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Abstrakt

Účelom pravdepodobnostných grafických modelov je poṕısat’ štruktúru
závislosti medzi náhodnými premennými. V posledných rokoch tzv. vine
kopula model źıskal pozornost’ aj pre viacrozmernú analýzu. V tejto práci
použ́ıvame vine kopula model na predpoved’ odchýlky poźıcie atómu v protéıne,
kde závislost’ na fyzikálnych vlastnostiach protéınu je nelineárnou funkciou a
teda použitie kopúl sú prirodzenou vol’bou. Taktiež zavedieme pravdepodob-
nostný klasifikátor založený na vine kopule a použijeme ho na vysporiadanie
sa s bimodálnym rozdeleńım výstupových dát. Tento pŕıstup kombinuje tech-
niky, ktoré sú nové a neboli ešte použité.
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Abstract

Probabilistic graphical models are developed to describe dependence
structure among random variables. In recent years vine copulas gained
the attention for even high dimensional analysis. We use vine copula
model to predict deviation of atomic positions in protein, where the
dependence on physical properties of protein is non-linear and so the
use of copulas is natural choice. We also develop probabilistic classifier
based on vine copula and use it to tackle bimodal distribution of output
data. This approach combines techniques that are rather novel or were
not tested before.
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Resumé

V tejto práci sa venujeme pravdepodobnostným grafickým modelom. V
úvode približujeme pravdepodobnostné grafické modely všeobecne, uvádzame
Bayesovu vetu ako najpodstatneǰsiu čast’ teórie na ktorej budujeme náš matem-
atický model a takisto si osvojujeme Bayesovský pohl’ad na strojové učenie.
V úvode d’alej definujeme kopule ako matematický konštrukt, ktorý dáva
spája marginálne distribučné funkcie, pristupujeme k rigoróznej defińıcíı a
uvádzame podstatné teoretické poznatky, ktoré sú neskôr použité na výstavbu
modelu. Taktiež uvádzame niekol’ko triviálnych aj netriviálnych pŕıkladov
kopúl s dôrazom na tie triedy, ktoré sa ešte neskôr vyskytnú pri praktickej
aplikácíı.

Dáta na ktorých prezentujeme naše teoretické poznatky tvoria hodnoty
odmocniny stredných kvadratických odchýlook poźıcie v protéıne ako závislá
premenná od fyzikálnych vlastnost́ı protéınu. Vzhl’adom na nelineárny charak-
ter závislost́ı medzi jednotlivými vlastnost’ami protéınu sme sa jednoznačne
rozhodli pre použitie kopúl. Ked’že sa jedná o viacrozmerné dáta, rozhodli
sme sa pre vine kopula grafický model, ktoré sa v poslednej dobe ukazujú ako
dostatočne popisne flexibilný a zároveň bežným osobným poč́ıtačom odhad-
nutel’ný. Pre porovnanie sme použili aj lineárnu regresiu a presnost’ pred-
povede na testovacej vzorke sme porovnávali ako s lineárnou regresiou, tak
s výsledkami publikácíı, ktoré sa zaoberali týmito dátami s použit́ım iných
modelov.

Naše dáta mali jednu špecifickú vlastnost’ a to, že podmienené hustoty
pravdepodobnosti založené na vine kopula modeli sme dostávali ako bimodálne
rozdelenie. Tu nastal problém, ktoré lokálne maximum hustoty zvolit’ za
predpovedanú hodnotu. Podmienenú strednú hodnotu sme vylúčili, pretože
dávala vel’mi nepresné predpovede a ani z matematického hl’adiska nedávala
vel’mi zmysel. Druhá možnost’ bola vybrat’ ten podmienený modus, ktorý
nadobúdal v danom bode vyššie lokálne maximum. Tento postup avšak nebol
úplne spol’ahlivý, pretože v niektorých pŕıpadoch bolo vyššie lokálne maxi-
mum pŕılǐs špicaté a nižšie lokálne maximum výrazne menej špicaté. Teda,
ak by sme na vopred zvolenom intervale zintegrovali podmienenú hustotu v
okoĺı lokálneho maxima, mohlo by sa stat’, že nižš́ı lokálny extrém by mal
vyššiu pravdepodobnost’ na danom intervale. Pre vhodnú vol’bu intervalu by
táto možnost’ mohla dat’ uspokojujúce výsledky, avšak pre vyššiu výpočtovú
zložitost’ rátat’ integrály pre každú hodnotu v testovacej vzorke sme od tejto

3



možnosti upustili. Namiesto toho sme odvodili rovnice pre pravdepodob-
nostnú klasifikáciu pre kopula model, ktorá mala rozhodnút’, ktorý modus je
vhodneǰśı a pozorovali sme, že v rovniciach explicitne vystupujú marginálne
hustoty na rozdiel od regresnej úlohy a teda sme usúdili, že pravdepodob-
nostná klasifikácia bude vhodná. Presnost’ pravdepodobnostnej klasifikácie
sme porovnali s klasickým naivným bayesovským klasifikátorom.

Zostavili sme algoritmus pozostávajúci z kombinácie regresnej úlohy odhad-
nutia rozdelenia pravdepodobnosti a klasifikačnej úlohy založenej na vine
kopula grafickom modeli. Na záver práce sme porovnali výsledky.
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1 Introduction

In this section we will introduce and explain motivation behind the study of
probabilistic graphical models and their connection to machine learning. We
will build on basic principles on which stands the probabilistic viewpoint of
machine learning and graphical models called Bayesian inference. We will
also make short introduction to copula theory and later we will use this
theoretical knowledge in practice.

1.1 Motivation

Throughout recent years a massive boom of machine learning algorithms has
occurred providing very good results for some problems that were too hard
or too complex to be tackled directly. Machine learning is present many
years but lack of large datasets and computational power did not let it grow
to its full potential until a decade or two ago. If we restrict our attention
only at supervised learning, that is having the input variables as well as
output variables, then machine learning is in fact just fitting our model to
data. The variety of models is rich. One can consider large models with
many parameters like neural networks or models with smaller number of
parameters but less general. Obviously the more general model the bigger
is the need for large dataset although even smaller datasets can give good
results if we know in advance which features are most dominant.

The class of models we will encounter in our research are probabilistic
graphical models. These models are mostly used for estimating distribution
function of random vector X. Determining the dependence among random
variables of random vector is the crucial task. We can consider only linear
correlation but then we risk not describing the dependence structure precisely
enough. For example if we consider random vector (X, Y ) with dependence
Y = X2, where X is uniformly distributed on interval [−1, 1] and so expected
values equal to zero. We can calculate correlation coefficient ρX,Y .

ρX,Y = corr(X, Y ) =
cov(X, Y )

σXσY
= cov(X,X2) = E[X3]− E[X]E[X2] = 0

Hence two random variables are uncorrelated but not independent. However,
it is not hard to show that if random variables are jointly normally distributed
then zero correlation implies independence. Or more precisely stated their
dependence structure is entirely described by correlation matrix, but this is
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usually not the case in practical applications. In real world we can assume
independence or just linear dependence. If we want to capture non-linear
dependence the best option is using copulas. Copulas can be viewed as prob-
abilistic graphical model - in particular vine copulas, but their mathematical
definition is more profound and will be stated in next chapters. The aim of
our research is to inspect predicting capabilities of copulas both in regression
and classification problems for which we will use mathematical apparatus of
probability theory and Bayesian inference. We will be mostly interested in
vine copulas since there are only few papers making use of this copula class
for prediction in supervised regression and none in classification problems.
Our goal is not to be more precise in predicting than large general models but
we hope to make good use of model that can be easy to interpret, describe
dependence structure and also make good predictions.

1.2 Probabilistic graphical models

Consider a macroscopic physical system consisting of several variables. In-
teraction of these variables is specified by physical laws to certain degree of
precision. If we describe this system by differential equations we may, or
may not be able to solve these equations once we specify initial and bound-
ary conditions. If the system we aim to make predictions about becomes
too complex it is usually impossible to solve or even specify the mathemat-
ical model for the system. One approach to deal with such complexity is
probabilistic graphical models.

We can now assign to each state of the system a random variable X.
Formally speaking random variable is just a function X : Ω→ E that assigns
a value from E to given state from set of states Ω. In probability theory we
call this state an event and to be precise the assigned value need not to
be a number, but an element of measurable space and the function should
be itself measurable. We will not deal with such formalities and assume
that all our random variables are real-valued measurable or discrete and
measurable. Every measurement of the system refers to specific realisation of
random variables in the system. Once we have our random variables specified
forming a d-dimensional random vector (X1, ..., Xi, ..., Xd) and measurements
recorded in dataset, we can define probability distribution function of random
vector and (if exists) probability density function of random vector. We call
these functions marginal distributions and marginal densities when we refer
to a distribution or density of single variable. Note that single variable can
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be affected by some other random variables. The aim of graphical models
is determining joint probability function that would essentially describe the
system.

We can visualize the system as a graph, where each node represents ran-
dom variable and each edge between two nodes represents dependence be-
tween two random variables. Clearly for d random variables there can be
d(d−1)

2
edges and thus in simple cases d(d−1)

2
parameters, but note that a

dependence between two random variables can be specified by multiple pa-
rameters, so the number of parameters might grow very fast. As one can see
the really hard part of this approach is determining the dependence structure
from our dataset. Another issue is that the dependence in general does not
need to be commutative meaning that if random variable X affects Y then
Y might not affect X. From mathematical point of view this phenomenon is
obvious since if the dependence is specified as Y = f(X) then the function f
might not be bijective. If the dependence does not commutes then we draw
between two nodes directed edge, or possibly two directed edges of opposite
direction if dependence from X to Y is different than from Y to X, however
such complicated models are usually not considered. If the dependence com-
mutes we naturally draw just one undirected as we can see on Figure 1 edge
between two nodes, which is the same as directed edge both ways with the
same weights.

Figure 1: Example of directed and undirected edge

Another interesting phenomenon we can encounter is conditional inde-
pendence. This phenomenon occurs when we have atleast three random
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variables (X, Y, Z) and mathematically can be expressed as X = f(Y ) and
Z = g(Y ), where f, g are some functions and for simplicity assume that
they are only univariate, but in real world applications they are typically
dependent on more than just one random variable. In this case we can see
that even though Y affects both X and Z, these two variables are essentially
independent if we fix Y to have some specific value (Figure 2). We can write
this in terms of probability as P (X,Z|Y ) = P (X|Y )P (Z|Y ).

Figure 2: Conditional dependence

Most graphical models make several simplifying assumptions about the
graph. For example if when we deal with Gaussian graphical model we
assume that all variables have normal distribution and so all we need is cor-
relation matrix of the random vector defining an undirected complete graph
with weights on edges equal to correlation coefficient. Another well known
model is Bayesian network, where we assume directed acyclic tree graph
and probability distribution function is decomposed according to hierarchy
of conditional dependencies defined by the graph. In this case edges have no
weights and their primary purpose is specifying conditional dependence.
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There is a lot of probabilistic graphical models used in real applications
but we will not deal with all of them. We will be only concerned with vine
copula graphical model, where the structure is typically defined by a tree
graph and to each edge corresponds a function called copula that we will
define later. Copula approach can be viewed as generalization of Gaussian
graphical model, where we do not assume normal distribution of marginals.
Dropping this assumption leads to the need of determining copula function
that tells us how the marginal distributions are dependent on each other.
Determining high dimensional copula function can be very hard. To deal with
this obstacle we can use only bivariate copulas and model the dependence
structure pairwise. Great promise in the future research show vine copulas
and we have chosen this particular model for our thesis.

1.3 Bayesian inference

The backbone of probabilistic approach to machine learning and its further
use in graphical models is Bayes’ theorem. The most general form of Bayes’
theorem can be written as:

P (A|B) =
P (B|A)P (A)

P (B)
(1)

Where A,B are events and P is probability of event. We can very easily
consider as event A validity of some hypothesis and event B to be occurrence
of data corresponding to hypothesis. Then we can write Bayes’ theorem in
a convenient form:

P (hypothesis|data) =
P (data|hypothesis)P (hypothesis)

P (data)
(2)

In this equation the hypothesis is for example a model that we believe de-
scribes the data. We can have many models available and it might be desir-
able to express how confident we are in our model and it is best represented
by probability P (hypothesis). This value is called prior. In order to make
the model meaningful we want to make some predictions from the model.
The probability P (data|hypothesis) that the model produces data we have
already observed is called likelihood. Multiplying prior times the likelihood
and normalizing it by the constant P (data) gives posterior predictive distri-
bution, which tells us the probability how well the model fits the data.
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To put this fundamental rule in mathematical notation we will denote θ
vector of parameters for model m and by D we will denote the set of observed
data D = {x1, x2, ..., xn}. Rewriting equation (2) gives us:

P (θ|D,m) =
P (D|θ,m)P (θ|m)

P (D|m)
(3)

One can see that the confidence of our model is manifested through param-
eters of the model, but the question whether the model is the best one or
not does not fall into this estimate. The choice of the model is in the end
just an assumption we need to doubt and by some variant of ”no free lunch”
theorem follows that there does not exist a model good for every problem.

The Bayes rule itself follows from two basic rules of probability. Namely
the product rule P (x, y) = P (x)P (y|x) and the sum rule P (x) =

∑
y P (x, y).

The sum rule is sometimes called marginalization of probability and both
rules will be extensively used throughout the whole thesis but formulated in
terms of probability distributions and probability density functions. Given
d-dimensional random vector X = (X1, ..., Xd) with probability density func-
tion f we can calculate conditional density function f(xk|x1 = X1, ..., xk−1 =
Xk−1, xk+1 = Xk+1, ...xd = Xd) by formula:

f(xk|x1, ..., xk−1, xk+1, ..., xd) =
f(x1, ..., xd)∫∞

−∞ f(x1, ..., xd)dxk
(4)

where we have used shorter notation for conditional density.

1.4 Copulas

In recent years copula theory found its place in statistics. Here we note brief
historical introduction mentioned in [1]. The history of copulas begins with
Fréchet [2] who considered two random variables X1, X2 defined on the same
probability space with distributions F1, F2 and studied the set Γ(F1, F2) of
bivariate distribution functions. One can see that joint distribution mainly
depends on dependence of the two variables. If X1 and X2 are indepen-
dent then clearly the distribution function is just product of its marginals
F (x1, x2) = F1(x1)F2(x2). Following some preliminary studies in 1956 the
deepest result was obtained by Sklar introducing the notion, and the name,
of a copula and proving fundamental theorem of copula theory that bears his
name [3].
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We can begin with stating definition viewing copula as a special case of
distribution function.

Definition 1 C : [0, 1]d → [0, 1] is a d-dimensional copula if C is a joint
cumulative distribution function of a d-dimensional random vector on the
unit cube [0, 1]d with uniform marginals. [4]

We give examples of basic copulas associated with random vector U =
(U1, ..., Ud) to explore bounds of correlation.

• the Independence copula Πd(u) = u1u2...ud whose components are in-
dependent and uniformly distributed on unit interval. One can easily
observe that viewing copula as special case of joint distribution func-
tion the condition of independence being expressible as product of its
marginals is satisfied.

• the comonotonicity copula Md(u) = min(u1, ..., ud) represents extreme
of strong dependency among random variables the vector, what can
be expressed as Ui = Ti(Y ) where Ti is some monotone increasing
transformation.

• for two dimensional case, we can define countermonotonicity copula
W2(u1, u2) = max(u1 + u2 − 1, 0). This case refers to perfect negative
dependence U2 = T (U1) for strictly decreasing function T .

By natural generalization of countermonotonicity copula one can obtain
Wd(u) = max(

∑d
i=1 ui − d + 1, 0), which is not a copula in general, but

provides lower bound for any given copula. These bounds are called Fréchet-
Hoeffding bounds:

Wd(u) ≤ C(u) ≤Md(u) (5)
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Figure 3: Contour plot of independence copula, comonotonicity copula and
countermonotonicity copula

The backbone of copula theory considering its application is without
doubt Sklar’s theorem:

Theorem 1 Let F be a distribution function with marginals F1, ..., Fd. There
exists a copula C such that for all (x1, ..., xd) ∈ [−∞,∞]d,

F (x1, ..., xd) = C(F1(x1), ..., Fd(xd)) (6)

C is uniquely determined on Range(F1)×Range(F2)× ...×Range(Fd) and
hence it is unique when all marginals are continuous.

In subsequent subsections we will introduce some classes of copulas. We will
consider only bivariate copulas.

1.4.1 Elliptical copulas

As written in [1] one can define elliptical copula as follows.

Definition 2 Let X be d-dimensional random vector having elliptical distri-
bution with mean vector µ, covariance matrix Σ and generator g : [0, inf)→
[0, inf). Suppose that, for every i ∈ {1, 2, ..., d}, (Xi

σii
) has marginal distri-

bution Fg. We call elliptical copula the distribution function of the random
vector

(Fg(
X1√
σ11

), Fg(
X2√
σ22

), ..., Fg(
Xd√
σdd

))
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If g(t) = (2π)−
d
2 e−

t
2 then we speak of Gaussian copula. Similarly, g(t) =

c(1 + t
ν
)−

d+ν
2 , for a suitable constant c, generates the multivariate t-Student

distribution with ν degrees of freedom. [1].
Later on when we will use vine copula for classification we will use only

density functions and so since distribution for elliptical copula is typically
not in closed form the performance of our calculations will be better. We
provide and example of bivariate Gaussian copula:

Cθ(u1, u2) =

∫ Φ−1(u1)

−∞

∫ Φ−1(u2)

−∞

1

2π
√

1− θ2
(−s

2 − 2θst+ t2

2(1− θ2)
)dsdt

where θ ∈ [−1, 1] and Φ−1 denotes the inverse of univariate Gaussian distri-
bution [1].

1.4.2 Archimedean copulas

Definition 3 A d-dimensional copula C is called Archimedean if it admits
the representation:

C(u) = Ψ(Ψ−1(u1) + Ψ−1(u2) + ...+ Ψ−1(ud))

for all u ∈ [0, 1]d and for some Archimedean generator Ψ.

Archimedean generator is any decreasing and continuous function Ψ : [0,∞)→
[0, 1] that satisfies the conditions Ψ(0) = 1 and limt→∞Ψ(t) = 0 and which
is strictly decreasing on [0, inf{t|Ψ(t) = 0}). By convention, Ψ(+∞) = 0
and Ψ−1(0) = inf{t ≥ 0|Ψ(t) = 0}, where Ψ−1 denotes the pseudo-inverse
of Ψ [1].

Len us give some examples of bivariate Archimedean copulas which will
be occur once again in Appendix when estimating vine copula. In definition
(3) we saw that Archimedean copula can be defined via generator function.
For bivariate case by setting Ψ(t) = −ln(1 − (1 − t)θ) for θ ≥ 1 we obtain

Joe copula and by Ψ(t) = −ln( e
−θt−1
e−θ−1

) for θ 6= 0 we obtain Frank copula [4].
Example of Archimedean bivariate two-parametric case we note BB1 and

BB7. Generator functions for these copulas are Ψ(t) = (1 + t
1
δ )−

1
θ for θ > 1,

δ > 0 and Ψ(t) = 1− [1− (1 + t)−
1
δ ]

1
θ for θ ≥ 1, δ > 0 [5].

1.4.3 Rotated, survival and extreme value copulas

It is intuitive that if we look at scatter plot of some copula one can rotate
the plot and describe this new dependence via almost the same analytical
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representation as has the initial plot. Rotations for copula density by 90, 180
and 270 degrees are given as fallows: [7]

c90(u1, u2) = c(1− u2, u1)

c180(u1, u2) = c(1− u1, 1− u2)

c270(u1, u2) = c(u2, 1− u1)

Copula rotated by 180 degrees is called survival copula. This copula occupies
special place among copulas obtained by rotation, because when we define
survival function as for example in [5], then survival copula analogously re-
lates joint survival function to its univariate margins and so provides a tool
for survival analysis with good interpretation.

Another interesting class of copulas are extreme value copulas.

Definition 4 A copula C is called extreme-value copula if there exists a
copula CF such that, for n→∞

CF (u
1
n
1 , ..., u

1
n
d )→ C(u1, ..., ud)

∀(u1, ..., ud)
T ∈ [0, 1]d.

A way to construct extreme-value copulas is by defining a convex function
A : [0, 1] → [1

2
, 1] satisfying max{t, 1 − t} ≤ A(t) ≤ 1 for all t ∈ [0, 1]. The

extreme value copula can be defined by:

C(u, v) = exp[ln(uv)A(
ln(v)

ln(uv)
)]

and if we set A(t) = 1 − β + (β − α)t + [αrtr + βr(1 − t)r] 1r , 0 ≤ α, β ≤ 1,
1 ≤ r <∞, t ∈ [0, 1]. [8]

2 Regression Analysis

Let X1, ..., Xd−1 be continuous random variables and Y random variable de-
pendent on them. A regression model relates Y ≈ f(X1, ..., Xd−1, θ), where θ
is vector of parameters. In this chapter we will consider simple linear regres-
sion model and more informative vine copula model. Both models will aim to
determine root-mean-square deviation of atomic positions (RMSD) based on
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properties of protein structure written in the table below, where F1, ..., F9
denotes physical properties and in our equations we later use standard nota-
tion X1, ..., X9 for random variables and F1, ..., F9 for marginal distribution
functions.

RMSD Root-mean-square deviation
F1 Total surface area
F2 Non polar exposed area
F3 Fractional area of exposed non polar residue
F4 Fractional area of exposed non polar part of residue
F5 Molecular mass weighted exposed area
F6 Average deviation from standard exposed area of residue
F7 Euclidian distance
F8 Secondary structure penalty
F9 Spacial Distribution constraints (N,K Value)

RMSD is an indicator in protein-structure-prediction-algorithms. We will
not use full size of data set since we have only restricted computational
resources and data are used primary to illustrate use of copulas in regression
and classification problems, not to compete with large neural networks. Our
data will consist of 10000 random samples from original dataset of size 45730.
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Figure 4: Histograms

Using R package lmom we have fitted these densities (Figure 4) with
gamma distribution except for F3 where we have used normal distribution
and F4, F6 where we have used three-parameter log-normal distribution.
The RMSD data we have used mixture normal distribution estimated with
help of R package mixR.

2.1 Linear regression model

If function f is linear we speak of linear regression model of the form Y =
θ1X1 + ...+ θdXd−1 + ε, where ε is some random noise with mean value zero.
Given input and output data we can estimate parameters of model hence
we speak of supervised machine learning. If we assume that our predictor
variables X1, ..., Xd−1 have Normal distributions denoted by N(µi, σ

2
i ) we can

calculate expected value E[Y ]. By linearity of expected value we can write
E[Y ] = θ1E[X1] + ...+ θdE[Xd−1].

At this point let us introduce graphical model called Gaussian graphical
model. This model is used to model probability density function for random
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vector X = (X1, ..., Xd) with assumption that all random variables have
Normal distribution. Under this assumption we know that the dependence
between random variables is entirely specified by correlation matrix Σ and
so we can write:

fX(x1, ..., xd) =
1√

(2π)d|Σ|
e−

1
2

(x−µ)TΣ−1(x−µ) (7)

Now we can calculate conditional probability density function for conve-
niently chosen random variable Xd. For this purpose we will use equation
(4) so we can write:

fXd|X−d(xd) =
fX(x1, ..., xd)

fX−d(x1, ..., xd−1)
(8)

where fX−d(x1, ..., xd−1) is joint normal distribution marginalized over Xd

and by X−d we denote random vector X without Xd. Omitting too much
technical details we can observe that random variable Xd is determined by
linear representation of random variables in random vector (X1, ..., Xd−1)
and so is equivalent to linear regression model in terms of expectation value
and so by estimating parameters we ought to end up with the same result.
Identifying components in vector X with nodes of the graph and edges defined
by weights of correlation matrix we can visualize linear dependence structure
of our model displayed in Figure 5. As we can see the linear dependence
structure is between F1−F5 and F2−F3 corresponding to variables X1−X5
and X2−X3.
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Figure 5: Correlation graph

We have fitted linear regression model on our RMSD-data and obtained
linear equation with coefficients θ0, ..., θ9. The expectation value of yRMSD

is:

yRMSD = 7.114 + 0.001755x1 + 0.001364x2 + 17.69x3 − 0.1100x4

−0.000005026x5 − 0.02372x6 − 0.0002776x7 + 0.01524x8 − 0.1274x9

We can see that relatively largest weight is on coefficient standing next to
x3 and so we can say that RMDS is mainly linearly dependant on variable
X3. This however is not true because values of variable X3 are normally
distributed around mean 0.3 with small variance and other variables attain
much larger values. Hence linear model is not giving us any deeper knowledge
and will serve us only as reference.

On the Figure 6 we can see residuals of validation set from linear model.
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Figure 6: Residuals of linear regression model on test set.

2.2 Vine copula model

In the previous model we have not considered non-linear dependence among
random variables. In equation (4) if we consider independence among random
variables we get:

f(xk|x1, ..., xk−1, xk+1, ..., xd) =

∏d
i=1 fi(xi)∫∞

−∞ f(x1, ..., xd)dxk
(9)

In theorem (1) we can differentiate distribution function to obtain:

f(x1, ..., xd) = c(F1(x1), ..., Fd(xd))
d∏
i=1

∂Fi(xi)

∂xi

= c(F1(x1), ..., Fd(xd))
d∏
i=1

fi(xi)

where function c is density copula. We can see a product of marginal densities
fi with copula density c interpreted as a term to handle the dependencies.

20



Combining this equation with equation (4) yields:

f(xk|x1, ..., xk−1, xk+1, ..., xd) =
c(F1(x1), ..., Fd(xd))

∏d
i=1 fi(xi)∫∞

−∞ c(F1(x1), ..., Fd(xd))
∏d

i=1 fi(xi)dxk

Since all terms except xk are constant they will cancel out to get:

f(xk|x1, ..., xk−1, xk+1, ..., xd) =
c(F1(x1), ..., Fd(xd))fk(xk)∫∞

−∞ c(F1(x1), ..., Fd(xd))fk(xk)dxk
(10)

Resulting in univariate conditional density function. These equations are
valid for any copula and any random vector with continuous marginal den-
sities. Further on we will use vine copulas as our copula functions.

The definition of vine copula is very complicated, but viewing vine copula
as probabilistic graphical model we can use definition that can be found in
[5]

Definition 5 ν is regular vine on d elements, with ε(ν) = ε1 ∪ ... ∪ εd−1

denoting the set of edges of ν, if 1. ν = {τ1, ..., τd} [consists of d-1 trees]
2. τ1 is a connected tree with nodes N1 = {1, ..., d}, ad edges ε1; for l =
2, ..., d − 1: Tl is a tree with nodes Nl = εl−1 [edges in a tree becomes nodes
in the next tree]
3. for l = 2, ..., d − 1 and for {n1, n2} ∈ ](n1 	 n2) = 2, where 	 denotes
symmetric difference and ] denotes cardinality [nodes joined in an edge differ
by two elements]

Before we start using mathematical apparatus of regular vines we need
to estimate marginal distribution functions and marginal densities. We will
not dwell on this task for too long, since our main motivation is to transform
every random variable to uniformly distributed random variable on interval
[0, 1]. Then we will need marginal density functions for further calculations.
The result of transformation can be seen on scatter plots depicting pure
dependence structure.
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Figure 7: Scatter plot matrix

We can see in Figure 7 linear dependence between F1−F5 and indepen-
dence of F3 to all other variables. Other variables seems to be non-linearly
dependent.

We have used well known R-package called VineCopula and fitted regular
vine copula to our transformed data.
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Figure 8: Contour plot of bivariate joint distribution with copula and normal
marginals

The dependence structure is indeed very rich (Figure 9). We have dis-
played all trees of vine copula structure and we can see t-copula, Gaussian
copula, Frank copula and many other copulas. For more information about
these copulas we refer to [1], [4] or [5]. We list the whole structure of our
vine copula in Appendix.
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Figure 9: Regular vine copula
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By formula (10) we have calculated RMSD conditional density function
fRMSD(xRMSD|x1, ..., x9) for several instances of random vector (X1, ..., X9).
On closer inspection of conditional density function (Figure 10) we can see
that density function typically attains two local maxima in two points. In
language of probability theory we call such points modes. One local maxi-
mum is somewhere between zero and five and second local maximum is above
number five.

Figure 10: Examples of conditional distributions for three randomly chosen
predictors

A mode is roughly defined as most probable value. For instance in case
of normal distribution is mode equal to expectation value. If our conditional
distribution function had only one mode the situation would be much simpler
and we could state this value to be our prediction. However, situation is not
in our favour and we have two modes so we need to create a procedure to
tell us which mode to prefer. Creating such procedure is no easy task, since
plenty of possibilities arise. One could consider only the global maximum,
but by looking on our dataset on Figure 11 we see that most values are
concentrated in the first peak and that we would need to give up correctly
predicting values in second concentrated around second local maxima.
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Figure 11: Histogram of RMSD

Another possibility would be taking expectation value as a prediction,
but that would still favour lower values of RMSD as well and on average
would give worse predictions. We have decided to transform this problem to
supervised classification problem as will be seen in later chapter.

3 Probabilistic classification

Classification and regression are two very related tasks. Generally classifier
is some rule, or a function f , that assigns to a sample x a class label y.
We can write this simply as y = f(x), where x comes from sample space
X, while the class labels form finite set Y defined at the beginning. A
typical example of such classification task is handwritten digit recognition
where sample space is set of all images of given pixel resolution and class
labels form a set Y = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}. This task can be solved by
neural networks with high success rate where on the input goes all pixels of
given image. Even though neural network calculates for every digit value in
interval [0, 1] and we can base our belief on this output value to given digit,
we cannot consider it as a probability, because neural networks are in general
not a distribution functions. This is where probabilistic classification gains
the upper hand based on Bayesian inference. Once we obtain the probability
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P (class|data) we can predict class y with the highest probability by formula:

y = argmax
yk

[P (class = yk|data)] (11)

The the main step when doing probabilistic classification is to calculate prob-
ability distribution. For this task we will later use regular vine copulas.

3.1 Naive Bayes

The simplest and most used classifier is naive Bayes classifier. We present it
as analogical case to linear regression model. Naive Bayes classifier as name
suggest is based on Bayes theorem and assumes independence of variables,
thus being probabilistic classifier.

Consider random vector X = (X1, ..., Xd) and K classes denoted by wk
for k-th class. From Bayes theorem (1) taking event A to be class and event
B to be realization of random vector x = (x1, ..., xd) we can write:

P (wk|x) =
P (x|wk)P (wk)

P (x)
(12)

We ask the probability that given a realization of random vector x what is
the probability that x is in class wk. Probability P (wk) is prior probability
of obtaining k-th class. We will deal with this term in classical fashion
P (wk) = Nk

N
, where N is size of our dataset and Nk is observed size of

data in class k. The term P (x|wk) is interpreted as probability of obtaining
realization x if we restrict our attention only on k-th class. Since we assume
independence we can factor P (x|wk) as product of marginal probabilities
given k-th class. Term in the denominator is probability of realization x
throughout all K classes. Since all classes are mutually exclusive we write
P (x) =

∑K
j=1 P (x|wj). Putting it all together we can write:

P (wk|x) =

∏d
i=1 P (xi|wk)∑K
i=1

∏d
i=1 P (xi)

Nk

N
(13)

We have fitted RMSD by bimodal normal distribution, which is just sum
of two normal distributions with one mode and spit our RMSD according to
local minimum value as seen on Figure 12 to two classes.
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Figure 12: Splitting RMSD mixture density

We have used R-package e1071 to fit naive Bayes model and make our
predictions. In table bellow are shown results of predictions.

real \ predicted class 1 class 2
class 1 270 98
class 2 280 363

Size of our test data is ntest = 1011. From table we can calculate that
our predictions were 62.6% correct where 280 realizations in class 2 were
incorrectly putted in class 1.

3.2 Regular vine probabilistic classification

Analogically as in regression model we will correct independence assump-
tion we have made in naive Bayes model. We define probability P (x|wk) =
limε→infF (x1 − ε ≤ X1 < x1 + ε, ..., xd − ε ≤ Xd < xd + ε)|wk), where F is
joint distribution function of random vector (X1, ..., Xd). For small enough ε
we can write (13) without independence assumption as:

P (wk|x) =
f(x1, ..., xd|wk)∑K

j=1 f(x1, ..., xd|wj)P (wj)

Nk

N
(14)
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We will deal with conditional density function f(x1, ..., xd|wk) as before, but
this time we need to fit vine copula for each class. That is

f(x1, ..., xd|wk) = ck(F1(x1), ..., Fd(xd))
d∏
j=1

fj(xj) (15)

where ck is regular vine copula density for k-th class.
Setting K = 2 and d = 9 we can finally write our vine copula classifier

for first class (predicted value of RMSD near first mode) as:

P (w1|x) =
f(x1, ..., x9|w1)

f(x1, ..., x9|w1)P (w1) + f(x1, ..., x9|w2)P (w2)

N1

N
(16)

Since both classes are mutually exclusive and we have only two we can cal-
culate P (w2|x) = 1− P (w1|x), which is computationally more effective.

Regular vine copula fitted on data in class 1 and another one on data
in class 2 was structurally not very different than vine copula estimated in
regression problem so we will not deal with closer inspection. Probabilistic
classifier based on regular vine copula did better in classification task than
naive Bayes model. We can see results on table bellow:

real \ predicted class 1 class 2
class 1 430 162
class 2 120 299

From table we can calculate that our predictions were 72.1% correct where
120 realizations in class 2 were incorrectly putted in class 1 and 162 realiza-
tions in class 1 were incorrectly putted in class 2.

4 Combining regression and classification

To sum up what we did we will summarize steps of our approach using
copulas:
1. Observe number of local maxima (more than one) in histogram of output
data.
2. Fit output data with distribution and density function.
3. Split output data to classes. Number of classes is equal to number of local
maxima.
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4. Estimate copula for regression problem.
5. Estimate copula for classification problem. Estimating must be done for
each class separately.
6. Use equation (10) and (14),(15) as such:

Algorithm 1 algorithms

1: procedure Predict(test) . predicts RMSD based on test set
predictors

2: for each test case do
3: mL← condDensityLocalMaximumOfClass1(testcase)
4: mU ← condDensityLocalMaximumOfClass2(testcase)
5: class← whichClass(testcase)
6: if class=1 then Predictions.append(mL)

7: if class=2 then Predictions.append(mU)

8: return Predictions . returns vector of responses for given
predictors

On author’s github page https://github.com/fratric/diplomaThesis.git
can be viewed implementation of this algorithm. By this procedure we have
made predictions with combining vine copula regression model with Bayes
classification and then vine copula regression model with vine copula classi-
fication. In this table we provide root-mean-square error and mean-average
error for all models we have employed.

model mean-average error root-mean-square error
Linear model 4.510966 5.31519
Vine + Bayes 5.204006 6.873046
Vine + Vine 4.111231 5.999629
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Figure 13: Residuals for vine copula regression model combined with naive
Bayes classification

We can see that combination of Vine regression model with Bayes clas-
sifier performed very poorly. The main reason for this is poor classification.
Both from the table and from Figure 13 and Figure 14 we can see that resid-
uals for vine copula regression model have very large root-mean-square error
compare to linear model. This can be explained by observation that if clas-
sifier, either Bayes or vine, classified incorrectly then vine regression model
had no chance to predict correct value. On the other hand, we can from plot
of residuals from Vine+Vine model that if we would restrict our attention
only to correctly classified variables then vine regression model would be very
precise. This means that main issue with our model is classification and so
a progress in this direction is required.

31



Figure 14: Residuals for vine copula regression model combined with vine
copula classification

5 Conclusions

In this thesis we have demonstrated use of copulas on regression problems
and on probabilistic classification problems. The use of Gaussian copulas on
probabilistic classification was already used in few papers in recent years and
applications of Vine or factor copulas are particularly rare.

The dataset we have used was already tackled in paper [6] with mean-
average error equal to 3.845204 and surpassing neural network [6] with mean-
square error equal to 4.202547 and linear model with mean-square error equal
to 4.510966 is satisfactory especially when vine copula also describes the
dependence structure providing us with better intuition about physics hidden
behind the curtain of data.

6 Appendix

Regular vine copula with following pair-copulas estimated by method RVineStruc-
tureSelect by Akaike information criterion in R-package VineCopula. For
more information https://cran.r-project.org/web/packages/VineCopula/
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Tree 1: copula type
1,5 t (par = 1, par2 = 10.53, tau = 0.96)
3,10 Rotated Tawn type 1 180 degrees (par = 1.63, par2 = 0.46, tau = 0.23)
2,3 BB1 (par = 1.06, par2 = 1.04, tau = 0.37)
6,2 Gaussian (par = 0.92, tau = 0.74)
6,8 BB8 (par = 3.27, par2 = 0.85, tau = 0.42)
1,6 t (par = 0.97, par2 = 18, tau = 0.83)
1,4 t (par = 0.94, par2 = 6.51, tau = 0.78)
9,1 Rotated Tawn type 2 270 degrees (par = -4.73, par2 = 0.97, tau = -0.77)
9,7 Frank (par = -14.66, tau = -0.76)

Tree 2: copula type
6,5;1 t (par = -0.25, par2 = 19.78, tau = -0.16)
2,10;3 Independence
6,3;2 t (par = -0.8, par2 = 9.1, tau = -0.59)
1,2;6 Survival BB1 (par = 0.21, par2 = 1.04, tau = 0.13)
1,8;6 Rotated Tawn type 1 180 degrees (par = 1.13, par2 = 0.11, tau = 0.03)
4,6;1 Tawn type 2 (par = 1.7, par2 = 0.49, tau = 0.26)
9,4;1 Rotated BB8 270 degrees (par = -1.94, par2 = -0.81, tau = -0.19)
7,1;9 Survival BB7 (par = 1.35, par2 = 0.17, tau = 0.22)

Tree 3: copula type
2,5;6,1 Joe (par = 1.13, tau = 0.07)
6,10;2,3 Rotated Tawn type 1 90 degrees (par = -1.36, par2 = 0.35, tau = -0.13)
1,3;6,2 t (par = -0.95, par2 = 17.73, tau = -0.8)
4,2;1,6 Rotated BB8 90 degrees (par = -3.74, par2 = -0.63, tau = -0.31)
4,8;1,6 Tawn type 1 (par = 1.66, par2 = 0.09, tau = 0.07)
9,6;4,1 Survival BB8 (par = 1.37, par2 = 0.75, tau = 0.07)
7,4;9,1 Rotated BB7 90 degrees (par = -1.02, par2 = -0.08, tau = -0.05)

Tree 4: copula type
3,5;2,6,1 Rotated BB1 90 degrees (par = -0.04, par2 = -1.11, tau = -0.12)
1,10;6,2,3 Survival BB8 (par = 1.22, par2 = 0.92, tau = 0.07)
4,3;1,6,2 Rotated Tawn type 1 270 degrees (par = -1.16, par2 = 0.21, tau = -0.05)
9,2;4,1,6 BB8 (par = 1.16, par2 = 0.89, tau = 0.05)
9,8;4,1,6 Rotated BB8 90 degrees (par = -1.15, par2 = -0.97, tau = -0.06)
7,6;9,4,1 Survival Joe (par = 1.05, tau = 0.03)
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Tree 5: copula type
10,5;3,2,6,1 Rotated BB8 270 degrees (par = -1.18, par2 = -0.81, tau = -0.04)
4,10;1,6,2,3 Rotated BB8 90 degrees (par = -3.07, par2 = -0.52, tau = -0.18)
9,3;4,1,6,2 Rotated BB8 90 degrees (par = -5.03, par2 = -0.35, tau = -0.2)
8,2;9,4,1,6 Rotated Tawn type 2 180 degrees (par = 1.22, par2 = 0.1, tau = 0.04)
7,8;9,4,1,6 Clayton (par = 0.13, tau = 0.06)

Tree 6: copula type
4,5;10,3,2,6,1 Rotated Tawn type 1 270 degrees (par = -1.38, par2 = 0.02, tau = -0.02)
9,10;4,1,6,2,3 t (par = 0.03, par2 = 9.8, tau = 0.02)
8,3;9,4,1,6,2 Independence
7,2;8,9,4,1,6 Rotated Tawn type 1 90 degrees (par = -1.31, par2 = 0.08, tau = -0.04)

Tree 7: copula type
9,5;4,10,3,2,6,1 Independence
8,10;9,4,1,6,2,3 Tawn type 1 (par = 1.41, par2 = 0.2, tau = 0.1)
7,3;8,9,4,1,6,2 Rotated BB8 90 degrees (par = -2.56, par2 = -0.51, tau = -0.13)

Tree 8: copula type
8,5;9,4,10,3,2,6,1 Rotated BB8 90 degrees (par = -1.24, par2 = -0.62, tau = -0.03)
7,10;8,9,4,1,6,2,3 BB8 (par = 1.11, par2 = 0.84, tau = 0.03)

Tree 9: copula type
7,5;8,9,4,10,3,2,6,1 Rotated BB8 270 degrees (par = -1.14, par2 = -0.85, tau = -0.04)
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