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Katedra aplikovanej matematiky a štatistiky
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dekan Stavebnej fakulty



1

Abstract

The dissertation thesis deals with development of efficient algorithms for medical image processing and analysis.

Because of the vast application area of the medical image processing, we have focused the thesis on the im-

portant high-level shape segmentation method. Specifically, Atlas based 3D medical image segmentation

algorithm.

There are two stages in the proposed algorithm. In the first stage we construct an atlas from precisely annotated

training set of shapes. The main procedure in this stage is shape registration. A reference shape, selected from

the sample such that it is closest to the sample mean is set and all the other shapes are registered to it. This is

done by an efficient 3D shape registration using signed distance maps and Stochastic Gradient Descent method

(or Block Coordinate Descent method). The resulting atlas is then compressed using PCA, leaving only shapes

highlighting its main feature. Then using suitable set of limits, dependent on the distribution and the training

set size, similar shape estimation is performed. These similar shapes estimated from atlas are referred to as

eigenshapes.

In the second stage, we apply segmentation using a modified Geodesic Active Contours model. To discretize

the model, we followed a semi-implicit scheme for time discretization and in space the so called flux-based level

set finite volume [14] method. A balloon model that adds an inflation term has been added onto the model.

Following on the same approach as [13, 22], we have involved the atlas by modification of the external force

term. For finer control of the inflation term, we have added control parameter that allows us to effectively

reduce or turn off its effect. Therefore the model evolves the segmentation towards the edges, level sets are

expanded in outer normal direction by the inflation term and evolution is regularized by curvature and globally

depending on the estimated shape of the current segmentation from the atlas.

We proposed a simple function to estimate differences between the current and previous segmentation. This

algorithm effectively and automatically determines what iterations to reduce or turn off the inflation term

influence. The setup is such that the atlas is only involved after turning off the inflation term. At this iteration,

the atlas is involved to drive segmentation. For estimation of similar shape, we have proposed a probability

based estimation [13] model and energy based model [22]. Both give similar result but for fast computation, the

probability based model is preferred. Numerical experiments for both synthetic and real data have also been

presented.

keywords: atlas, segmentation, registration, estimation, inflation term
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Abstrakt

Dizertačná práca sa zaoberá vývojom efekt́ıvnych algoritmov pre spracovanie a analýzu medićınskych obrazových

dát. Ked’že aplikačná oblast’ spracovania medićınskeho obrazu je vel’mi rozsiahla, v dizertačnej práci sme sa

zamerali na jej vel’mi dôležitú čast’, spracovanie tvaru a segmentáciu. Konkrétne na algoritmus atlasom

riadenej segmentácie medićınskeho 3D obrazu.

Predložený algoritmus má dve fázy. V prvej fáze zostav́ıme atlas z presne anotovanej cvičnej množiny tva-

rov. Hlavnou metódou v tejto fáze je registrácia tvaru. Zvoĺı sa referenčný tvar vybraný zo vzorky tak, aby

bol čo najbližšie k strednej hodnote vzorky a všetky ostatné tvary sa k nemu zaregistrujú. To je umožnené

pomocou efekt́ıvnej registrácie 3D tvarov pomocou znamienkových vzdialenostných máp a metódou Stochas-

tic Gradient Descent (alebo metódou Block Coordinate Descent). Výsledný atlas je potom poṕısaný pomocou

Analýzy Hlavných Komponent (PCA), pričom zanecháva iba tvary zvýrazňujúce jeho najviac významné cha-

rakteristické vlastnost’. Potom sa pomocou vhodnej sady limitov v závislosti od distribúcie a vel’kosti cvičnej

množiny tvarov urč́ı približný odhad podobnosti tvaru. Tieto podobné tvary odhadnuté z atlasu na označujú

ako vlastné tvary.

V druhej fáze segmentujeme obraz použit́ım modifikovaného modelu Geodesic Active Contours. Pri diskretizácii

modelu sme sledovali semi-implicitnú schému pre časovú diskretizáciu a tzv. metódu flux-based level set finite

volume [14] pre diskretizáciu v priestore. Do modelu bol pridaný tzv. balónový model, ktorý pridáva tzv.
”
na-

fukovaćı člen“. Sledujúc rovnaký pŕıstupu ako v [13, 22], sme atlas zapojili pomocou rozš́ırenia “vonkaǰsieho

silového člena“. Pre lepšiu kontrolu
”
nafukovacieho člena“ sme pridali kontrolný parameter, ktorý nám dovol’uje

efekt́ıvne redukovat’ alebo vypnút’ jeho pôsobenie. Preto model vyv́ıja segmentačnú funkciu smerom k hranám

v obraze a zároveň ju expanduje (
”
nafukuje“)

”
nafukovaćım členom“ v smere vonkaǰsej normály. Vývoj je regu-

larizovaný krivost’ou a globálne záviśı od tvaru odhadovaného z atlasu na základe tvaru súčasnej segmentácie.

Navrhli sme jednoduchú funkciu na výpočet rozdielov medzi dvomi (súčasnou a predchádzajúcou) segmentáciou.

Tento algoritmus efekt́ıvne a automaticky urč́ı, kedy počas iteračného procesu treba obmedzit’ alebo úplne

vypnút’ vplyv
”
nafukovacieho člena“. Atlas dostáva vplyv, až po vypnut́ı

”
nafukovacieho člena“. V tejto iterácii

je atlas zapojený do riadenia segmentácie. Pre výpočet podobného tvaru sme navrhli model odhadu založený na

pravdepodobnosti [13] a model založený na energii [22]. Oba modely podávajú podobný výsledok, ale pre rýchly

výpočet je model pravdepodobnosti vhodneǰśı. V tejto práci boli taktiež predstavené numerické experimenty so

syntetickými aj so skutočnými dátami.

kl’́učové slová: atlas, segmentácia, registrácia, odhad, inflation term
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4 1 INTRODUCTION

1 Introduction

The overall goal of the research is to develop efficient algorithms for medical image processing and analysis.

Hence we focused on development of a high-level 3D image segmentation, specifically our work in the dissertation

thesis is focused on development of an atlas-based 3D medical segmentation algorithm. In general atlas

based segmentation have shown significant importance in clinical practices. Our inspiration came from [22], and

we have picked some of the ideas and extended with our own to develop the algorithm. The proposed algorithm

is able to deform in ways characteristic of the class of objects it represents while at the same time segmenting

images with issues such as low spatial (or temporal) resolution, ill-defined boundary, poor contrast, acquisition

artifact or other noise. The algorithm is a composite of several algorithms, optimized and tune specifically

to improve efficiency of the atlas-based segmentation. The dissertation has mainly focused on 3D numerical

algorithms.

There are two main phases needed to realize the proposed algorithm. The first objective was to extend previous

works, see [22] to 3D data. All the algorithms have been written for 3D data. The change from 2D to 3D

images, can lead to intensive computations and memory requirements. As a result, the second objective was to

tune current algorithms to run more efficiently and incorporate into the algorithm newer and optimized ones.

The third objective was to efficiently improve on the balloon model incorporated into the segmentation model.

For images with weak or missing edge information or noised the inflation force from this model can overpower

those forces.

The first phase involves atlas construction. Exact shapes created by an expert are used as samples to create the

training set. They are represented using signed distance function. For efficiency, we have used Fast Sweeping

method [11]. We first select a reference shape which is most similar to the samples mean shape. All the

remaining samples are registered to this sample. For registration itself, we have developed three efficient

optimization algorithms for calculating the 3D affine transformation matrix. They include a modified efficient

standard gradient descent method, parallelized and efficient stochastic gradient descent method that requires

few number of points and block coordinate descent method that makes it easier to find a group of transformation

that registers the shapes efficiently. Depending on the nature of the problem being solved, any of the algorithm

can be applied. They are all efficient, but from our experience for large volumes, stochastic gradient descent

method is preferable.

After registration of the shapes, we have applied PCA approach (similarly to [13, 22]) to get a compressed atlas

represented by eigenshapes. We have described deeper on how to select suitable limits for the feature vector

of weights. This is to ensure that the estimated shapes deforms in only ways allowed by the class of objects

they represents. These suitable limits are determined by the distribution and training set size. As a general

case, basing the limits on the empirical rule is the safe approach (assumes normal distribution) but we have

observed for a small sample size less stricter approach can be applied such as Chebyshev’s inequality[2, 16] or

Mahalanobis distance [3]. In our implementation of similar shape estimation we have followed the guidelines

to achieve reasonable shape estimations.

Usually the atlas construction phase is the most computational intensive stage. The advantage is that it is only

needed to be run once. It is also the reason why we have performed several computation optimizations in the

stage. These include ’careful’ selection of the narrowband δ, carried out registration only within bounding box

around ROI during registration, calculation of distance values to the interface for only the points required in

SGD and parallelization of the brute force method to calculate the distance values.

In the second phase, similar to [13, 22] we applied a modified GAC segmentation model. To discretize the model,

we followed a semi-implicit approach for time discretization and in space the so called flux-based level set finite

volume [14] method. A balloon model that adds an inflation term has been added onto the model. Following

on the same approach as [13, 22], we have involved the atlas by modification of the external force term. For
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finer control of the inflation term, we have added a control parameter that allows for to effective reduction or

turn off its influence. This is inline with our objective to effectively manage its influence. Therefore the model

evolves the segmentation towards the edges, level sets are expanded in outer normal direction by the inflation

term and evolution is regularized by curvature and globally depending on the estimated shape from the atlas.

We proposed a simple estimation algorithm to estimate differences between the current and previous segmenta-

tion. This algorithm effectively and automatically determines what iterations to reduce or turn off the inflation

term influence. The setup is such that the atlas is only involved after turning off the inflation term. At this

iteration, the atlas is involved to drive segmentation. For estimation of similar shape, we have proposed a prob-

ability based estimation [13] and energy based [22] models. Both give similar result but for fast computation,

the probability model is preferred.

We have set different experiments, showing the advantages of the approaches we have undertaken. Specifically for

very noisy synthetic and real images. The challenge with finding the correct set of parameters for segmentation

have been made simpler by the proposed approach to automatically handle the inflation term. The estimated

shapes are within the class of objects that we are segmenting. We plan for future developments to extend it to

include other biological data.

The thesis is organized as follows. In Chapter 2, we describe the creation of the atlas. This is made possible by

an efficient 3D registration model we developed particularly for it. In Chapter 3, we described the segmentation

model. We first introduce the basic model and show how atlas is involved into this model. Along we also

describe its numerical discretization. Finally in Chapter 4, we test the model on real data.

2 Atlas construction

The atlas is created from a set of 3D shapes. We have two stages to construct a usable atlas. In the first stage

we describe an automatic efficient 3D registration technique. In the second stage we apply PCA-based approach

to compress the atlas.

2.1 Automatic efficient 3D registration techniques

A reference shape is selected from the set and then we register the other shapes to the reference shape. The

registration between two sets of shapes is described as follows.

We follow the general registration formulation which is as follows: let F,M ⊂ R3 be the fixed and moving

shapes respectively. Our objective is to find a 3D affine transformation matrix, A, that maps M to F while

minimizing the dissimilarity measure between the transformed shape A(M) and the fixed shape F. We use sum

of squared differences (SSD) as the dissimilarity measure, minimized using gradient descent methods.

This methods have the advantage of by-passing the need for tedious manual labeling and developing point

correspondence between set of shapes used to form the atlas. This technique has been described in our publi-

cation [1]. In this article, we published various optimzation techniques presented in the next section and the

accompanying numerical results.

To represent a shape, we view it as a curve or surface and use level set methods [7] to describe it. The shape

representation is given as a zero level set (interface) of some function. We use signed distance function to such

zero level set in the registration procedure. We have implemented the Fast Sweeping method [11] and the ”brute

force” method to calculate the Euclidean distance between couple of points.

The goal of the registration is to find the transformation that maps one space to another space. Usually the

shape we are mapping to is defined as the fixed shape whereas the shape that we are mapping to the fixed shape

is referred to as the moving shape. Complexity is determined by what transformation model we are using. We

have chosen to use the affine transformation model. This model is invariant to translation, rotation and scaling
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transformations. We wish to find the affine transformation that minimizes the differences between the moving

and fixed shape defined in R3.

Let F,M ⊂ R3 be the fixed and moving shapes respectively. The objective is to find the 3D affine transformation

matrix, A, that maps M to F. The transformation matrix A is defined as

A = T · S ·R.

R is the 3D rotation matrix defined as
cosψ cos θ − cos θ sinψ sin θ 0

cosφ sinψ + cosψ sinφ sin θ cosφ cosψ − sinφ sinψ sin θ − cos θ sinφ 0

sinφ sinψ − cosφ cosψ sin θ cosψ sinφ+ cosφ sinψ sin θ cosφ cos θ 0

0 0 0 1


The rotation direction is anticlockwise with the angles φ →x direction, θ →y direction, ψ →z direction).

Rotation in 3D is not commutative and the order of rotation is important. We chose the following XYZ order.

The x rotation, rx, y rotation, ry and z rotation, rz are defined as:

rx =


1 0 0 0

0 cosφ − sinφ 0

0 sinφ cosφ 0

0 0 0 1

 , ry =


cos θ 0 sin θ 0

0 1 0 0

− sin θ 0 cos θ 0

0 0 0 1

 , rz =


cosψ − sinψ 0 0

sinψ cosψ 1 0

0 0 1 0

0 0 0 1

 .

Therefore R = rx · ry · rz. S, the scaling matrix and T, the translation matrix, are given by:

S =


1
sx

0 0 0

0 1
sy

0 0

0 0 1
sz

0

0 0 0 1

 ,T =


1 0 0 −tx
0 1 0 −ty
0 0 1 −tz
0 0 0 1

 .

Therefore the transformation matrix A is given as
cos(ψ) cos(θ)

sx
− cos(θ) sin(ψ)

sx

sin(θ)
sx

−tx
cos(φ) sin(ψ)+cos(ψ) sin(φ) sin(θ)

sy

cos(φ) cos(ψ)−sin(φ) sin(ψ) sin(θ)
sy

− cos(θ) sin(φ)
sy

−ty
sin(φ) sin(ψ)−cos(φ) cos(ψ) sin(θ)

sz

cos(ψ) sin(φ)+cos(φ) sin(ψ) sin(θ)
sz

cos(φ) cos(θ)
sz

−tz
0 0 0 1


The goal is to find the optimal set of parameters φ, θ, ψ, sx, sy, sz, tx, ty, tz that minimizes the difference between

the fixed shape F and moving shape A(M).

2.1.1 Registration optimization procedure

For functional defined on a parameter space we attempt to quantify the similarity between two distance maps.

For our case we have chosen to use sum of squared differences (SSD). The optimization criterion, E(A), is

defined as:

E(A) =

∫
D

[ΦF (x, y, z)− ΦM (A(x, y, z))]
2
dxdydz, (1)

where ΦF (x, y, z), ΦM (x, y, z) are the fixed and moving distance maps respectively. A is the 3D affine trans-

formation matrix and E(A) is the SSD/Energy we want to minimize by applying the optimal A. Similarly

to [10] we reduce the calculation to a narrow band in the distance δ around the inputs. We define the narrow



2.1 Automatic efficient 3D registration techniques 7

band as:

Nδ(Φ1,Φ2)) =

1, min(|Φ1|, |Φ2|) ≤ δ

0, min(|Φ1|, |Φ2|) > δ.
(2)

The constrained optimization eq. (1) criterion becomes

E(A) =

∫
D

Nδ(ΦF ,ΦM ) (ΦF (x, y, z)− ΦM ((A(x, y, z)))
2
dxdydz. (3)

For minimization and calculation of particular components we chose gradient descent method for ∇E(A)

∂RE(A) = 2

∫
D

Nδ(ΦF ,ΦM )(∇ΦM · ∇R(Ax))(ΦF − ΦM (A))dxdydz (4)

∂SE(A) = 2

∫
D

Nδ(ΦF ,ΦM )(∇ΦM · ∇S(Ax))(ΦF − ΦM (A))dxdydz

∂TE(A) = 2

∫
D

Nδ(ΦF ,ΦM )(∇ΦM · ∇T (Ax))(ΦF − ΦM (A))dxdydz

For better understanding of the formula ∇E(A), the x in (Ax) is defined as

x =


x

y

z

1

 ,

and Ax is 
x cos(ψ) cos(θ)

sx
− y sin(ψ) cos(θ)

sx
+ z sin(θ)

sx
− tx

x(sin(φ) cos(ψ) sin(θ)+cos(φ) sin(ψ))
sy

+ y(cos(φ) cos(ψ)−sin(φ) sin(ψ) sin(θ))
sy

− z sin(φ) cos(θ)
sy

− ty
x(sin(φ) sin(ψ)−cos(φ) cos(ψ) sin(θ))

sz
+ y(cos(φ) sin(ψ) sin(θ)+sin(φ) cos(ψ))

sz
+ z cos(φ) cos(θ)

sz
− tz

1


The grad of ΦM , ∇ΦM is the row vector defined as

∇ΦM = (∂xΦM , ∂yΦM , ∂zΦM , 0) ,

and gradient for the components are the following column vectors

∇R(Ax) =
(
∂rxAx, ∂ryAx, ∂rzAx, 0

)T
∇S(Ax) =

(
∂sxAx, ∂syAx, ∂szAx, 0

)T
∇T (Ax) =

(
∂txAx, ∂tyAx, ∂tzAx, 0

)T
In discrete case, we can obtain optimal affine transformation similarly. Let n be the number of points in the

narrow band and n ≪ N , where N is the total number of points. Functional eq. (3) can be rewritten in

discrete formulation as

ED(A) =
1

n

n∑
i=1

(ΦF,i − ΦM,i(A))
2
. (5)
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Approximation of gradient components in eq. (4) are given as

∂RED(A) = 2
1

n

n∑
i=1

(∇ΦM,i · ∇R(Ax)(ΦF,i − ΦM,i(A)) (6)

∂SED(A) = 2
1

n

n∑
i=1

(∇ΦM,i · ∇S(Ax)(ΦF,i − ΦM,i(A))

∂TED(A) = 2
1

n

n∑
i=1

(∇ΦM,i · ∇T (Ax)(ΦF,i − ΦM,i(A))

In addition, the standard gradient descent method can take many iterations to compute a local minimum with

required accuracy. For larger domains, this process can be significantly slow. Because of this we have also

implemented stochastic gradient descent [4]. These methods have been described in detail in our publication,

see [1]. More we have implemented block coordinate descent [21] method described as follows.

The coordinate descent method [21] evaluates the optimization criterion function at a single component of

∇E(A) at the current point in the narrow band. The current point is selected in the order they appear in the

narrow band.

Let wAk
be the current component from our block of components Ak : k ∈ {T,S,R}. The component is

selected in a cyclic fashion, in which wA0
= 0 and

wAk+1
= [wAk

mod T] , k = 0, 1, 2 · · · and T = 3

Each component is modified at least once in τmax iterations. The step size λAk
is sufficiently decreased as done

in traditional line search algorithms. The coordinate descent algorithm is as follows

1. Set k = 0, τ = 0, initial wτ
Ak

component from block of components Aτ
k and λAk

2. Repeat until max no. of iterations, τmax, or accepted tolerance for E(A) is reached

(a) For each wτ
Ak

: τ = {1, 2, · · · , τmax} do:

wτ
Ak

:= wτ−1
Ak
− λAk

1

n

n∑
i=1

∂Ei(A
(τ−1)
k )

∂w

(b) k ← k + 1

The atlas construction is an iterative procedure. The algorithm is summarized as follows:

1. Select a reference shape most similar to set of shapes mean shape.

2. Register the remaining shapes to the reference shape.

3. Re-calculate a new mean shape from the transformed shapes.

4. If the estimated mean shape has changed, return to step 1.

Convergence is declared when the mean shape has not changed significantly within an iteration.

2.2 Using PCA to compress the atlas

In this section, we describe how we use principal component analysis (PCA) to compress the atlas created from

methods described in the previous section. We first discuss PCA implementation for the registered shapes, then

calculation of eigenshapes. Eigenshapes are calculated from k dimensional eigenspace and highlights the main

atlas features.

In Figure 1 registered shapes have been plotted in what we call an ’allowable shape domain’, with the mean

shape overlaid as a white mesh. It can be seen that some of the shapes are significantly different from the set
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whereas some are very similar. This means that some of the shapes are highly correlated, therefore it should

be possible to drop some of them without losing information. The process of removing these highly correlated

shapes, we refer to it as compressing the atlas. We expect to only have shapes highlighting the main atlas

features after removal of highly correlated ones. This process is known as dimensionality reduction.

Figure 1: Aligned shapes with the mean shape represented by the white mesh

To compress the atlas by checking the correlation between the shapes we use PCA [15]. Every nth aligned shape

can be represented as an N− dimensional point in the ’allowable shape domain’. Every N− dimensional point

in this domain gives a shape similar to the shapes in the original aligned atlas. Therefore by combining different

N− dimensional point, we can generate new shapes allowable’ even though they are not in the original atlas.

Following similar steps as done in [6, 13, 22], we assume the ’allowable shape domain’ is approximately ellip-

soidal. We then proceed to calculate the mean aligned shape from set of transformed shapes. Given the set

{s1, s2, · · · , sn} of N × n of registered shapes, the mean aligned shape, s̄, center of the allowable shape domain,

is calculated as follows

s̄ =

∑n
j=1 sj

n
. (7)

We translate each shape to the domain center by subtracting from s̄ to form a new centered set S. The new set

of center aligned shapes,S, is defined as

S = [s1 − s̄ , s2 − s̄ · · · , sn − s̄] .

Our goal is calculate the principal axes of this ellipsoid. Different features of the atlas can be described by these

principal axes. Through their linear combination we can generate new shapes. We use PCA to calculate the

principal axes. It has been shown in the literature’s [6, 15] that the longest axes of the ellipsoid can be described

by the eigenvectors. Therefore, we calculate the eigenvectors of covariance matrix, Σ defined as follows:

ΣN×N =
1

n
SST .

The covariance matrix has the following properties

� Square

� Symmetric

� Positive semi-definite

� It can be very large, because N is the number of voxels in each shape level set representation.
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As mentioned before the principal axes can be described by the eigenvectors of the covariancee matrix such that

ΣU = ΛU.

To find the eigenvectors of Σ, we use SVD such that

Σ = UΛUT ,

any M× N matrix can be written as product of 3 matrices. Where

� U is an M×M matrix whose columns are orthonormal vectors. These orthonomral vectors are also referred

to as eigenvectors

� Λ is an N × N diagonal matrix, whose diagonal values are known as singular values of Σ. They are also

known as the eigenvalues.

For our case, M = N = N . We mentioned that Σ is very large since it is N × N matrix. Instead we consider

the matrix

Ln×n =
1

n
STS.

� Both Σ and L are symmetric, but Σ 6= L

� Σ is N ×N while L is n× n matrix

� n is the number of aligned shapes, typically n≪ N

Let e be the eigenvector of L with an eigenvalue λ then

Le = λe
1

n
STSe = λe

1

n
SSTSe = λSe

Σ (Se) = λ (Se) (8)

From eq. (8), Se is the eigenvector of Σ, with eigenvalue λ. Therefore by calculating the eigenvectors and

eigenvalues of the matrix L, we can calculate the eigenvectors and eigenvalues from these more efficiently.

The variance described by the each eigenvector are explained by the magnitude of the corresponding eigenvalue.

The eigenvalues normally decrease fast, meaning majority of the variation can be explained by the first few

eigenvectors. Similar to the approaches in [6, 13, 22], we calculate k components such that the sum of their

total variations, λT =
∑n
j=1 λj , explains a large proportion of the variations. We do this by setting a threshold,

T ∈ (0, 1) such that the sum of ordered eigenvalues is ≤ T:

k∑
j=1

λj
λT
≤ T

2.2.1 Eigenshapes formulation

We mentioned that the columns of U are orthonomral vectors also known as the eigenvectors. The eigenvectors

span an eigenspace and any shape in ’allowable shape domain’ can be converted to the eigenspace. This is done

as follows. Let y be a new ’allowable’ shape, it can be represented by k principal components in k-dimensional

space as follows:

αk = UT
k×N (y − s̄) , (9)
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where αk is a feature vector of weights for each eigenshape. Any shape in the aligned set can be approximated

using the linear combination of the mean aligned shape and weighted sum of the k principal components as

follows

ỹ = UN×kαk + s̄ (10)

Shapes generated using eq. (10) are known as eigenshapes. Calculation in the eigenspace, generates shapes

highlighting the main atlas features and we can generate a range of shapes in the ’allowable shape domain’.

Working in the dimension k is much easier since k � n ≪ N and through this way we have managed to

compress our atlas to just the main k significant features.

2.2.2 Selection of feature vector αk

From eq. (10), we can generate new shapes by varying the feature vector within reasonable limits so that the

new shapes are similar to those in the atlas. As explained by [6], the parameters maybe linearly independent

though there may be non-linear dependencies still present. To determine the limits of αk, we look at the

distribution and number of shapes used to generate the atlas.

We can base the limits on empirical rule also known as 68-95-99.7 rule [12] given that we assumed the

domain is ellipsoidal and centered the shapes around the center of the ellipsoidal allowable domain. In this

case we assume the atlas shapes follow a normal distribution. Using the three-sigma rule of thumb [12], it

expresses that nearly all values lies within 3 standard deviations of the mean and it is useful to treat 99.7%

probability as near certainty. These relation can be seen from the following Table 1

Range % explained
µ± σ 68.268949
µ± 2σ 95.449973
µ± 3σ 99.730020
µ± 4σ 99.993666

Table 1: For various values of standard deviation, σ, the percentage of values that lie within the mean, µ

Since the variance of αk over the atlas can be shown approximated by the eigenvalues, λk, suitable limits using

the empirical rule will be

− 3
√
λk ≤ αk ≤ 3

√
λk. (11)

Unlike empirical rule, which applies to normal distributed data, we can consider the weaker Chebyshev’s

inequality[2, 16]. Let X be a random variable with known µ > 0 and σ > 0. Then for any real number k > 0

Pr (|X − µ| ≥ kσ) ≤ 1

k2
.

Only the case k > 1 is useful. It states that distribution of values lies within µ± kσ ≤ 1

k2
(or at least 1− 1

k2
).

It has the advantage of being applied to any distribution given that the mean and variance are defined. See

Table 2

Range % explained
µ± σ 0
µ± 3σ 88.8889
µ± 5σ 96
µ± 9σ 98.7654

Table 2: For various values of standard deviation, σ, the percentage of values that lie within the mean, µ
if we additionally know that the distribution is normal.
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The Chebyshev’s inequality[2, 16] despite the advantage of being applicable to any arbitrary distribution, it

is still dependent on the sample size n. It generally improves as the sample size increases. See Table 3

n Range % Explained
10 µ± 13.58σ 95

100
µ± 4.96σ 95
µ± 140σ 99

500
µ± 4.55σ 95
µ± 11.16σ 99

1000
µ± 4.51σ 95
µ± 10.53σ 99

Table 3

Alternatively, taking in to account the correlation of the shapes in the atlas we can consider Mahalanobis

distance[3]. It measures the distance between a point p and distribution D. The distance is zero if the p is at

the mean of D and grows as the p moves from D along the each principal component axis. Together with the

k principal components, we can choose a set of parameters αt, t ∈ {1, k}, such that Mahalanobis distance, DM

from the µ is less than a suitable set max, Dmax [6]

D2
M =

k∑
t=1

(
α2
t

λt

)
≤ D2

max. (12)

With this approach eq. (12), if shapes are distributed normally then DM follows a chi-squared distribution and

Dmax, see [6] can be set to include a suitably large proportions of realizable shapes.

3 3D segmentation model

The described general segmentation model is similar to [22]. Let u(x, t) be level-set function, where x(t) =

[x(t), y(t), z(t)] denotes position vector of a surface Γ, at time t. We observe evolution of u(x, t) such that at

each time t the surface Γ represents the same isosurface of u(x, t) as follows

u(x, t) = c (13)

where c is a constant. The total differential of the level-set function becomes

du(x(t), t)

dt
=
du(x(t), y(t), z(t), t)

dt
= 0, (14)

∂u(x, t)

∂t
+
∂u(x, t)

∂x

∂x(t)

∂t
+
∂u(x, t)

∂y

∂y(t)

∂t
+
∂u(x, t)

∂z

∂z(t)

∂t
= 0, (15)

which can be rewritten in the form

∂u(x, t)

∂t
+
dx(t)

dt
· ∇u(x, t) = 0, (16)

u(x, 0) = u0(x), for x ∈ D,

where u0(x) is an initial condition. Let us denote V(x, t) =
dx(t)

dt
, as the force term. Then the Eq. (16)

becomes
∂u(x, t)

∂t
+ V(x, t) · ∇u(x, t) = 0. (17)
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The force term controls the evolution of the level-set funtion. It is composed of the external force term and and

the curvature term. We have defined it similar to [22] as follows

V(x, t) = µ1((1− λ)g2N− λ∇g1) + µ2g1κN, (18)

where µ1, µ2 and λ are parameters, N =
∇u
|∇u|

is the outer unit normal vector, κ = −∇ · ∇u
|∇u|

is curvature,

g1 = g1(|∇Gσ ? I|) =
1

1 + k1|∇Gσ ? I|2
and g2 defined as

g2 = g2(I, ρ, k2) =
1

1 + k2(I − ρ)2
. (19)

Both g1 and g2 are scaling functions, where g1 is an edge detector function. g2 is an inflation term function,

with k2 > 0 a parameter, ρ is the average value computed from voxels inside the initial segmentation surface

and I is voxel value. Both ρ and I can be a reasonably chosen value, characterizing color, intensity or texture

of segmented object in the image. This is useful because different organs can have different colors,

textures or intensity values.

3.1 Discretization of the segmentation model

From eq. (17), we expand it to full form

ut +

(
µ1((1− λ)g2

∇u
|∇u|

− λ∇g1)

)
· ∇u− µ2g1∇ ·

(
∇u
|∇u|

)
∇u
|∇u|

· ∇u = 0. (20)

Simplified further to

ut + µ1ν · ∇u− µ2g1|∇u|∇ ·
(
∇u
|∇u|

)
= 0, (21)

where ν = (1− λ)g2
∇u
|∇u|

− λ∇g1.

Time discretization

In order to discretize eq. (21) in time, we apply semi-implicit approach that guarantees unconditional stability

with respect to the diffusion term. Let suppose that the equation in time intervcal I = [0, T ] and in N equal

time steps. The time step is denoted as τ = T
N . The time discretization is then as follows

un+1 − un

τ
+ µ1ν

n · ∇un − µ2g1|∇un|∇ ·
(
∇un+1

|∇un|

)
= 0 (22)

Space discretization

To discretize eq. (22) in space, we apply the so called flux-based level set finite volume [14] method. Consider

the product rule as follows

∇ · (unνn) = un∇ · νn + νn∇ · un,
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we can express νn · ∇un = ∇ · (unνn) − un∇ · νn and replace in eq. (22). We integrate eq. (22) over a finite

volume p.

0 =

∫
p

un+1 − un

τ
dx

− µ1

∫
p

un∇ · νndx

− µ2

∫
p

g1|∇un|∇ ·
(
∇un+1

|∇un|

)
dx (23)

Integrating ∫
p

un+1 − un

τ
dx

becomes ∫
p

un+1 − un

τ
dx = m(p)

un+1
p − unp

τ
, (24)

where m(p) is the measure of finite volume p.

For the advection part,

µ1

∫
p

∇ · (unνn) dx− µ1

∫
p

un∇ · νndx,

we use divergence theorem in both terms and constant representation of solution in finite volume p in the second

term, we obtain

≈ µ1

∫
∂p

(unνn) · n∂pdS − µ1u
n
p

∫
∂p

νn · n∂pdS. (25)

Using integral fluxes, see [14, 18, 20], we define inflows and outflows through the voxel sides as

νinpq = min
(
νnpq, 0

)
, νoutpq = max

(
νnpq, 0

)
.

where νnpq is define as

νnpq =

∫
∂p

νn · n∂pdS

=

∫
epq

(1− λ)g2
∇un

|∇un|
− λ∇g1 · n∂pdS

≈ m(epq)

m(σpq)

[
(1− λ)g2

unq − unp
|∇unpq|

− λ∇g1

]
, (26)

where epq denotes edge between finite volumes p and q, n∂p is the normal vector to epq from p to q, m(epq) is

measure of edge between finite volumes p and q and m(σpq) denotes measure of line between centers of finite

volumes p and q.

We define an approximate gradient, ∇g1 in finite volume p using central differences [20]:

∇g1p
= (Gpe, Gpn, Gpt) = (−Gpw,−Gps,−Gpb)

where

−Gpw = Gpe ≈
ge − gw

2h
,

−Gps = Gpn ≈
gn − gs

2h
,

−Gpb = Gpt ≈
gt − gb

2h
,
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and gq is the value of the g1 in q ∈ Np. For g2 function, we approximate the average of neighbouring points as

follows:

g2 =
g2p

+ g2q

2
.

Substituting these in eq. (26), we get νnpq define as

νnpq =
m(epq)

m(σpq)

[
(1− λ)

g2p + g2q

2

unq − unp
|∇unpq|

− λGpq
]
. (27)

We can then approximate eq. (25) by using upwind principle as in [14, 20] to obtain the following

µ1

∫
∂p

(unν) · n∂pdS − µ1u
n
p

∫
∂p

ν · n∂pdS ≈

µ1

∑
q∈Np

νinpqu
n
q + µ1

∑
q∈Np

νoutpq u
n
p − µ1

∑
q∈Np

νinpqu
n
p − µ1

∑
q∈Np

νoutpq u
n
p =

µ1

∑
q∈Np

νinpq
(
unq − unp

)
, (28)

where Np is an index set containing all the neighboring finite volumes q to p.

For discretization of the diffusion term, we consider |∇un| as a constant on finite volume p, to become |∇unp |.

Then apply divergence theorem, approximating the derivative, ∇un+1 ≈
un+1
q − un+1

p

m(σpq)
and |∇un| on the edges,

denoted as |∇unpq| using diamond cell scheme [17, 18]. This is similar to approximating the mean curvature

term as done in [19]

µ2

∫
p

g1|∇un|∇ ·
(
∇un+1

|∇un|

)
dx ≈ µ2g1|∇unp |

∑
q∈Np

m(epq)

m(σpq)

un+1
q − un+1

p

|∇unpq|
. (29)

Combining eq. (24), (28), (29), we can obtain discrete form of eq. (23) and making unp the subject as:

unp = un+1
p + µ1

τ

m(p)

∑
q∈Np

νinpq
(
unq − unp

)
−

µ2
τ

m(p)
g1|∇unp |

∑
q∈Np

m(epq)

m(σpq)

un+1
q − un+1

p

|∇unpq|
(30)

The solution of eq. (30) is then obtained by using Gaus-Seidel iterative method. For boundary values, we

impose Neumann boundary condition.

3.2 Atlas involvement in the segmentation model

In section 3.1, we presented discretization of the segmentation model eq. (21). To involve atlas information in

the model, we follow the same approach as [13, 22]. We modify the force term since it controls the evolution of

the level-set function. First of all, the force term 18 can be broken into influence terms as shown in Figure 2

We involve the atlas info by modifying the external force term to include the difference between the current (u)

and estimated (ũ) segmentation in the normal direction. The estimated segmentation ũ is calculated using the

method described in Section 3.3. The extended external force will be as follows

µ1(γ((1− λ)g2N− λ∇g1) + (1− γ)(u− ũ)N), (31)

where γ is parameter that weighs the influence of the edges and the expanding term compared to influence of

the atlas. The modified force term with alas involvement is shown in Figure 3. We have chosen γ similar to [13,
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Figure 2: The composition of the force terms in the segmentation model

Figure 3: Composition of the force terms with atlas involvement in the segmentation model

22] (eq. (32)). We follow the same approach as [13] and threshold distance d1 is approximately 4 or 5 times d2.

See Fig. 4 illustrates selection of γ parameter.

Figure 4: Illustration of γ selection

γ =


0, |u− ũ| > d1

1, |u− ũ| < d2

0.5, else.

(32)

where d1 , d2 are distance such that d1 > d2.

After modification of the external force with involvement of atlas, the discrete νnpq in eq. (27) becomes

νnpq =
m(epq)

m(σpq)

(
γ

(
(1− λ)

g2p
+ g2q

2

unq − unp
|∇unpq|

− λGpq
))

+

m(epq)

m(σpq)

(
(1− γ)(u− ũ)

unq − unp
|∇unpq|

)
(33)
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where (u− ũ) is defined as an average of differences between current and estimated segmentation.

(u− ũ) =
(up − ũp) + (uq − ũq)

2

3.3 PCA-based estimation models

We propose two simple approaches of estimating shape from the eigenspace domain. The first approach is based

on the difference (energy) between the current segmentation and estimated segmentation shape, see [22]. The

second approach is based on maximizing the likelihood probability function by evolving the current segmentation

towards the estimated shape, see [13]. In each approach, the limits of the feature vector αk are set as described

in Section 2.2.2.

Let u be the current segmentation step result and ũ be estimate of the current segmentation from the atlas. The

estimate ũ is obtained by first registering the current segmentation, u, with the mean shape φ̄. The registered

results is then estimated (eigenshape formulation) as described in Section 2.2.1. In this case u corresponds to

y and φ̄ to s̄ of eq. (9) and 10 respectively. After estimating, inverse transformation is applied to return it to

the initial space of the current segmentation.

Energy based estimation model

The goal is to minimize the following functional, defined as Eshape

Eshape =

∫
D

(ũ− u)
2
dA, (34)

which can be written in the form

Eshape =

∫
D

(
Ukα+ φ̄− u

)2
dA, (35)

where Uk is a matrix consisting of the first k eigenvector columns, φ̄ is the mean shape of the eigneshapes and

α vector represents the k eigenshape weights.

The functional is minimized by varying α. The gradient of Eshape w.r.t α is defined as follows

∇αEshape ∝
2

N
UTk

(
Ukα+ φ̄− u

)
. (36)

The optimal coefficient vector α is obtained through an iterative process along the gradient descent direction

αt+1 = αt − ε∇αEshape, (37)

where ε > 0 is equivalent to the step length. The resulting vector α is used to estimate shape similar to the

current segmentation from the atlas as follows

ũ = Ukα+ φ̄,

which is derived from eq. (10).

Probability based estimation model

The model is based on the methods described in [8, 9, 13]. It expresses the probability of the feature vector α.

In the reduced subspace, the feature vectors α is assumed to follow a Gaussian distribution

p(α) =
1

(2π)
k
2 |Σk|

1
2

exp{−1

2
αTΣ−1

k α}, (38)
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where Σ is diagonal matrix whose diagonal values are the first k eigenvalues. For the current segmentation step

result u, the probability density function in the subspace is p(α). To maximize the probability, the geodesic

active contour is evolved towards the shape pattern. For computational convenience, the negative logarithm of

p(α) is computed and defined as an energy term,Eshape(α):

Eshape(α) = − log [p(α)]

= log
[
(2π)

k
2 |Σk|

1
2

]
+

[
1

2
αTΣ−1

k α

]
∝ αTΣ−1

k α. (39)

Minimizing Eshape(α) is equivalent to maximizing the probability function. The minimum is searched along the

gradient descent direction. The initial α0 is set as described in eq. (9) i.e.

α0 = UT
k

(
u− φ̄

)
.

Thereafter, we search for the minimum:

αt+1 = αt − ε∇αEshape(αt)

= αt − εΣ−1
k αt, (40)

where ε is equivalent to the step length. The resulting vector α is used to estimate shape similar to the current

segmentation from the atlas, similar to the previous section or eq. (10).

Similar shape estimation results

In our tests, we have compared results when estimating a shape included in the atlas construction and estimation

of shape not included in the atlas construction. Let a represent an atlas constructed using stochastic gradient

descent method (see our publication [1]) and b an atlas constructed using block coordinated descent method,

(see Section 2) respectively. Registration of the shape to be estimated and atlas mean was performed using the

block coordinated descent method. To measure the similar shape estimation, we used two accuracy measures

between the estimated shape and the exact shape. These measures are Mean Hausdorff distance (mhd with

voxel spacing of h = 1.0) and L2-norm difference.

Estimation model
Atlas Measure Energy Probability Registration

a
L2-norm 0.2836 0.40512

0.1484
mhd 0.4961 0.7158

b
L2-norm 0.4144 0.3963

0.1885
mhd 0.7778 0.7953

Table 4: Comparison of estimation models when estimating a shape included in the atlases

The goal was to show either of the proposed estimation models can be used during estimation of shapes from

the atlas and successful estimation of shapes not included in the atlas (unknown). The results are summarized

in Table 4 and 5. Visual results are shown Figure 5 for estimated shapes not in the atlas. These results are for

segmentation without involvement of the atlas.
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Estimation model
Atlas Measure Energy Probability Registration

a
L2-norm 1.5213 1.5279

1.3020
mhd 1.0927 0.9092

b
L2-norm 1.7315 1.3990

1.0284
mhd 1.1984 1.2142

Table 5: Comparison of estimation models when estimating a shape not included in the atlases

Energy based model estimation. Probability based model estimation.

Figure 5: Comparison of estimation models for a shape not in atlas. Slice view of the distant function for exact shape.
Red curve is estimated while yellow curve is the exact shape.

3.4 Improvement and handling of the inflation function g2

The goal is to find the specific iteration to reduce or turn off g2. It is difficult to determine the extrema of

the curve of the differences between current, un+1
p and previous, unp segmentation while the segmentation is

still running. To solve this, we built a function estimating the next $ differences from the currently calculated

differences. We refer to $ as the offset value. The estimation is started only after the number of iterations

during the segmentation process is greater than $.

Let y be a discrete curve of values calculated from L2-norm of the difference between un+1
p and unp at each

iteration (time step) n. It is defined as follows

yn+1 =
1

N

N∑
p=1

(
un+1
p − unp

)2
(41)

where N is the total number of points in their level set representaion. The y curve values are noisy. To remove

this noise, we perform curve fitting by constructing a smoothing function to approximately fit the data. Let

ysmooth be the curve fitted by applying moving average of order m as follows

ynsmooth =
1

m

k∑
i=−k

y(n+i), (42)

where m = 2k + 1.
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The smoothed curve will be used as an input to the estimating function instead of the original noisy curve.

In addition, the smooth curve will be used to detect the curve’s extrema. We also define the function, ydiff as

follows

yndiff = yn+1
smooth − y

n
smooth (43)

With the above definitions, we now define the function to estimate, denoted as yest.

dndiff smooth =
1

ξ

k∑
i=−k

yn+i
diff

ynest = ynsmooth +$dndiff smooth, (44)

We have set ξ = 2k + 1 and $ is the offset. For our setup, we used k = 2 or ξ = 5. With the above setup,

we find the first iteration n to turn off g2, such that ynest becomes non-positive. The estimate corresponds to

the global minima of the estimated curve. The advantage of this approach is that we don’t have to wait for the

segmentation process to finish then determine the global minima from the calculated values.

After determining what iteration to turn off g2, we try to determine the iteration to automatically reduce its

influence. From our early experiments, we observed our initial choice was approximately close to the curve’s

global maxima. From our experience, the global maxima is not the best measure for choosing the iteration to

reduce the influence. This is because in some experiments, this can be in the first early steps, which we found

too early to reduce or turn off g2 influence. Instead, we have chosen to base the iteration to reduce the influence

on the mid-area of the curve y.

The n+$ estimated values are copied from yest to y. Then use Trapezoid rule [5] to calculate the area under the

new curve. Then we calculate the mid-area and find the closest iteration to this mid-area. At this iteration, we

set to reduce g2 influence. In the next subsection, we show results from applying the novel automatic approach

to handle g2 and compare it to the first two attempts we tried on the 85% noisy images.

Results of automatic selections of reduce and turn off steps for g2 function (no atlas)

In the experimental setup, we tested on noisy synthetic bladder images. The exact dimensions for the each

bladder image was 100 × 100 × 40 voxels. We created artificial noisy bladder images by adding varying high

level of noise to the exact images. We chose salt and pepper where 85% of the images was affected with the

noise. From our experiments with different types of noise and associating levels, salt and pepper noise levels

>= 75% segmentation failed. Figure 6 shows the one of the test data and the resulting noisy image with 85%

noise levels slice view. In our setup, we used a set of 3 bladders.

(a) Exact bladder image (b) Slice view of exact bladder (c) Slice view of 85% noisy bladder

Figure 6: First bladder image
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In table 6, we show the found values versus our handpicked values in our original attempt for the 85% noisy

images.

Bladder 1 2 3
reduce iteration 15 15 15
turn off iteration 35 35 35

(a) Manual selected iterations to change g2 influence.

Bladder 1 2 3
reduce iteration 15 15 14
turn off iteration 37 38 32

(b) Automatically calculated iterations to change g2 influ-
ence.

Table 6: Comparison of manual versus automatic selection of steps to reduce and turn off g2 influence

In Table 7 we show the original segmentation results without applying automatic handling of g2 approach.

Bladder 1 2 3
L2-norm 36.7712 67.3418 45.0444

Table 7: L2-norm after segmenting 85% noisy images

In Table 8, we show new results of segmentation with the automatic handling of g2. In the setup, after the first

estimated zero has been found and mid-area determined, the segmentation process is restarted automatically

from the initial iteration. Once the segmentation process reaches the found iterations, automatic g2 reduction

and turning off is applied without user intervention.

Bladder 1 2 3
L2-norm 1.1380 6.2533 0.2299

(a) Segmenting 85% noisy images with both steps set man-
ually

Bladder 1 2 3
L2-norm 1.2245 5.2651 0.1906

(b) Segmenting 85% noisy images with both steps set auto-
matically

Table 8: Comparison or segmentation L2-norm results between manual and automatic handling of g2.

The segmentation results shown in Tables 7 and 8 do not use the atlas based model. The goal was to first

improve the segmentation model, then after apply the atlas-based segmentation model. In the next sections,

we show results after applying the atlas-based segmentation model to real data.
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4 Atlas-based 3D segmentation results

This final section, presents segmentation results after applying the atlas-based segmentation model to real data.

The real data are three patient pelvis CT images with bladder as the region of interest. Three cropped volumes

of dimensions 100× 100× 40 voxels are extracted from the CT images. The cropped volume contains the region

of interest. The goal is to segment the real bladder shapes from these patient CT images.

The iterations to reduce or turn off g2 influence calculated are presented in Table 9. The presented results, see

Patient Image 1 2 3
reduce iteration 31 30 34
turn off iteration 68 64 60

Table 9: Automatically set iterations to change g2 influence.

Figures 7, 8 and 9 show the atlas involvement significantly improves the results. In general, segmentation deforms

similarly to the class of objects it is trying to segment. In some of the results presented, the segmentation was

able to fill in the missing boundary information for the bladder extracted using model. The threshold distances

for γ were set to d1 =∼ 20, d2 =∼ 4 to 5 respectively.
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Figure 7: Patient 1 bladder segmentation. Red curve is the segmented, yellow curve is the estimated shape and blue is
the exact shape. Final segmented bladder (red) is shown in the cropped pelvis image.
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Figure 8: Patient 2 bladder segmentation. Red curve is the segmented, yellow curve is the estimated shape and blue is
the exact shape. Final segmented bladder (red) is shown in the cropped pelvis image.
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Figure 9: Patient 3 bladder segmentation. Red curve is the segmented, yellow curve is the estimated shape and blue is
the exact shape. Final segmented bladder (red) is shown in the cropped pelvis image.
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