM data. (b) Filtered DTM data with parameter σ = 2.

(c) Filtered DTM data with parameter σ = 4. (d) Filtered DTM data with parameter σ = 10.

Figure 2.8: Comparison of the original DTM and filtered DTMs around stream Starý potok.

2.2 OpenStreetMap data

OpenStreetMap (OSM) is an open-content license database of maps which is largely developed by its
users who do it voluntarily. It originates in Great Britain in 2004 when the raw map data were locked
away at private companies and accessible only at great cost. Many people wanted some open-license map
database so much that they were willing to go out with a GPS tracker and build a brand new database
all by themselves. Since then the OSM community has grown world-wide, becoming very popular.

It is accessible via their website www.openstreetmap.org where it can be edited as well. Another way
to edit is to use a free editor called JOSM (Java Open Street Map). There we can download the data by
selecting an area we are interested in, then start editing. As we can see in Figure 2.10, watercourses are
represented in maps by a piece-wise linear curve defined as a sequence of its nodal points using the GPS
coordinates.

Figure 2.9: Example of parsed osm structure in MATLAB.

https://www.freemap.sk/?map=18/48.601071/18.506561&layers=X
www.openstreetmap.org
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To export these data we first select the chosen watercourse and move it to a new layer. Next we save it
as an OSM file which can be then loaded into MATLAB using the function parse_openstreetmap() from
OpenStreetMap Functions package7. This returns a structure parsed_osm (see Figure 2.9) where under
the structure node we can find the coordinates of the watercourse’s nodal points. These are expressed as
(λ, ϕ, h), meaning, as longitude λ, latitude ϕ and ellipsoidal height h in spatial reference system WGS848.
The value of the ellipsoidal height h will be in this case equal to zero, because OSM database does not
store this information. Therefore, under the node structure, there are only the longitude λ and latitude
ϕ values saved in a 2 by n array where n is the number of the nodal points.

Figure 2.10: Java Open Street Map editor. Downloaded data show the area around the stream Starý potok.

Unfortunately, we have the watercourse’s nodal points expressed in a different coordinate system in
comparison to the terrain data. Therefore, we must first transform the data into one common coordinate
system. The best choice will be to only transform the watercourse’s nodal points from WGS84 to S-
JTSK(JTSK03) - Krovak East North. This is further described in section 2.3.

2.3 Coordinate system transformation

To be able to express location of objects/places on Earth, we need to use some sort of coordinate
system. As described in [16], such coordinate system is called the Geodetic datum, which is intended to
geometrically represent Earth by approximating it by an ellipsoid. This is done by fitting the ellipsoid
to the Earth by minimizing the differences between the ellipsoid itself and the geoid9. There are two
types, global and local geodetic datums, depending on whether we want to describe the whole Earth with
relatively good accuracy or some specific region with much greater accuracy. One of the most well-known
global geodetic datums currently used is the previously mentioned WGS84 geodetic datum, which uses
the ellipsoid with the same name. An example of a local geodetic datum is the S-JTSK(JTSK03) with
Bessel 1841 ellipsoid.

For some chosen geodetic datum we can express the location of a point P in several different coordi-
nates (see [16]). In this work we will focus on these three:

(CS1) Geodetic coordinates: Coordinates of a point P are expressed in terms of longitude λ, latitude
ϕ and ellipsoidal height h as P = (λ, ϕ, h), similar to using spherical coordinates.

(CS2) Geocentric Cartesian coordinates: Also known as ECEF (Earth-Centered, Earth-Fixed) co-
ordinate system. It uses a fixed Cartesian coordinate system with its origin at the center of the
Earth (see Figure 2.11). Coordinates of a point P are simply expressed by X, Y and Z values as
P = (PX , PY , PZ).

(CS3) Grid coordinates: Coordinates of a point P are expressed as P = (Px, Py) in a projected coordi-
nate reference system.

7Available from https://www.mathworks.com/matlabcentral/fileexchange/35819-openstreetmap-functions.
8World Geodetic System 1984.
9Geoid is the mathematical model of Earth based on global mean sea level used for precise measurements of elevation.

https://www.freemap.sk/?map=17/48.600903/18.506899&layers=X
https://www.mathworks.com/matlabcentral/fileexchange/35819-openstreetmap-functions
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For more details about converting coordinates see [16] and [4]. Now, the change of coordinates from
WGS84 (λ, ϕ, h) to S-JTSK(JTSK03) - Krovak East North (x, y) will consist of five transformations in to-
tal. First, we convert coordinates from geodetic (CS1) to geocentric (CS2) coordinates within the WGS84
datum. Then we use transformations (T2) and (T3) to switch coordinates to the S-JTSK(JTSK03) da-
tum. Then we convert coordinates from geocentric (CS2) back to geodetic (CS1) coordinates and subse-
quently project them to the grid coordinates S-JTSK(JTSK03) - Krovak East North. This whole process
is visualized in Figure 2.11 and described in the following five steps:

Figure 2.11: Transformation from WGS84 (λ, ϕ, h) to S-JTSK(JTSK03) - Krovak East North (x, y).

(T1) Conversion from WGS84 (λ, ϕ, h) to WGS84 (X,Y, Z), meaning: from geodetic (CS1) to
geocentric Cartesian coordinates (CS2). This is fairly straight forward, basically as if we were to
convert spherical coordinates into Cartesian. However, slightly modified equations are used, see
section 1.2.2 Geocentric Cartesian coordinates in [16]. In MATLAB, this transformation can be
performed by the function geodetic2ecef() from the Mapping Toolbox. As its input arguments,
the user must provide the referenceEllipsoid object10 together with coordinates in geodetic
format (λ, ϕ, h). This function then returns the transformed coordinates in (X,Y, Z) format.

(T2) Datum transformation from WGS84 (X,Y, Z) to ETRS89 (X,Y, Z) (EPSG: 9225). Here
we used the 7-parameter Helmert transformation (or simply Helmert transformation). As described
in [16], it consists of 3 translations: ∆X, ∆Y and ∆Z, 1 scaling: ∆S and 3 rotations: RX , RY

and RZ (angles of rotation around each axis). Let us denote (XA, YA, ZA) the coordinates in some
geodetic datum A and the 3 × 3 rotation matrix R created from the 3 rotations mentioned above
(for more details about the rotation matrix R, see [16]). Then the Helmert transformation can be
expressed by the following equationXB

YB

ZB

 =

∆X
∆Y
∆Z

+ (1 +∆S)R

XA

YA

ZA

 .

In this case, the geodetic datum A is WGS84 and datum B is ETRS89. Each transformation (or
coordinate system, ellipsoid, etc.) is specified by its unique EPSG code in the EPSG Geodetic
Parameter Dataset11. For example, this transformation (T2) is specified by the code 9225. With

10This object contains details about the ellipsoid, such as lengths of semi-major and semi-minor axes, eccentricity,
flattening, mean radius, etc.

11Can be downloaded from https://epsg.org/home.html. Transformation parameters (or details about coordinate sys-
tem, ellipsoid, etc.) can be looked up on the said website by entering the EPSG code into the search bar.

https://epsg.org/home.html
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this code we can import the datum transformation parameters from the EPSG Dataset as a vector
p⃗ = (∆X,∆Y,∆Z,RX , RY , RZ ,∆S) into MATLAB. To perform the Helmert transformation we
used the function d3trafo() from the Geodetic Transformations package12. Naturally, as input
arguments we give it the vector of parameters p⃗ together with the coordinates which we want to
transform. Last important step is to explain why we take a ”little detour into ETRS89” and do
not convert coordinates directly from WGS84 to S-JTSK(JTSK03). The reason is that currently
the EPSG Dataset does not contain parameters for such direct datum transformation. Therefore,
instead of just one, we had to use two subsequent different datum transformations (T2) and (T3).

(T3) Datum transformation from ETRS89 (X,Y, Z) to S-JTSK(JTSK03) (X,Y, Z) (EPSG:
8365) is done the same way as transformation (T2), but different parameters are used.

(T4) Conversion from S-JTSK(JTSK03) (X,Y, Z) to S-JTSK(JTSK03) (λ, ϕ, h), meaning:
from geocentric Cartesian (CS2) to geodetic coordinates (CS1). As stated in [16], backwards trans-
formation (T4) is not as direct as the transformation (T1). Problematic is the calculation of the
latitude ϕ, that is, expressing it explicitly. Therefore, an iterative method is used to compute the
approximate value of latitude ϕ with some given precision, as described in detail in [16]. For this
transformation we used the function ecef2geodetic() from MATLAB Mapping Toolbox. As input
arguments we give it the coordinates in (X,Y, Z) format and the referenceEllipsoid object for
Bessel 1841 ellipsoid.

(T5) Forward projection from S-JTSK(JTSK03) (λ, ϕ, h) to S-JTSK(JTSK03) - Krovak East
North (x, y), meaning: from geodetic (CS1) to the grid coordinates (CS3), using the Krovak pro-
jection13. For further details about this projection, see [4]. Yet again, in MATLAB this forward
projection can be performed by the function projfwd(). As input arguments we provide it with
values of the longitude λ, latitude ϕ and the projcrs type object by which we specify the pro-
jection by its EPSG code 8353 (projcrs - PROJected Coordinate Reference System, see Figure
2.12). Subsequently, as the output of the function projfwd() we receive the coordinates of the
watercourse’s nodal points (x, y) in the projected coordinate reference system S-JTSK(JTSK03) -
Krovak East North.

Figure 2.12: Example of projcrs object containing information about Krovak (North oriented) projection.

After transforming all the watercourse’s nodal points by the transformations (T1) - (T5) to the projected
coordinate system S-JTSK(JTSK03) - Krovak East North, we have all data in one common coordinate
system. Now we can visualize them in one image, see the Figure 2.13 bellow.
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Water points

Stream Starý potok

Figure 2.13: DTM from Figure 2.8 with the corresponding water points (from classified PC) and watercourse’s
nodal points (red points). In this Figure we can see part of stream Starý potok.

12Available from https://www.mathworks.com/matlabcentral/fileexchange/9696-geodetic-transformations.
13An oblique variant of the Lambert Conformal Conic projection.

https://www.freemap.sk/?map=18/48.601139/18.507012&layers=X
https://www.mathworks.com/matlabcentral/fileexchange/9696-geodetic-transformations
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Mathematical model

3.1 Evolving parametric curve

First of all, we should choose a proper watercourse representation to describe it in the language of
mathematics and then form a mathematical model with this representation at its core. Since a watercourse
resembles a curved line, we will represent it by a parametric curve γ0 : U → R2. As described in our
workflow in section 4.1, we obtained γ0 from the OpenStreetMap database (see section 2.2) and we will
use γ0 as the initial condition for the curve evolution.

Therefore, as the centerpiece will be considered the evolving parametric curve γ (see Figure 3.1),
formally defined as a map

γ : U × T → R2 : (u, t) 7→ γ (u, t) ,

that for each value of parameter u ∈ U = [0, 1] ⊂ R at time t ∈ T = [0, tend] assigns a point in R2 (or
generally in some n-dimensional space Rn). In other words, for each fixed time t ∈ T there exists some
static planar curve γt : U → R2, where γt(u) ≡ γ (u, t).

Figure 3.1: Evolving curve γ with fixed endpoints.

Furthermore, we will introduce a pair of vectors which are going to play an important role later. Using
the tangent vector ∂uγ (u, t) we first define the unit tangent vector as

T (u, t) =
∂uγ (u, t)

∥∂uγ (u, t)∥

where ∂u ≡ ∂
∂u is a shortened notation of the partial derivative with respect to u and ∥·∥ is the Euclidean

norm. The second one N+(u, t) will be called the positively oriented unit normal vector, which is simply
T (u, t) rotated 90 degrees anti-clockwise (see Figure 3.2). With these tools at our disposal we can now
focus our attention on the next task.

Figure 3.2: Vectors ∂uγ, T and N+.

24
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3.2 Formulation of the mathematical model

The core idea for the watercourse correction is to use curve evolution to compute more accurate
watercourse shape using airborne laser scanning data (described in section 2.1). Therefore, we would
like to describe how the curve γ should change shape in time. Mathematically speaking, this change will
be naturally expressed as the partial derivative of γ (u, t) with respect to t of which the value should be
somehow reasonably prescribed.

Let us prescribe for each point γ (u, t) a velocity vector v⃗ (u, t) which will describe the direction in
which it should move. We can express it by the following PDE [11, 13]

∂tγ (u, t) = v⃗ (u, t) (3.1)

where u ∈ ]0, 1[, t ∈ ]0, tend] and which is subject to the initial condition γ (u, 0) = γ0(u), together with
the Dirichlet boundary condition γ (0, t) = G0, γ (1, t) = G1 where G0, G1 ∈ R2, meaning that endpoints
of the curve γ will be fixed during the evolution.

Now we will focus our attention a bit more on the velocity vector v⃗ (u, t) itself. It is a common practice
to decompose a vector into two orthogonal components. First one being the component of v⃗ (u, t) in the
direction of T (u, t) - Tangential velocity vector v⃗T(u, t) and the second in the direction of N+(u, t) -
Normal velocity vector v⃗N (u, t). We can express both of these as projections of v⃗ (u, t) onto T (u, t) and
N+(u, t)

v⃗T(u, t) = (v⃗ · T )︸ ︷︷ ︸
α(u,t)

T (u, t) = α (u, t)T (u, t) ,

v⃗N (u, t) = (v⃗ ·N+)︸ ︷︷ ︸
β(u,t)

N+(u, t) = β (u, t)N+(u, t) ,

where v⃗ · T denotes the standard inner product of two vectors in two-dimensional Euclidean space. We
have also introduced two new functions:

α = v⃗ · T, (3.2)

β = v⃗ ·N+, (3.3)

where equations (3.2) and (3.3) define the Tangential speed1 α (u, t) and the Normal speed β (u, t), re-
spectively.

Figure 3.3: Decomposition of a velocity vector v⃗ (u, t).

Remark 1. We may think of this decomposition as a way of representing v⃗ (u, t) in some other, let us
call it a ”local” coordinate system at the point γ (u, t) as its ”local” origin with the orthonormal basis
{T (u, t) , N+(u, t)}. In addition to that, we may regard α (u, t) and β (u, t) as ”coordinates” of v⃗ (u, t) in
that ”local” coordinate system.

Thanks to the decomposition of v⃗ (u, t) we managed to express it in terms of T (u, t) and N+(u, t) as
a linear combination

v⃗ (u, t) = α (u, t)T (u, t) + β (u, t)N+(u, t)

and thus we can subsequently rewrite the original equation (3.1) into a new form [11, 20]

∂tγ (u, t) = α (u, t)T (u, t) + β (u, t)N+(u, t) . (3.4)

In the following subsections we are going to discuss the specifics of tangential and normal speed. For
instance, their influence on γ during the evolution as well as how both should be prescribed.

1In English there is a difference between saying velocity and speed. The term velocity refers to a vector quantity - it has
both magnitude and direction, whereas speed is just scalar quantity - it only has magnitude.
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3.3 Choice of the normal speed

As the main evolution guiding component, we will use the normal speed β, because it causes the
change of the shape of γ during the evolution (see [10]). What we seek to accomplish can be easily seen
in Figure 3.4. Meaning, to attract γ0 (plotted in red color) using evolution into the waterbed where the
actual watercourse flows.

Figure 3.4: Part of stream Parná plotted with the corresponding terrain data.

Therefore, the basic approach we propose is to use advection by a properly chosen velocity vector field

V⃗ : Ω → Ω: r⃗ 7→ V⃗ (r⃗) ,

where Ω ⊂ R2 denotes our computational domain and r⃗ = (x, y) is the position vector of a point in Ω.

The idea behind a vector field, is that to each point r⃗ = (x, y) in space it assigns a vector V⃗ (r⃗). As was
stated before when introducing (3.1), this is exactly what we need. So to each curve point γ (u, t) we

prescribe a vector V⃗
(
γ (u, t)

)
which will be then projected onto N+(u, t) to compute the normal speed

β (u, t) = V⃗
(
γ (u, t)

)
·N+(u, t) . (3.5)

Next step is to construct a suitable vector field V⃗ to compute the normal speed β. We will use two
gradient vector fields ∇h and ∇d computed from two functions based on the data for our model:

• The terrain elevation function h(x, y) (or simply terrain function).

• The distance function d(x, y) to the water points.

First, we are going to specify the vector field V⃗ in the equation (3.5) using ∇h and ∇d separately. Then,
a weighted combination using both gradient vector fields will be considered, together with a curvature
regularization as well.

3.3.1 Terrain function

In general, the terrain function h will be defined as a map

h : Ω → R : (x, y) 7→ h(x, y)

which assigns the terrain elevation h(x, y) to each point (x, y) in our computational region Ω. The value
of h(x, y) will be determined by the DTM data. However, the raw terrain data h0 usually contain some
undesired distortions2 which we would like to eliminate. This can be described by the following steps:

(H1) By applying the Gaussian filter Gσ to the raw terrain data h0, we compute the filtered terrain

function h̃ (see Figure 2.8). Formally it can be expressed as h̃ = Gσ ∗ h0, where ∗ denotes the
convolution.

2For instance, the raggedness of DTM as described in section 2.1.2 or a strong downhill trend, which is described in the
problem (PH3).

https://www.freemap.sk/?map=18/48.417957/17.481490&layers=X
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(H2) We subtract the trend3 (if necessary) from the filtered terrain h̃ to get the final version of the terrain
function, denoted simply by h.
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Figure 3.5: Negative gradient of the terrain −∇h with the highlighted waterbed of stream Starý potok.

Now, the idea behind using the negative terrain gradient −∇h is visualized in Figure 3.5. Intuitively,
we can see that the negative terrain gradient −∇h is largely pointing in the direction to the waterbed
marked by blue curve in Figure 3.5. We can take advantage of this property to prescribe the vector field
as V⃗ = −∇h, thus expressing the normal speed (3.5) in the following manner

β (u, t) = −∇h
(
γ (u, t)

)
·N+(u, t) . (3.6)

However, relying solely on the negative terrain gradient −∇h may not be sufficient enough to attract
γ0 into the waterbed. The possible problems include for example:

(PH1) In some regions around the watercourse the terrain may not be inclined enough. Thus the negative
terrain gradient −∇h will be too small. If γ were to encounter such regions, the resulting normal
speed β would not be powerful enough to attract it into the waterbed. This can be seen, for example,
in the upper-right part of Figure 3.5 where the individual gradient vectors are barely visible at all.

(PH2) An inconveniently inclined terrain might drive γ away from the waterbed. As it is visualized in
Figure 3.6, there is an artificial barrier (embankment) along the watercourse to prevent flooding. In
this case, such terrain obstacles would not permit γ to access the waterbed. Furthermore, if γ were
to encounter some terrain depressions4 (highlighted in red in Figure 3.6), it would end up trapped
inside.

Figure 3.6: Example of the inconvenient terrain along stream Parná.

(PH3) In mountainous regions, some watercourses may flow steeply downhill due to large elevation differ-
ences. The negative terrain gradient may then be influenced by the terrain’s trend. Meaning, it
would just ”flush away” γ downhill, not necessarily in the direction to the waterbed.

To solve the problems (PH1) and (PH2), a different gradient vector field might be used which will be
computed from the distance function d (see section 3.3.2). The solution for the problem (PH3) is described
in the following section.

3This method will be described later.
4A low-point (hole) in the ground with higher ground surrounding it.

https://www.freemap.sk/?map=20/48.597664/18.512762&layers=X
https://www.freemap.sk/?map=18/48.321416/17.605564&layers=X
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Rotation of the fitting plane

To tackle the problem (PH3), we can express the downhill trend in the direction of the water flow by
a fitting plane

f(x, y) = p00 + p10x+ p01y (3.7)

where p00, p10 and p01 are parameters computed from the filtered terrain h̃ using linear regression.
However, using the fitting plane f right away may not lead to the desired results, because sometimes the
fitting plane f may be skewed due to the uneven terrain elevation (see the blue fitting plane in Figure
3.7). To solve this, we are going to rotate the fitting plane f to compensate this misalignment. This will
give us a new fitting plane f (see the red fitting plane in Figure 3.7) which describes the desired trend
more properly.

(a) Front view. (b) Side view.

Figure 3.7: Fitting planes f (blue) and f (red) computed from the DTM around stream Starý potok. In the side
view 3.7b, the fitting plane f is barely visible because it is no longer skewed by the uneven terrain. Whereas the
fitting plane f is shifted upwards on the right.

Figure 3.8: Rotation of the fitting plane f into f .

First, to specify the line around which the rotation will be done, we will use the first and the last
point of γ0, denoted by G0 and G1, respectively. Then we lift them onto the fitting plane f to get points

A =
(
G0, f(G0)

)
,

B =
(
G1, f(G1)

)
.

With these points we can compute the vector s⃗ = B −A = (sx, sy, sz). As the next step, we express the
normal vector n⃗ of the rotated fitting plane f as the cross product of vectors u⃗ and s⃗. The vector u⃗ will
be prescribed as u⃗ = (sy,−sx, 0) and thus we can express the normal vector n⃗ of the rotated fitting plane
f as

n⃗ = u⃗× s⃗ =
(
−sxsz,−sysz, s

2
x + s2y

)
= (nx, ny, nz) .

To express the rotated fitting plane f we will use the fact, that the following equation

(r⃗ −A) · n⃗ = 0 (3.8)

https://www.freemap.sk/?map=17/48.600179/18.508980&layers=X
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holds for each point r⃗ = (x, y, z) ∈ f . After some algebraic operations applied to the equation (3.8) we
have

r⃗ · n⃗ = A · n⃗,
x nx + y ny + z nz = A · n⃗,

z =
A · n⃗
nz︸ ︷︷ ︸
p00

−nx

nz︸ ︷︷ ︸
p10

x−ny

nz︸ ︷︷ ︸
p01

y.

We will now express the desired rotated fitting plane f analogously to the fitting plane (3.7) as

f(x, y) = p00 + p10x+ p01y. (3.9)

Subsequently, we can formally define the final terrain function from the step (H2) as

h(x, y) = h̃(x, y)− f(x, y) . (3.10)

Alternatively, in case the terrain is not steeply inclined, we define the final terrain function simply as

h(x, y) = h̃(x, y) . (3.11)

3.3.2 Distance function

As we mentioned in section 2.1.1, the Classified Point Cloud (PC) may contains point classified as
water, which represent the water surface. If these water points are available, it is reasonable to make use
of them. We will use them to compute the so called distance function d. We define it as a map

d : Ω → R : r⃗ 7→ d (r⃗)

where d (r⃗) = min
P∈Γ

∥r⃗ − P∥ represents the distance of each point r⃗ = (x, y) ∈ Ω, from the nearest

point P ∈ Γ. Here, the ”boundary” Γ represents the set of water points from the classified point cloud.
The distance function d can be also seen as the solution to the Eikonal equation

∥∇d(r⃗)∥ = 1 (3.12)

which is subject to the boundary condition d |Γ= 0. To compute the distance function d, we solve the
Eikonal equation (3.12) numerically using the fast-marching method developed by James Sethian (see

[17]). However, to do this we first need to discretize the boundary Γ. The discretized boundary Γ̂ will
be represented by the set of pixels from the DTM in which the water points are located (white pixels in

Figure 3.9). For these pixels from Γ̂ we set d = 0.
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Figure 3.9: On the left side: 2D plot of distance function d around stream Parná computed using the corresponding
set of water points Γ. On the right: zoomed in view of the discretized boundary Γ̂.

Remark 2. The term distance function is quite self-explanatory. On the other hand, we could also think
of it as a way of creating a sort of ”virtual terrain” around the water points. Such ”virtual valley” (see
Figure 3.10) around the watercourse should resolve the first two problems (PH1) and (PH2) regarding
the unsuitable real terrain.

https://www.freemap.sk/?map=17/48.418161/17.482220&layers=X
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Figure 3.10: 3D plot of the distance function d from Figure 3.9.

If we set V⃗ = −∇d, then we can define the normal speed β analogously to the definition (3.6) as

β (u, t) = −∇d
(
γ (u, t)

)
·N+(u, t) . (3.13)

However, using the negative distance function gradient −∇d also brings its own set of issues, for instance:

(PD1) If the watercourse is wider, the negative distance function gradient −∇d can guide γ only to the
shore-water interface.

(PD2) As it will be discussed in section 4.3.1, using the vector field V⃗ = −∇d will be problematic when γ
encounters meanders5.

Therefore, to resolve as many problems as possible, we will use both gradient vector fields −∇h and −∇d
to prescribe the final normal speed β.

3.3.3 Weighted combination

Since we are combining two gradient vector fields into one, we would like to control the weight each
one contributes. For this we will use a weighted combination

V⃗ =
(
1− θ(t)

)
(−∇h) + θ(t) (−∇d) (3.14)

with the controlling parameter θ(t). This parameter will be defined as θ : [0, tend] → [0, 1]. It means that
θ will be dependent on time, so that we can control the weights of the two gradient vector fields during
the evolution. Depending on the value of θ, we can split the resulting vector field V⃗ into three cases:

V⃗ =


−∇h, when θ = 0,

− (1− θ)∇h− θ∇d, when θ ∈ ]0, 1[,

−∇d, when θ = 1.

If however, the classified PC does not contain any water points, we are restricted to θ = 0. Meaning, we
can only work with the negative terrain gradient −∇h.

Furthermore, it might happen that the curvature will become large in some sections of γ during the
evolution. This will result in sharp edges when γ is discretized. Such behavior may cause issues for the
numerical scheme. Another reason is related to the noise in DTM, for example larger rocks around the
watercourse. If only the negative terrain gradient −∇h is available, some points would not be able to get
past these obstacles (see Figure 3.11). This is similar to what we described in the problem (PH2).

Figure 3.11: Example of noise in DTM in the form of a rock.

5Twisted parts of a watercourse, see the middle section of Γ in Figure 3.9.
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For these reasons, to smooth out parts of γ with large curvature or to move the stranded points, we
will use the curvature regularization term

κ±(u, t)N+(u, t) (3.15)

where κ±(u, t) denotes the signed curvature at point γ (u, t).

Remark 3. If we used the signed curvature κ± as the only guiding component for the evolution of γ,
the equation (3.4) would be expressed as ∂tγ (u, t) = κ±(u, t)N+(u, t) . As a result, the initial curve γ0
would eventually evolve into a line segment due to the smoothing effect of the signed curvature κ±.

We can now express the final version of the normal speed β for our model by combining the components
(3.14) and (3.15) into

β (u, t) = δext
[
−
(
1− θ(t)

)
∇h

(
γ (u, t)

)
− θ(t)∇d

(
γ (u, t)

)]
·N+(u, t) + δκκ

±(u, t) . (3.16)

Additionally, we also added two new parameters δext and δκ. With the parameter δext we can control
the overall influence of the resulting velocity vector field V⃗ . This part of the normal speed β is usually
also called the external normal speed. Similarly for δκ, this one controls the influence of the curvature
regularization. Using the normal speed β defined by (3.16), we express the final form of our model as

∂tγ (u, t) =
[
δext

[
−
(
1− θ(t)

)
∇h

(
γ (u, t)

)
− θ(t)∇d

(
γ (u, t)

)]
·N+(u, t) + δκκ

±(u, t)
]
N+(u, t) + α (u, t)T (u, t)

(3.17)

where the tangential speed α will be described in the following section.

3.4 Choice of the tangential speed

From the analytical point of view, tangential speed α is not as important since it has no effect on the
shape of the curve during the evolution [14, 10]. However, when dealing with the evolution numerically,
we have to discretize γt using a finite amount of points γn

i , i = 1, . . . ,m and n = 0, . . . , nMax. In this
case, having the tangential speed α = 0 may lead to the instability of the numerical scheme [20], or even
crash of the computation.

To prevent this, we can use the tangential speed α to our advantage, to suitably shift points γn
i along

the curve γt to achieve uniform distribution of points. This will in return improve both quality of the
mesh and precision of the numerical solution. Before we discuss it further, we first need to define the arc
length function

s(û) =

∫ û

0

∥∂uγ (u, t)∥ du

which measures the distance traveled between points γ (0, t) and γ (û, t). In addition to that, if we
integrate ∥∂uγ (u, t)∥ over the whole interval U = [0, 1], the result will give us the total length of the
curve γt

L
[
γt
]
=

∫ 1

0

∥∂uγ (u, t)∥ du.

Figure 3.12: Asymptotically uniform distribution of points.

To achieve uniform distribution of points, so called asymptotically uniform redistribution will be used
[14]. It means that as t approaches ∞, the points γn

i will become uniformly distributed. Analytically it
can be described as

lim
t→∞

∫ û+∆u

û
∥∂uγ (u, t)∥ du
L [γt]

= C =⇒ lim
t→∞

∥∂uγ∥
L

= C, (3.18)
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usually choosing value of the constant as C = 1
b−a , if U = [a, b]. However, in section 3.1 we considered

U = [0, 1], therefore C = 1. To bypass using the limit in (3.18), we can use a relaxation (see [14]) to
reformulate (3.18) in the form of the differential equation

∂t

(
∥∂uγ∥
L

)
=

(
1− ∥∂uγ∥

L

)
ω, (3.19)

where ω ∈ R+
0 is called the relaxation parameter and it controls the speed of the relaxation.

Remark 4. Intuitively, the equation (3.19) is simply a prescription of how to guide the ratio ∥∂uγ∥
L in

time to the value 1. If ∥∂uγ∥
L > 1, then its derivative will be negative and thus decreasing its value. On

the contrary, when ∥∂uγ∥
L < 1, the derivative will come out positive, increasing the value of the ratio.

Next, we can apply the quotient rule for derivatives to the left-hand side of the equation (3.19)

(∂t ∥∂uγ∥)L− ∥∂uγ∥ ∂tL
L2

=

(
1− ∥∂uγ∥

L

)
ω (3.20)

and to express the partial derivatives ∂t ∥∂uγ∥ and ∂tL, we can use the following relations (see [14])

∂t ∥∂uγ∥ = −∥∂uγ∥κ±β + ∂uα, (3.21)

∂tL = −
∫ 1

0

κ±β ∥∂uγ∥du︸ ︷︷ ︸
ds

+

∫ 1

0

∂uα du︸ ︷︷ ︸
=0

= −
∫ L

0

κ±β ds, (3.22)

where we expressed κ± and β in terms of the arc-length parameter s ∈ [0, L] instead of u ∈ [0, 1] as

κ±(s (u) , t) = κ±(u, t) ,

similarly for β and α as well. Now we can use (3.21) and (3.22) to rewrite the equation (3.20) further
into (

−∥∂uγ∥κ±β + ∂uα
)
L+ ∥∂uγ∥

∫ L

0
κ±β ds

L2
=

(
1− ∥∂uγ∥

L

)
ω.

Then we multiply it by L
∥∂uγ∥ and after some algebraic operations we obtain the following PDE

∂sα = κ±β − 1

L

∫ L

0

κ±β ds+

(
L

∥∂uγ∥
− 1

)
ω, (3.23)

where ∂sα = ∂uα
∥∂uγ∥ . Since both endpoints of γ are fixed during the evolution, the equation (3.23) will be

coupled with the Dirichlet boundary conditions α (0, t) = α (L, t) = 0. As the solution, we will obtain
the desired tangential speed α.



Chapter 4

Numerical experiments

In this chapter, we are going to test our evolution model (3.17) from section 3.3.3. First, we will
describe steps of our workflow in section 4.1 bellow. Then we will present several numerical experiments
we have performed using real-world data. For the numerical experiments, we have chosen these three
watercourses:

(W1) Part of stream Osliansky potok called Starý potok located south-east from village Horná Ves.

(W2) Part of stream Parná located between villages Košolná and Suchá nad Parnou.

(W3) Part of Nameless stream located south-east from Zbojńıcka chata in Tatras.

4.1 Workflow description

In this section we will describe individual steps of our workflow in detail. First the process of acquiring
all necessary terrain and OSM (OpenStreetMap) data, processing of all data in MATLAB and then the
algorithm of the evolution itself.

I) Finding a watercourse that needs adjustment using the website www.freemap.sk, because it
uses the available DTM (Digital Terrain Model) as its background texture (hillshading). Therefore,
the waterbed can be clearly visible and thus we can conclude, whether a watercourse is correctly
plotted on the map or needs adjustment.

II) Download of the necessary input data. Classified PC (Point Cloud) and DTM are downloaded
via the web application Map Client ZBGIS. Using the ”Shape” option in ”Select Export Region
with” we select the area around the chosen watercourse. Then we specify the desired file formats,
specifically, LAS file format for classified PC and TIFF file format for DTM. OSM data are acquired
in the OSM file format via the map editor JOSM (JavaOpenStreetMap) as described in section 2.2.

III) Data import and processing in MATLAB. Terrain data are imported into MATLAB using
the functions described in sections 2.1.1 and 2.1.2. Similarly, import of the watercourse’s nodal
points is described in section 2.2. Subsequently, these nodal points are transformed from geodetic
WGS84 coordinates (CS1) to S-JTSK(JTSK03) - Krovak East North grid coordinates (CS3) via
the transformations (T1) - (T5) described in section 2.3. Processing of the terrain data includes:

(1) Computing the filtered terrain data as described in section 2.1.2 and visualized in Figure
2.8. In MATLAB, we saved the original terrain data in the variable H (h0 in section 3.3.1)

and the filtered terrain data in the variable H_filt (h̃ in section 3.3.1). Both variables are
2-dimensional arrays.

(2) If necessary, computing and rotating the fitting plane as described at the end of section 3.3.1
to eliminate the potential strong downhill trend described in section 3.3.1 in problem (PH3).
The terrain data after subtracting the rotated fitting plane (or simply subtracted terrain) are
stored in the variable H_subtracted, also a 2-dimensional array.

(3) If classified PC data are available, computing the distance function d numerically as we de-
scribed in section 3.3.2. It is also saved as a 2-dimensional array distFun.

33

https://www.freemap.sk/?map=17/48.600520/18.508229&layers=X
https://www.freemap.sk/?map=17/48.418354/17.482027&layers=X
https://www.freemap.sk/?map=19/49.170251/20.171617&layers=X
www.freemap.sk
https://zbgis.skgeodesy.sk/mkzbgis/sk/teren?pos=48.800000,19.530000,8
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(4) Lastly, we compute the terrain gradient ∇h and the distance function gradient ∇d numerically
using MATLAB function gradient(). As input argument we put in either of the above
mentioned arrays. As output we receive two arrays Hx and Hy, where the x and y coordinates
of gradients are saved.

All the necessary information regarding the terrain data will be stored in the object DMR which is an
instance of our own terrain class in MATLAB. Similarly, watercourse’s nodal points will be used
to create the object EC which is also an instance of our own evolvingCurve class. The object EC
will be used to store all information about the evolving curve γ introduced in section 3.1. We will,
however, select only those nodal points which are located in such pixels where the terrain function
h is defined by DTM. Otherwise we would not be able to compute the normal speed β, because the
value of the resulting vector field V⃗ would be computed using NaN values.

IV) Computation of the new mapping using the curve evolution, as described by these steps:

(1) We specify the DTM data we would like to use for the evolution. This can be either the original
terrain data H, the filtered terrain data H_filt or the subtracted terrain data H_subtracted.
We also specify the parameters θ, δext, δκ for the normal speed β described in section 3.3.3,
the relaxation parameter ω described in section 3.4 and the size of the time step dt.

(2) We compute the desired edge length hd, according to which we subdivide γ0 intom−1 segments
between points γn=0

i , i = 1, . . . ,m.
(3) Inside a for loop we perform up to nMax1 evolution steps. Each evolution step:

(i) We save the curve points’ coordinates (or simply coordinates) from the last step γn−1
i and

also from the second to the last step γn−2
i .

(ii) After a certain number of evolution steps we add or delete curve points using an algorithm
from [1].

(iii) We compute curve geometry: current number of curve points EC.Npts, edge lengths EC.h
and the curve length EC.L, then for each curve point γn−1

i we compute the unit tangent

vector Tn−1
i , positively oriented unit normal vector (N+)

n−1
i and the signed curvature

(κ±)
n−1
i .

(iv) We compute indices of the DTM pixels (EC.curvePixels) where the curve points γn−1
i

are located.
(v) Based on the indices EC.curvePixels from the previous step (iv) we compute the normal

speed β for each curve point γn−1
i according to the equation (3.16). Then we compute the

tangential speed α using finite difference method according to the equation (3.23) from
section 3.4.

(vi) Construction of the system matrix and right hand side using the semi-implicit IIOE (Inflow
Implicit/Outflow Explicit) finite volume scheme, see [9, 13]. Then we solve this system to
compute the new coordinates γn

i .
(vii) At each specified evolution step according to the value of EC.ptsControlStep we check,

whether to stop the evolution based on the stopping criterion explained in section 4.1.1
bellow. If the condition (4.4) is satisfied, we stop the evolution.

V) Export of the new mapping, if it is sufficiently accurate.

(1) Reduction of the curve points using the MATLAB function reducepoly(), which uses the
Ramer–Douglas–Peucker algorithm [5, 15] to reduce the number of points.

(2) Backward transformation of the new coordinates from S-JTSK(JTSK03) - Krovak East North
grid coordinates (CS3) to the geodetic WGS84 coordinates (CS1).

(3) Export of the new watercourse’s nodal points to the OpenStreetMap database.

4.1.1 Stopping criterion

Stopping criterion is based on the percentage of curve points (in this section simply called points)
which no longer move. By not moving points we understand such points which are either moving too
slow or ”are stuck jumping” between two pixels (blue and green points in Figure 4.1). Before we explain
both, we will first define two displacement vectors r⃗i,1 and r⃗i,2 for each point γn

i

r⃗i,1 = γn
i − γn−1

i and r⃗i,2 = γn−1
i − γn−2

i ,

1Maximal allowed number of evolution steps after which the evolution is stopped, if not stopped by the stopping criterion
described in section 4.1.1.
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Moving point Jumping pointSlow point

Figure 4.1: Examples of still moving points (red), a slow point (blue) and a jumping point (green).

subsequently normalizing both

r̂i,1 =
r⃗i,1

∥r⃗i,1∥
and r̂i,2 =

r⃗i,2
∥r⃗i,2∥

.

The term slow point is quite self-explanatory. For each point γn
i we compute the norm of the vector

r⃗i,1. Then we check, whether the norm ∥r⃗i,1∥ is small enough to label a point γn
i as ”slow”. In this case

we use the following condition
∥r⃗i,1∥ < 0.1m. (4.1)

So if a point γn
i has moved less than 10 cm (one tenth of the DTM’s pixel edge length), then we label it

as a slow point.
On the other hand, to decide, whether a point γn

i ”jumped back” in the opposite direction (see the
green point in Figure 4.1), we compute the dot product between vectors r̂i,1 and r̂i,2. Then we check the
following condition

(r̂i,1 · r̂i,2) < DPT. (4.2)

In a nutshell, what we are looking for are the dot products which fall inside the interval [−1,DPT[,
where DPT stands for the Dot Product Threshold. That is when the vectors r̂i,1 and r̂i,2 are pointing
in ”sufficiently opposite” directions. In the numerical experiments we have chosen the threshold as
DPT = −0.5, meaning, angles greater than 120°. So, if the dot product is smaller than the threshold
DPT, then we label a point γn

i as a jumping point.

Remark 5. Intuitively speaking, this situation occurs, for instance, when two neighboring pixels have
negative gradient vectors pointing at each other (for example DTM pixels on the bottom of the waterbed).
Therefore, a point γn

i will end up moving back and forth between such pixels.

Next, we combine conditions (4.1) and (4.2) into

∥r⃗i,1∥ < 0.1m ∨ (r̂i,1 · r̂i,2) < DPT, (4.3)

by which we decide, whether we label a point γn
i as a not moving point. Using the condition (4.3) we

compute the Number of Not Moving Points NNMP and subsequently check, if the percentage of these
points is higher than the value NMPSC (Not Moving Points Stopping Criterion)

NNMP

EC.Npts
> NMPSC. (4.4)

If the condition (4.4) is met, we stop the evolution.

4.2 Examples: Stream Starý potok

As the first numerical experiment, we tried to fix mapping of the stream Starý potok. The red line
in Figures 4.2a and 4.3a represents γ0, the original mapping of the watercourse (W1). In this case the
waterbed is quite simple and most of the original mapping is relatively accurate, aside from a few parts
inside the Zoomed area in Figure 4.2a which can be better seen in Figure 4.3.

In all figures we highlighted the water points from the classified PC with cyan color, so that we can
visually check if our model is working correctly. Furthermore, by red we plotted still moving curve points
and by magenta we plotted not-moving curve points.

https://www.freemap.sk/?map=17/48.600520/18.508229&layers=X


CHAPTER 4. NUMERICAL EXPERIMENTS 36

For the initial phase of the evolution we will use only the negative distance function gradient −∇d
(setting θ = 1 in equation (3.17)) to attract γ0 as close to the waterbed as possible. Then in the second
phase we will switch to the negative terrain gradient −∇h (setting θ = 0 in equation (3.17)) to push γ
to the bottom of the waterbed.

Remark 6. The way we use the gradient vector fields −∇d and −∇h can be compared to sharpening a
knife using whetstones. First a rough whetstone is used to do the hard work faster, then a finer one for
polishing. In our case we initially use the negative distance function gradient −∇d to attract γ0 at least
to the edge of the waterbed, bypassing any potential terrain obstacles (as described in section 3.3.1).
This is why we also use a greater time step dt. Then we switch to the negative terrain gradient −∇h and
a smaller time step dt to do the ”final polish” of γ.

4.2.1 Phase 1: Evolution driven by the distance function

For this phase of the evolution we have chosen the parameters as follows:

Table 4.1: Parameters for the first phase of the evolution.

θ δext δκ ω DPT NMPSC EC.nMax dt
1.0 1.5 2.0 0.0 -0.5 99% 201 1.0

Since most of the original mapping was very close to the waterbed, majority of the curve points
converged to the waterbed quickly after just 10 evolution steps, see Figure 4.2b. Stopping criterion (4.4)
was satisfied after 50 evolution steps. Video available at https://bit.ly/StaryPotok_Phase1.

(a) Beginning of the evolution. (b) Evolution step: 10. Not-moving points: 86.37%.

(c) Evolution step: 20. Not-moving points: 94.75%. (d) Evolution step: 30. Not-moving points: 95.16%.

https://bit.ly/StaryPotok_Phase1
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(e) Evolution step: 40. Not-moving points: 98.02%. (f) Evolution step: 50. Not-moving points: 99.54%.

Figure 4.2: Evolution of the watercourse (W1) driven by the negative distance function gradient −∇d first.

The evolution of γ in places where the original mapping of the watercourse (W1) was already accurate
is not very interesting. Therefore, a better view of the evolution progress can be seen in Figure 4.3 bellow.
Here we focused on the section of the watercourse (W1) where the original mapping was inaccurate. Video
available at https://bit.ly/StaryPotok_Zoom_Phase1.

(a) Beginning of the evolution. (b) Evolution step: 10. Not-moving points: 86.37%.

(c) Evolution step: 20. Not-moving points: 94.75%. (d) Evolution step: 30. Not-moving points: 95.16%.

Figure 4.3: Zoomed in view on the section of the watercourse (W1) where the mapping was not as accurate.

https://bit.ly/StaryPotok_Zoom_Phase1
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(e) Evolution step: 40. Not-moving points: 98.02%. (f) Evolution step: 50. Not-moving points: 99.54%.

Figure 4.3: Zoomed in view on the section of the watercourse (W1) where the mapping was not as accurate.

4.2.2 Phase 2: Evolution driven by the terrain function

In this phase of the evolution we also decreased the strength of the curvature regularization (parameter
δκ) to prevent γ from leaving the parts of the waterbed with high curvature. Only very minor adjustments
were applied to γ, as there are basically almost no visible differences between Figures 4.2f, 4.4a and 4.4b.

Table 4.2: Parameters for the second phase of the evolution.

θ δext δκ ω DPT NMPSC EC.nMax dt
0.0 3.0 0.1 0.0 -0.5 99% 201 0.5

Here we used the negative terrain gradient −∇h to attract γ to the bottom of the waterbed. It took
only 20 evolution steps until 100% of the curve points were labeled as not-moving. Evolution progress
during this phase can be seen much better in the video at https://bit.ly/StaryPotok_Zoom_Phase2
where we focused on the small area of interest highlighted in Figure 4.4a.

(a) Evolution step: 60. Not-moving points: 96.23%. (b) Evolution step: 70. Not-moving points: 100.00%.

Figure 4.4: Subsequent evolution of the watercourse (W1) driven by the negative terrain gradient −∇h.

In Figure 4.5 we can see the original mapping of the watercourse (W1) compared to our much more
accurate result. Main differences can be seen in Figures 4.5b and 4.5c where the original mapping
insufficiently described the shape of the waterbed.

https://bit.ly/StaryPotok_Zoom_Phase2
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(a) Comparison: overall view. (b) Comparison: Zoom 1.

(c) Comparison: Zoom 2. (d) Comparison: Zoom 3.

Figure 4.5: Comparison of the original mapping (red) vs. mapping computed by our model (magenta).

Furthermore, to not only show the accuracy of our model visually, we can also express our model’s
accuracy via the Hausdorff distance dH(A,B). It describes how far two sets of points A and B are from
each other by finding the greatest distance between the two sets. It is defined as

dH(A,B) = max (dA,B , dB,A) , (4.5)

where

dA,B = max
a∈A

(
min
b∈B

∥a− b∥
)
, (4.6)

dB,A = max
b∈B

(
min
a∈A

∥b− a∥
)
. (4.7)

The distance dA,B can be simply explained as follows: for each point a ∈ A we find the distance to the
closest point b ∈ B and then choose the greatest of these distances. For the distance dB,A the whole
process is the same, but in the opposite direction. In general, however, the distances dA,B and dB,A do
not need to be necessarily the same, see Figure 4.6. Therefore, as the Hausdorff distance dH, we take the
maximum as defined by the equation (4.5).

Figure 4.6: Hausdorff distance dH between sets A and B, which are represented by two curves.
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Additionally, we can use the so called average Hausdorff distance dH which is defined as

dH(A,B) =
1

2

(
dA,B + dB,A

)
, (4.8)

where

dA,B =
1

|A|
∑
a∈A

min
b∈B

∥a− b∥ and dB,A =
1

|B|
∑
b∈B

min
a∈A

∥b− a∥ ,

where |A| and |B| denote number of points in sets A and B, respectively. Here, instead of taking the
maximum as in the equation (4.6), we compute the average of all distances across all points a ∈ A,
similarly for dB,A. Then we compute the average of dA,B and dB,A as defined by the equation (4.8) to
obtain the average Hausdorff distance dH. For our numerical experiments we will use the following sets
of points:

• γ0 - the set of the original nodal points.

• γN1, γN2 - the sets of the new nodal points computed by our model after phase 1 and phase 2.

• γE - the set of the nodal points which represent the ground truth.2

Individual results of the Hausdorff distance for the watercourse (W1) are written down in Tables 4.3a,
4.3b and 4.3c bellow.

Table 4.3: Comparison of the computed Hausdorff distances.

(a) Before evolution.

dH(γ0, γE) 34.35m

dH(γ0, γE) 4.20m

(b) After phase 1.

dH(γN1, γE) 4.65m

dH(γN1, γE) 0.84m

(c) After phase 2.

dH(γN2, γE) 3.52m

dH(γN2, γE) 1.35m

As we can see from Table 4.3b, after the first evolution phase the accuracy has increased dramatically,
the value of the distance dH is comparable to the resolution of DTM (1m). DTM we used here has
dimensions 1222 × 1519 pixels (1222m × 1519m in real world). After the second phase (Table 4.3c),
the maximal distance dH has improved approximately by 1m and the average distance dH has slightly
worsened by 0.5m. However, compared to the resolution of DTM, the differences between computed
distances shown in Tables 4.3b and 4.3c are insignificant. By comparing the results from Tables 4.3a and
4.3c, we can conclude that our model managed to compute a much more accurate new mapping of the
watercourse (W1).

4.3 Examples: Stream Parná

For the next numerical experiment we have chosen part of stream Parná. This time the waterbed is
much more complicated compared to the watercourse (W1). As it can be seen in Figure 4.7a, the original
mapping is also quite inaccurate in most places. In this case, we will use the same strategy regarding the
choice of the parameter θ as we used for the watercourse (W1) in section 4.2.

4.3.1 Phase 1: Evolution driven by the distance function

For the first phase of the evolution we have chosen the parameters as follows:

θ δext δκ ω DPT NMPSC EC.nMax dt
1.0 1.5 2.0 0.0 -0.5 98% 201 1.0

Due to the complicated shape of the watercourse (W2) this phase of the evolution needed almost
three times the amount of steps compared to the first phase of the evolution of the watercourse (W1).
As can be seen in places highlighted by the (PD2) arrows in Figure 4.7j, not all parts of γ were attracted
to the waterbed, as if γ was not able ”to enter few problematic meanders.”

2In other words the ”exact solution” which we manually created to our best abilities and exported using the website
www.freemap.sk. We used both, DTM and water points as reference.

https://www.freemap.sk/?map=17/48.418354/17.482027&layers=X
www.freemap.sk
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The problem is that the negative distance function gradient −∇d is mostly tangent to γ in these places,
see Figure 4.10. Therefore, there is little to none normal speed β to push γ forward. But sometimes a
few curve points make it through, see the evolution progress at the place marked in Figure 4.7e.

Also, upon further investigation we have found out one additional inconvenience regarding the section
of γ highlighted by the (PH2) arrow in Figure 4.7j. First, γ was unable to get inside the meander due
to the same reason as described above. Then, because of the old waterbed being present there, γ has
become trapped inside, unable to reach the actual waterbed.

Video of this phase of the evolution is available at https://bit.ly/Parna_Phase1.

(a) Beginning of the evolution. (b) Evolution step: 10. Not-moving points: 38.72%.

(c) Evolution step: 20. Not-moving points: 58.73%. (d) Evolution step: 30. Not-moving points: 75.51%.

(e) Evolution step: 60. Not-moving points: 96.04%. (f) Evolution step: 80. Not-moving points: 93.86%.

https://bit.ly/Parna_Phase1
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(g) Evolution step: 100. Not-moving points: 91.65%. (h) Evolution step: 120. Not-moving points: 93.48%.

(i) Evolution step: 150. Not-moving points: 94.70%. (j) Evolution step: 170. Not-moving points: 98.64%.

Figure 4.7: Evolution of the watercourse (W2) driven by the negative distance function gradient −∇d first.

4.3.2 Phase 2: Evolution driven by the terrain function

For the second phase we have chosen the parameters as follows:

θ δext δκ ω DPT NMPSC EC.nMax dt
0.0 3.0 0.1 0.0 -0.5 99% 201 0.5

As can be seen in Figure 4.8b, even the negative terrain gradient −∇h was unable to push γ into the
waterbed. On the other hand, it had some smoothing effects, a better view of which can be seen in the
following video at https://bit.ly/Parna_Zoom_Phase2.

(a) Evolution step:180. Not-moving points: 90.19%. (b) Evolution step:190. Not-moving points: 100.00%.

Figure 4.8: Subsequent evolution of the watercourse (W2) driven by the negative terrain gradient −∇h.

https://bit.ly/Parna_Zoom_Phase2
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(a) Comparison: overall view. (b) Comparison: Zoom 1.

(c) Comparison: Zoom 2. (d) Comparison: Zoom 3.

Figure 4.9: Comparison of the original mapping (red) vs. mapping computed by our model (magenta).

Figure 4.10: Zoomed view of the place where γ was unable to enter the meander due to −∇d being mostly tangent
to γ (see the red arrows). For this reason, there is almost no normal speed β to push γ towards the waterbed.

For the most part, however, the mapping computed by our model is much more accurate than the
original one, see Figures 4.9b, 4.9c, 4.9d and the results of dH in Tables 4.4b and 4.4c. The greatest
inaccuracy was measured inside one of the problematic meanders, which is shown in Figure 4.9d.

Table 4.4: Comparison of the computed Hausdorff distances.

(a) Before evolution.

dH(γ0, γE) 64.69m

dH(γ0, γE) 18.06m

(b) After phase 1.

dH(γN1, γE) 34.52m

dH(γN1, γE) 2.59m

(c) After phase 2.

dH(γN2, γE) 34.79m

dH(γN2, γE) 1.86m
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4.4 Examples: Nameless stream in Tatras

For the last numerical experiments we have chosen Nameless stream3, one of many small streams
flowing throughout Tatras. Unfortunately, the classified PC for the watercourse (W3) had no water
points, therefore, we were forced to use only DTM. Meaning, choice of the parameter θ in equation (3.17)
is restricted to θ = 0.

In section 4.4.1 we will show the effects of the steep terrain by using the terrain function given by the
equation (3.11). And then in section 4.4.2 we used DTM after subtracting the terrain’s trend as defined
by the equation (3.10) in section 3.3.1.

4.4.1 Evolution before subtracting the terrain’s trend

For the evolution in this section, we have chosen the parameters as follows:

θ δext δκ ω DPT NMPSC EC.nMax dt
0.0 2.0 1.0 0.0 -0.5 99% 350 0.5

In Figure 4.11a, the terrain’s trend is highlighted by the black arrows. As was expected, γ has
been just ”flushed downhill”. Given a higher value of EC.nMax, γ would eventually move outside the
current DTM, thus causing a crash of the computation. Video of the evolution is available at this link
https://bit.ly/NamelessStream_withTrend.

(a) Beginning of the evolution. (b) Evolution step: 50. Not-moving points: 85.50%.

(c) Evolution step: 100. Not-moving points: 88.81%. (d) Evolution step: 150. Not-moving points: 88.71%.

(e) Evolution step: 250. Not-moving points: 92.16%. (f) Evolution step: 350. Not-moving points: 95.60%.

Figure 4.11: Evolution of the watercourse (W3) using the terrain data BEFORE subtracting the trend.

3Even though it is depicted on map, it has no name assigned. Therefore we will simply call it ”Nameless stream.”

https://www.freemap.sk/?map=19/49.170251/20.171617&layers=X
https://bit.ly/NamelessStream_withTrend
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4.4.2 Evolution after subtracting the terrain’s trend

In this section, the parameters for the evolution were the same as in section 4.4.1. The only difference
being that DTM with subtracted trend was used instead. Right away we can see a huge improvement.
As can be seen in Figure 4.12c, γ managed to converge to the potential waterbed after only 20 evolution
steps when the stopping criterion (4.4) was satisfied. Video of the evolution from this section is available
at link https://bit.ly/NamelessStream_withoutTrend.

(a) Beginning of the evolution. (b) Evolution step: 10. Not-moving points: 86.25%.

(c) Evolution step: 20. Not-moving points: 100.00%.

Figure 4.12: Evolution of the watercourse (W3) using the terrain data AFTER subtracting the trend.

Unfortunately, without the water points from the classified PC, we can only assume that it is the
actual waterbed. Therefore, in this case, we will not compute the Hausdorff distances dH and dH. We
have also tried to export several classified PCs around a few other streams from Tatras region. However,
none of the classified PCs had water points.

On the other side, in these numerical experiments we wanted to demonstrate the functionality of our
suggested solution to the problem (PH3) from section 3.3.1. With the use of a fitting plane we managed
to remove the problem regarding the terrain’s steep incline in mountainous regions.

We have also performed one numerical experiment with longer part of the watercourse (W3). Obvi-
ously, for this experiment we had to export a larger DTM around the watercourse (W3). Here we have
encountered another problem. With more complex terrain shape, a simple linear fitting plane may not
be sufficient enough to describe the actual terrain trend. Therefore, more complex fitting surfaces will
need to be used. This can be a part of possible future improvements of our model.

https://bit.ly/NamelessStream_withoutTrend
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Conclusions

The goal of this thesis was to create a mathematical model that would automatically correct the
mapping of watercourses on maps, with the use of the airborne laser scanning data from ÚGKK SR.

Import of the terrain and OpenStreetMap data into MATLAB and subsequent processing was success-
ful, mainly thanks to the availability of numerous useful MATLAB functions, all of which we described in
sections 2.1.1, 2.1.1 and 2.2. Transformation of coordinates from section 2.3 was also implemented into
MATLAB successfully. The implementation of our model given by the equation (3.17) in MATLAB was
relatively straight forward thanks to the pre-existing code for curve evolution driven by signed curvature
which was developed as part of the project APVV-18-0247, titled ”Automation of Building’s Electronic
Documentation Verification Using Innovative Data Collection Techniques and Virtual Models”.

Based on the results shown in Figures 4.5 and 4.9 we can say that our model has done an acceptable
work. For a simpler waterbed of the stream Starý potok we managed to create a new, more accurate
mapping without any significant issues. On the other hand, in case of the stream Parná our model
ran into some problems. Both of the two gradient vector fields that we used were unable to attract γ0
(original mapping of the watercourse) into the waterbed in places with problematic meanders, as can be
seen in Figures 4.9c and 4.9d. Solution to this problem may be the subject of the future works dealing
with improvements of our model. However, the majority of the new mapping computed by our model
is very accurate, also confirmed by the average Hausdorff distances in Tables 4.4b and 4.4c. Therefore,
we can conclude its functionality as sufficiently capable. In section 4.4, we have also demonstrated the
functionality of our suggested solution to the problem (PH3) regarding strong terrain’s trend, even though
there is also a place for future improvements. Either to use higher order fitting surfaces or a piece-wise
fitting plane.

Reduction of the curve points was accomplished easily and successfully thanks to the MATLAB
function reducepoly(). Next, the backward transformation of the new nodal points’ coordinates to the
geodetic WGS84 coordinates (CS1) was also successfully implemented in our own MATLAB function.
In this case we also managed to decrease the number of the needed transformations by one, thanks to
the direct datum transformation EPSG:5239 from geocentric S-JTSK(JTSK03) to geocentric WGS84
coordinates (CS2). For the export of the new coordinates into GPX file format we had to create our own
MATLAB function. This part was also very straight forward and done relatively quickly.

All that remains is to use the exported GPX file with the new coordinates and replace the old mapping
via the free map editor JOSM. Furthermore, we also plan to apply our model on other watercourses to
uncover more of any potential deficiencies, perhaps include some additional input data that might help
improve our model.
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https://www.freemap.sk/?map=17/48.600520/18.508229&layers=X
https://www.freemap.sk/?map=17/48.418354/17.482027&layers=X


Resumé

Vodné toky sú v mapách niekedy zakreslené len približne a nekoṕırujú skutočný tvar koryta. Tieto
nepresnosti môžu byt’ často aj na úrovni desiatok metrov. Ako ale vieme takéto nesprávne trasovania
opravit’? Vd’aka novému Digitálnemu Modelu Reliéfu (DMR) s vysokým rozĺı̌seńım 1×1m, ktorý posky-
tuje Ústav Geodézie, Kartografie a Katastra Slovenskej republiky, vieme manuálne takéto nesprávne
trasovania vodných tokov napravit’. Ako však tento proces urobit’ automaticky?

Hlavným ciel’om tejto bakalárskej práce bolo vytvorit’ matematický model, ktorý by vedel nesprávne
trasovanie vodného toku opravit’ tak, aby koṕırovalo skutočný tvar koryta. Náš matematický model
využ́ıva znalosti z oblasti diferenciálnej geometrie, konkrétne sme sa zamerali na vývoj parametrickej
krivky γ v rýchlostnom vektorovom poli V⃗ . Základnou myšlienkou za naš́ım modelom je zobrat’ aktuálne
trasovanie vodného toku γ0 a vložit’ ho do vhodne skonštruovaného rýchlostného vektorového pol’a V⃗ ,
ktoré by malo počiatočnú krivku γ0 dotlačit’ do skutočného koryta. Náš model sme implementovali v
programe MATLAB s využit́ım už existujúceho kódu, ktorý bol naprogramovaný pre evolúciu kriviek
riadenú krivost’ou, s využit́ım semi-implićıtnej IIOE schémy konečných objemov.

Prvým krokom bolo źıskanie dát o teréne okolo vodného toku pomocou Mapového klientu ZBGIS.
Konkrétne sa jedná o DMR a klasifikované Mračno Bodov (MB), z ktorého sme vybrali iba tie body,
ktoré sú klasifikované ako Voda. Tieto dáta boli vyjadrené v súradnicovom systéme S-JTSK(JTSK03) -
Křovákovo zobrazenie. Jednotlivé dáta sme detailne poṕısali v sekcii 2.1. Aktuálne zakreslenie vodného
toku sme źıskali z vol’ne dostupnej mapovej databázy OpenStreetMap pomocou mapového editora JOSM.
Ide o sekvenciu uzlových bodov, ktoré reprezentujú vodný tok na mape. Avšak súradnice týchto uzlových
bodov boli v geodetických WGS84 súradniciach, teda sme ich potrebovali najprv transformovat’ do
súradnicového systému S-JTSK(JTSK03) - Křovákovo zobrazenie. Tento proces sme oṕısali v sekcii 2.3.
Nač́ıtanie všetkých dát do prostredia MATLAB-u sme taktiež poṕısali v prislúchajúcich sekciách kapi-
toly 2.

Detaily nami navrhovaného matematického modelu sme podrobne oṕısali v kapitole 3. Ako prvé
sme predstavili vyv́ıjajúcu sa parametrickú krivku γ. Následne sme v sekcii 3.2 oṕısali evolúciu krivky γ
pomocou rovnice (3.1). Táto rovnica hovoŕı, že každému bodu krivky γ (u, t) predṕı̌seme vektor rýchlosti
v⃗ (u, t), ktorý bude danému bodu krivky γ (u, t) určovat’ smer pohybu počas evolúcie. Rýchlostný vektor
v⃗ sme si následne rozložili na dve zložky v smere jednotkových vektorov T a N+ a definovali dve funkcie:
normálovú rýchlost’ β a tangenciálnu rýchlost’ α. Tieto dve funckie môžeme rozumiet’ ako riadiace prvky,
pomocou ktorých budeme riadit’ evolúciu krivky γ. Na výpočet normálovej rýchlosti β sme využili záporné
gradienty dvoch funkcíı, konkrétne funkcie terénu h (definovaná pomocou DMR a detailne oṕısaná v
sekcii 3.3.1) a vzdialenostnej funkcie od tých bodov z MB klasifikovaných ako Voda (detailne oṕısaná
v sekcii 3.3.2). Taktiež sme dali do pozornosti niekol’ko potenciálnych problémov, ktoré by sa mohli
počas evolúcie objavit’. Napŕıklad problém (PH3), ktorý hovoŕı o pŕılǐs naklonenom teréne v horských
oblastiach. Riešenie na tento problém sme oṕısali v sekcii 3.3.1 a jeho funkcionalitu demoštrovali v
numerickom experimente v sekcii 4.4.2. Pre elimináciu problémov (PH1), (PH2) a (PD1) sme v sekcii
3.3.3 navrhli komplexneǰsiu verziu normálovej rýchlosti β, kde sme navrhli váženú kombináciu vektorových
poĺı −∇h a −∇d pomocou rovnice (3.14) s parametrom θ. Taktiež sme pridali člen krivostnej regularizácie
definovaný pomocou vzt’ahu (3.15), ktorého úlohou je prekonanie šumu a zhladzovanie čast́ı krivky γ s
privel’mi vysokou krivost’ou počas evolúcie. Pri tangenciálnej rýchlosti α sme využili tzv. asymptoticky
rovnomernú redistribúciu bodov, o ktorej ṕı̌seme v sekcii 3.4. Jej implementácia v MATLAB-e bola taktiež
súčast’ou už existujúceho kódu, ktorý mi bol poskytnutý. Finálna verzia nášho modelu je definovaná
pomocou rovnice (3.17).

V poslednej kapitole 4 sme najprv predstavili tri vodné toky (W1), (W2) a (W3), ktorých nesprávne
trasovanie sme chceli opravit’. Ďalej sme v sekcii 4.1 oṕısali postup práce od nájdenia vodného toku,
ktorý potrebuje korekciu, d’alej nač́ıtanie a spracovanie dát v MATLAB-e, popis jednotlivých krokov
algoritmu pre evolúciu krivky a čo následne sprav́ıme s novým trasovańım vodného toku, ktorý vypoč́ıtal
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náš model. V sekcii 4.1.1 sme oṕısali nami navrhnuté zastavovacie kritérium, ktoré je vyjadrené pomocou
podmienky (4.4). Výsledky numerických experimentov sú prezentované v sekciách 4.2, 4.3 a 4.4. V týchto
sekciách si môže čitatel’ pozriet’ priebeh evolúcie na množstve obrázkov z jednotlivých krokov evolúcie.
Avšak pre lepš́ı vizuálny zážitok silne odporúčame v jednotlivých sekciách využit’ odkazy na videá, v
ktorých je priebeh evolúcie omnoho lepšie viditel’ný. Presnost’ nového mapovania vodných tokov (W1) a
(W2) sme overovali jednak vizuálne na obrázkoch 4.5 a 4.9, ale aj s pomocou Haussdorfovej vzdialenosti
(4.5) a priemernej Haussdorfovej vzdialenosti (4.8) (pozri Tabul’ky 4.3 a 4.4). Pri vodnom toku (W3)
sme nanešt’astie nemali v klasifikovanom MB žiadne body klasifikované ako Voda, takže sme boli nútený
použit’ ako vstupné dáta iba DMR. V tomto pŕıpade sme sa teda zamerali na demonštráciu funkcionality
nami navrhovaného riešenia problému (PH3) ohl’adom privel’mi nakloneného terénu. V sekcii 4.4.1 sme
ukázali, aké následky na evolúciu môže mat’ pŕılǐs strmý terén - krivka γ ”odtiekla preč” dole kopcom.
Následne v sekcii 4.4.2 sme pri evolúcii využili vyrovnaný terén. Z tohto numerického experimentu sme
dostali ovel’a lepš́ı vysledok, ako môžeme vidiet’, ak porovnáme výsledky na Obrázkoch 4.11f a 4.12c.

Implementácia jednotlivých krokov zo sekcie 4.1 do MATLAB-u bola v podstate bezproblémová,
hlavne vd’aka obrovskému množstvu užitočných funkcíı z rôzných rozširujúcich baĺıkov, ktoré MATLAB
ponúka. Na záver môžeme zhodnotit’, že náš navrhovaný model (3.17) si svoju úlohu splnit’ celkom
dobre. Avšak taktiež sme narazili na niekol’ko d’aľśıch problémov. Napŕıklad pri komplikovaneǰsom tvare
koryta vodného toku (W2) si náš model nevedel poradit’ pri niekol’kých problematických meandroch.
Tento problém je dobre vysvetlený na Obrázku 4.10. Taktiež, ako sme vysvetl’ovali na konci sekcie
4.4.2, pri komplikovaneǰsom tvare terénu okolo vodného toku v horských oblastiach, jednoduchá fitovacia
rovina nemuśı stačit’ na potrebné odstránenie trendu. Riešenia na tieto problémy môžu byt’ teda náplňou
budúcich prác študentov, ktorých by zauj́ımala oblast’ aplikovanej matematiky s využit́ım reálnych dát.
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20. ŠEVČOVIČ, D.; YAZAKI, S. Evolution of plane curves with a curvature adjusted tangential velocity.
Japan Journal of Industrial and Applied Mathematics. 2011, vol. 28, pp. 413–442. Available from
doi: 10.1007/s13160-011-0046-9.

https://doi.org/https://doi.org/10.1016/S0146-664X(72)80017-0
https://www.researchgate.net/publication/339887497
https://www.geoportal.sk/sk/zbgis/lls-dmr/o-projekte/
https://www.geoportal.sk/en/zbgis/als_dmr/
https://www.geoportal.sk/en/zbgis/als_dmr/
https://doi.org/10.1007/s13160-011-0046-9

	Introduction
	Data for the model
	Terrain data
	Classified point cloud
	Digital terrain model

	OpenStreetMap data
	Coordinate system transformation

	Mathematical model
	Evolving parametric curve
	Formulation of the mathematical model
	Choice of the normal speed
	Terrain function
	Distance function
	Weighted combination

	Choice of the tangential speed

	Numerical experiments
	Workflow description
	Stopping criterion

	Examples: Stream Starý potok
	Phase 1: Evolution driven by the distance function
	Phase 2: Evolution driven by the terrain function

	Examples: Stream Parná
	Phase 1: Evolution driven by the distance function
	Phase 2: Evolution driven by the terrain function

	Examples: Nameless stream in Tatras
	Evolution before subtracting the terrain's trend
	Evolution after subtracting the terrain's trend


	Conclusions
	Resumé
	Bibliography

