
SLOVAK UNIVERSITY OF TECHNOLOGY IN BRATISLAVA

Faculty of Civil Engineering

Reg. No.: SvF-5343-63353

Parallel computing in image processing using
GPU and CUDA architecture

Master thesis

2018 Bc. Alexander Baťka

SLOVAK UNIVERSITY OF TECHNOLOGY IN BRATISLAVA

Faculty of Civil Engineering

Reg. No.: SvF-5343-63353

Parallel computing in image processing using
GPU and CUDA architecture

Master thesis

Study programme: Mathematical and Computational Modeling
Study field: 9.1.9. Applied Mathematics
Training workplace: Department of Mathematics and Constructive Geometry
Thesis supervisor: Ing. Jozef Urbán, PhD.

Bratislava 2018 Bc. Alexander Baťka

Slovak University of Technology in Bratislava
Department of Mathematics and Constructive Geometry

Faculty of Civil Engineering
Academic year: 2017/2018
Reg. No.: SvF-5343-63353

MASTER THESIS TOPIC

Student: Bc. Alexander Baťka
Student’s ID: 63353
Study programme: Mathematical and Computational Modeling
Study field: 9.1.9. Applied Mathematics
Thesis supervisor: Ing. Jozef Urbán, PhD.

Topic: Parallel computing in image processing using GPU and CUDA
architecture

Language of thesis: English

Specification of Assignment:

Téma sa zaoberá paralelizáciou algoritmov spracovania obrazu pomocou grafických procesorov využitím
architektúry CUDA (Compute Unified Device Architecture).
Študent naštuduje problematiku využitia GPU pre všeobecné výpočty. Naučí sa pomocou CUDA paralelizovať
výpočty používané v spracovaní obrazu
ako BiConjugate Gradient Stabilized Method, filtrácia obrazu lineárnou rovnicou vedenia tepla, transformácia
a registrácia obrazu. Dosiahnuté výsledky vhodne prezentuje.

Selected bibliography:

1. Sanders, J. – Kandrot, E. CUDA by Example: An Introduction to General-Purpose GPU Programming.Upper
Saddle River : Addison Wesley, 2011. 290 s. ISBN 978-0-13-138768-3.

2. Krivá, Z. –Mikula, K. – Stašová, O. Spracovanie obrazu: Vybrané kapitoly z prednášok.Bratislava : Slovenská
technická univerzita v Bratislave, 2016. 149 s. ISBN 978-80-227-4535-2.

3. Bi-CGSTAB: A fast and smoothly converging variant of Bi-CG for the solution of nonsymmetric linear sys-
tems, SIAM J. Sci. Statist. Comput., 13 (1992), pp. 631–644

4. CUDA programming: A Developers guide to parallel computing with GPUs, Shane Cook, 2013, ISBN-978-
0-12-415933-4

Assignment procedure from: 02. 10. 2017

Date of thesis submission: 10. 05. 2018

Bc. Alexander Baťka
Student

prof. RNDr. Radko Mesiar, DrSc.
Head of department

prof. RNDr. Karol Mikula, DrSc.
Study programme supervisor

POKYNY

na vypracovanie diplomovej práce

Úvodné ustanovenie

V zmysle zákona č. 131/2002 Z. z. o vysokých školách a o zmene a doplnení niektorých
zákonov v znení neskorších predpisov je súčasťou štúdia podľa každého študijného
programu aj záverečná práca. Jej obhajoba patrí medzi štátne skúšky. Záverečnou prácou
pri štúdiu podľa študijného programu druhého stupňa je diplomová práca. Podkladom na
vypracovanie diplomovej práce je zadanie diplomovej práce

Štruktúra záverečnej práce

 titulný list,

 zadanie záverečnej práce,

 pokyny na vypracovanie,

 vyhlásenie autora,

 názov a abstrakt v slovenskom a v anglickom jazyku (spolu v rozsahu jednej strany),

 obsah s očíslovaním kapitol,

 zoznam príloh,

 zoznam skratiek a značiek,

 text samotnej práce (odporúčané členenie),

 úvod,

 súčasný stav problematiky,

 ciele záverečnej práce,

 vlastné riešenie členené na kapitoly podľa charakteru práce,

 zhodnotenie dosiahnutých výsledkov resp. navrhnutých riešení,

 záver,

 resumé v slovenskom jazyku v rozsahu spravidla 10 % rozsahu ZP (len pre práce
vypracované v cudzom jazyku),

 zoznam použitej literatúry,

 prílohy (výkresy, tabuľky, mapy, náčrty) vrátane postera s rozmermi 1000x700 mm.

Rozsah a forma

1. Obsah a forma záverečnej práce musí byť spracovaná v zmysle vyhlášky MŠVVaŠ SR
č. 233/2011 Z. z., ktorou sa vykonávajú niektoré ustanovenia zákona č. 131/2002 Z. z.
a v zmysle Metodického usmernenia č. 56/2011 o náležitostiach záverečných prác.

2. Vyžadovaný rozsah diplomovej práce je 30 až 50 strán. Odovzdáva sa v dvoch
vyhotoveniach. Jedno vyhotovenie musí byť viazané v pevnej väzbe (nie hrebeňovej)
tak, aby sa jednotlivé listy nedali vyberať. Rozsiahle grafické prílohy možno v prípade
súhlasu vedúceho práce odovzdať v jednom vyhotovení.

3. Autor práce je povinný vložiť prácu v elektronickej forme do akademického informačného
systému. Autor zodpovedá za zhodu listinného aj elektronického vyhotovenia.

4. Po vložení záverečnej práce do informačného systému, predloží autor fakulte ním
podpísaný návrh licenčnej zmluvy. Návrh licenčnej zmluvy je vytvorený akademickým
informačným systémom.

5. Odporúčaný typ písma je Times New Roman, veľkosť 12 a je jednotný v celej práci.
Odporúčané nastavenie strany - riadkovanie 1,5, okraj vnútorný 3,5 cm, vonkajší 2 cm,
zhora a zdola 2,5 cm, orientácia na výšku, formát A4.

6. Obrázky a vzorce sa číslujú v rámci jednotlivých kapitol (napr. obr. 3.1 je obrázok č. 1
v kapitole 3). Vzorce sa číslujú na pravom okraji riadku v okrúhlych zátvorkách - napr.
(3.1).

7. Všetky výpočty musia byť usporiadané tak, aby bolo možné preveriť ich správnosť.

8. Pri všetkých prevzatých vzorcoch, tabuľkách, citovaných častiach textu musí byť
uvedený prameň.

9. Citovanie literatúry vrátane elektronických materiálov sa uvádza podľa STN ISO 690 (01
0197): 2012. Informácie a dokumentácia. Návod na tvorbu bibliografických odkazov na
informačné pramene a ich citovanie.

10. Príklad zoznamu bibliografických odkazov:
ABELOVIČ, J. a kol.: Meranie v geodetických sieťach. Bratislava, Alfa 1990,

ISBN 0-1554-9173.
MICHALČÁK, O. – ADLER, E.: Výskum stability dunajských hrádzí. In: Zborník

vedeckých prác Stavebnej fakulty SVŠT. Bratislava: Edičné stredisko SVŠT 1976,
s. 17-28. ISBN 0-3552-5214.

ŠÜTTI, J.: Určovanie priestorových posunov stavebných objektov. Geodetický
 kartografický obzor. 2000, roč. 2, č. 3, s. 8-16. ISSN 0811-6900.

Article 18. Technical Cooperation. http://www.lac.uk/iso/tc456 (2013-09-28)

11. Za jazykovú a terminologickú správnosť záverečnej práce zodpovedá diplomant.

12. Formu postera (elektronická alebo aj tlačená) určí garant študijného programu.

13. Vzor pre poster je uvedený na dokumentovom serveri v akademickom informačnom
systéme univerzity.

 ...
 podpis garanta študijného programu

Ustanovenia týchto pokynov som vzal na vedomie. Som si vedomý(á), že ak nebude moja
diplomová práca vypracovaná v súlade s týmito pokynmi, nebude prijatá na obhajobu.

V Bratislave
 podpis študenta

i

Čestné prehlásenie
Prehlasujem, že som diplomovú prácu Parallel computing in image processing using GPU

and CUDA architecture vypracoval samostatne, na základe použitej literatúry a s odbornou

pomocou vedúceho práce.

Bratislava May 9, 2018 ...

vlastnoručný podpis

ii

Acknowledgment:
I would like to thank my supervisor Ing. Jozef Urbán, PhD. for help, time spent answer-

ing my question, understanding in bad times and instant replies to emails regarding the thesis

in any hour of the day.

iii

Abstrakt

Cielom práce je porozumiet’, porovnat’ a následne integrovat’ paralelné algoritmy spra-

covania obrazu, algoritmických solverov do CUDA. V rámci práce treba vybrat’ vhodné

existujúce softvérové prostriedky, programovacie jazyky, prostredie, knižnicu CUDA a za

pomoci správneho hardvéru vytvorit’ paralelné algoritmy na grafickej karte, porovnat’ ich z

paralelným algoritmami na CPU, vyhodnotit’ nároky potrebné na zníženie časových nárokov

a zhodnotit’ cenové náklady hardvéru pre jednotlivé prístupy.

Kl’účové slová: CUDA, C++, Paralelný algoritmus

iv

Abstract

The goal of our paper is to understand, compare and integrate parallel algorithms for

image processing and algorithmic solvers to CUDA. Within the paper it is needed to chose

correct existing software instruments, programming languages, development environment,

CUDA library and with the help of correct hardware create parallel algorithms on graphic

card, compare them with parallel algorithms on CPUs, evaluate the needs to decrease the

time requirements and conclude the price of hardware for either approaches.

Keywords: CUDA, C++, Parallel algorithm

Contents

Introduction 1

1 Hardware 3
1.1 CPU - central processing unit . 3

1.2 GPU - graphical processing unit . 5

1.3 Memory . 5

1.3.1 RAM . 6

1.3.2 GPU RAM . 6

1.4 Architecture of parallel computers . 6

1.4.1 Examples of parallel architectures 7

2 Parallel programming 11
2.1 Models of parallel programming . 11

2.2 Communication . 12

2.2.1 Communication speed . 13

2.2.2 Collective communication . 13

2.2.3 Point-to-point communication . 13

2.3 Load balancing . 13

2.3.1 Multi-processing CPU APIs . 13

2.3.2 Multi-processing GPU APIs . 14

2.4 Memory limitations . 16

2.4.1 Programming on CPU . 16

2.4.2 Programming on GPU . 17

2.5 Comparison of computing performance 17

2.5.1 Architecture . 18

2.5.2 Frequency and number of cores 18

2.5.3 Bandwidth . 18

2.5.4 FLOPS . 19

2.5.5 Price/performance comparison . 19

2.5.6 Conclusion . 24

v

CONTENTS vi

3 Implementation 25
3.1 Language C++ . 25

3.2 Development environment . 25

3.3 Unit testing . 26

3.4 Differentiation between programming on CPU/GPU 26

3.4.1 Memory allocation and copying on device 26

3.4.2 Kernel . 27

3.4.3 Blocks and grids . 28

3.4.4 Error handling . 30

3.4.5 Comparison of code on host vs. code on device 30

3.5 Data passing and performance decrease 32

3.5.1 Direct copy . 32

3.5.2 Data streaming and concurrency 32

3.5.3 Unified memory . 34

4 Experiments 36
4.1 Matrix operations . 37

4.1.1 Matrix additions . 37

4.1.2 Matrix-vector multiplication . 38

4.1.3 Matrix multiplication . 39

4.2 Iterative methods . 40

4.2.1 Preconditioned BiConjugate Gradient Stabilized method (BiCGStab) 40

4.3 Image processing algorithm - Linear filtration 42

4.3.1 Linear filtration using transient heat transfer 43

4.3.2 Implementation comparison . 44

4.4 Distance function in image processing . 44

4.4.1 Brute force distance function . 45

4.5 Shape registration . 46

Conclusion 51

Resumé 53

Bibliography 55

Appendix 56

CONTENTS vii

Acronyms

API Application programming interface

BiCGStab BiConjugate Gradient Stabilized

CIR Central instruction register

CPU Central processing unit

c.c.k. cuda custom kernel

FLOPS Floating point operations per second

GPU Graphics processing unit

HDD Hard drive storage

IPC Instructions per cycle

MAR Memory address register

MPP Massively parallel processors

NUMA Non-Uniform memory access

RAM Random access memory

SIMD Simple instruction, multiple data

SM Shading multiprocessor

SMP Symmetric multiprocessor

SSD Solid state drive

Introduction

From the history of computer development we have observed the need of improving

the effectiveness in which they operate, along with improving their computational poten-

tial. Unfortunately without improving the software alongside the hardware this never can be

achieved. This has become increasingly more evident with the physical barriers of single

core processing units, where everything ran sequentially. Therefore, processing units started

to increase in numbers within a single system and parallelism became available. Tasks that

have before taken days, could be divided into multiple tasks and ran on multiple compute

units to reduce this time to insignificant intervals. This potential allowed software engineers

to iteratively develop more complex software tools.

Visualization of computer results and instructions known as user interface, led into develop-

ment of graphics cards which are today an essential part of every computer. The increasingly

more powerful graphics cards, with increasingly more cores gave the potential to not only

improve the complex visualization calculation, but use this computational potential for gen-

eral computations and allow software developers and scientists to offload or rather transfer

the computations from other computational unit to graphic cards. Thanks to the computa-

tional potential of graphics cards, this has led into reducing the time of calculations by a

significant margin.

Multiple approaches and software techniques were developed over time for this purpose. In

our analysis we will look over these approaches, how they work, what are the necessities one

needs for them and we will look how the implementation of general algorithms and image

processing algorithms onto the graphics card with the help of CUDA can benefit over imple-

menting them on a CPU, as well as the limitations and price comparisons of each approach.

As the first step to understanding the software, we will look into the hardware-side of a com-

puter, more accurately into CPU, GPU, memory, their involvement in computations and how

they can be used together in parallel architectures to further increase performance.

After understanding the basic principles of hardware and how it is used, in second chapter

we look into the software implementation of parallel programming. Specifically the prob-

lems that need to be overcome, different approaches to overcoming these problems and the

differences of parallel programming with the use of different processing units. This under-

1

CONTENTS 2

standing leads to a comparison in performance, divided into the aspects that affect it as well

as the cost of performance when choosing between the different approaches.

As the next step after understanding the theory, implementation is described. Firstly by

choosing the correct programming language with development environment. Secondly by

correctly implementing the algorithms at hand, familiarizing ourselves with working with

CUDA and the different course of implementation when doing general purpose programming

on GPU with the ambition to eliminate the drawbacks of doing general purpose computing

on a GPU.

At last we look into the different general algorithms used in mathematics as well as image

processing algorithms, their multiple implementations, either on GPU or CPU, and the time

comparison and computational time decrease when running these algorithms on GPU.

Chapter 1

Hardware

In this chapter we will look over physical components of a computer, their purpose

and simplified inner workings. All calculations and comparisons were made on the same

personal computer (Asus Zenbook ux501vw) using:

• Windows 10 Pro

• Intel I7-6700Q

• NVidia GTX 960M 4GB

• 16GB RAM

• Samsung 512gb NVME m.2 SSD

• Microsoft C/C++ Compiler - Visual C++ 14.0

• CUDA 9.0

With the power cord always plugged in to eliminate Windows energy saving optimization

that reduces components power consumption and thus their computing potential.

1.1 CPU - central processing unit

The Central Processing Unit, or "brains" of the computer, is one of the most important

processing units inside a computer. It is the part of a computer that performs actions, cal-

culations and runs programs. It takes inputs, referred to as instructions from the computer’s

RAM, decodes them, processes them, delivers and outputs them. Vast variety of devices uses

CPUs, such as laptops, smartphones, fridges, etc. Their function can be divided into three

steps: fetch, decode and execute (Figure 1.1).

3

CHAPTER 1. HARDWARE 4

Fetch

Fetching data involves receiving instructions represented as series of numbers that are

passed to the CPU from the RAM. Each instruction is only a small part of any operation, that

means that the CPU needs to know which instruction comes next. The current instruction

address is held by a program counter. The contents of the program counter are then loaded to

memory address register (MAR), after which the program counter length is increased to ref-

erence the next instructions address. The data required is loaded into memory buffer register

(MBR), that is followed by loading MAR contents into central instruction register(CIR).

Decode

Once an instruction is fetched and stored in the CIR, the CPU passes the instruction to a

circuit called the instruction decoder. This converts the instruction into signals to be passed

through to other parts of the CPU for action.

Execute

In the final step, the decoded instructions are sent to the relevant parts of the CPU to be

completed. The results are usually written to a CPU register, where they can be referenced

by later instructions.

Figure 1.1: Instruction cycle [19]

At first CPUs had only one single core, this meant that the CPU was limited to just

single set of tasks in multiple threads which were executed sequentially, which in its essence

CHAPTER 1. HARDWARE 5

was a type of parallelism. After pushing the single core performance to its limits, the drive

for performance improvements led to creation of multi-core processors, thus splitting the

workload into multiple channels. This is where real parallelism began.

Further improvements were made to the cache of the processor, the way processor com-

municates with other components, frequency under which the CPU operates and amount of

data it could process at one time. About these topics please refer to [3].

1.2 GPU - graphical processing unit

Similarly to CPU, the GPU receives data, decodes them and then executes them, however,

the GPU is designed specifically to perform complex mathematical and geometric calcula-

tions that are necessary for graphics rendering. Every pixel that is rendered onto the screen

is calculated by the GPU and then sent to the monitor as a map of an image to be shown.

Unlike CPU where every task may be completely different to the other and thus has to be

processed fast one after another by a single core. GPUs were initially used to accelerate the

memory-intensive work of texture mapping and polygon rendering, later adding units to ac-

celerate geometric calculations such as the rotation and translation of vertices into different

coordinate systems. Because most of these calculations involves matrix and vector opera-

tions, these tasks are easily divided into multiple smaller identical tasks that can be executed

at the same time. This lead into the GPU having significantly more cores running at a lower

frequency than a CPU to allow for parallelism.

Usually there are multiple types of GPUs with different uses, more about them please refer

to [12].

1.3 Memory

Core part of each computer are the instructions it executes, without them the processor

would not know what to do. These instructions are saved as data and saved in memory.

Although each processing unit has its own low level memory (e.g. L2, L3 cache in CPU),

which is extremely fast and can be accessed faster than any other type of memory and is used

for the instructions and data that the processing unit is implementing in each moment, it is

also very expensive and therefore used scarcely. Memory used for other purposes is divided

into multiple parts, RAM or random access memory which is used as a temporary storage

for all the data that needs to be accessible fast and be available to insure smooth working

of a program. This memory is usually different for each computing unit, meaning that CPU

uses different RAM than the GPU. The difference between these two types of memory will

be discussed in further sections. Then there is offline storage or hard storage, which contains

CHAPTER 1. HARDWARE 6

data that is to be stored for longer periods of time. Offline storage is usually very slow com-

pared to RAM or cache, but has the advantage that it keeps the memory written without any

need of power supply. It is because data is physically written on a physical medium (like

storage disks in HDD).

1.3.1 RAM

Random access memory, known as primary storage, is called and considered random access

because any memory address can be accessed directly at any time if you know the address of

the data your are looking for while the computer is running. This is possible only while the

memory has sufficient power, after the power has been cut of, all the memory stored on it, is

lost.

Main purpose of RAM is to hold data that are currently in use so they can be quickly

reached by the processor. If there is more data than the RAM is capable of storing, the over-

flow is then written to offline storage (HDD, SDD), significantly impacting the performance

in negative way. More in [28].

1.3.2 GPU RAM

Every processing unit needs storage for data that can be accessed quickly and without

slowdowns. For this purpose GPUs, have their own separate part of RAM, called vRAM

(video RAM). This memory is either taken from RAM (case of integrated chips) or is a

separate extra memory located and directly connected to the GPU. This memory is used to

hold textures, 3D meshes, images and any type of data that the GPU uses. The more memory

is available the more data can be used for computation, thus more complex it can be. AS a

workaround for not having enough vRam is sending the overflow to the RAM or HDD/SDD

which causes significant performance decrease. More in [22].

1.4 Architecture of parallel computers

When it comes to parallel computing, very important aspect of improving performance

is how different programs access memory. This can dramatically increase performance or

cause absolute ineffectiveness of the program. The most basic implementation is sequential

computing, every block of memory has only one processing unit that executes the data, as in

Figure 1.2.

CHAPTER 1. HARDWARE 7

Figure 1.2: Von Neumann architecture of a sequential computer [19]

Whereas parallel computers are defined by having multiple processing units for data

processing, as in Figure 1.3.

Figure 1.3: Example of parallel computer architecture[19]

1.4.1 Examples of parallel architectures

Parallel computers are divided into categories by:

• the way they access memory (local memory)

• the way they share memory (global memory)

• the way they communicate with each other

CHAPTER 1. HARDWARE 8

Figure 1.4: Graphical representation of global and local memory [19]

More than one category can be seen in one computer, e.g. in Figure 1.4, all processing units

have their own local memory, which cannot be accessed from other processing unit, shared

global memory which is accessible by all, though this access is slower than accessing local

memory.

Further we will discuss the most used architectural types.

Processor arrays

Type of integrated circuit with parallel array of CPUs and RAM memories controlled by

a single front end computer. Front end computers purpose is to distribute the workload

between the CPUs in the processor array. Every CPU in the array has its own memory

in which it holds instructions for computations, as in Figure 1.5. This architecture is used

mainly as ASIC (application specific integrated circuits) machines.

Figure 1.5: Processor array architecture model [19]

CHAPTER 1. HARDWARE 9

Multiprocessors

Contains multiple full fledged CPUs with shared and local memory within a single com-

puter. Mostly used in clusters. They are differentiated by the type of memory they use and

how they share memory.

SMP - Symmetric Multiprocessors

Mostly used in personal/server computers with the support for up to 8 CPUs. Every CPU

contains its own cache (local memory) and shared memory, to which each CPU has the same

access (Figure 1.6), known as uniform memory access (UMA). This means that an different

address on each processor can point to the same address in the physical memory.

Figure 1.6: Symmetric multiprocessor architecture model [19]

NUMA - Non-Uniform Memory Access

Similarly to SMP, but with shared memory using hardware/software directory-based pro-

tocol. Memory is shared between all processors, but is divided into local memories for each

processor (Figure 1.7). Every local memory is accessible by other processor at a cost of

slower bandwidth.

Figure 1.7: Non-uniform memory access architecture model [19]

CHAPTER 1. HARDWARE 10

MPP - Massively Parallel processors

MPP represents a combination of SMP and NUMA nodes interconnected via a high speed

network. Every node has its own processor, memory, I/O and operating system (Figure 1.8).

This approach allows for easily upgradeable systems. By adding a node to the network

we can expand and increase the computational potential. This approach is used in Data

warehouses to handle the processing of very large amounts of data.

Figure 1.8: Massively parallel processor architecture model [19]

Grid

One of the biggest drawbacks of all the approaches we have talked about is the physical

need of having the system on the same network, usually in one location. Grid computing is

an approach for a distributed system with non-interactive workloads. Every node/computer

in the grid is set to perform a different task, together trying to solve/achieve a common goal.

Example of a working grid is PrimeGrid a worldwide grid, searching for prime numbers, that

anyone in the world can join with their personal PC.

General-purpose computing on GPU

Use of GPUs, which are typically used only for computing computer graphics, to perform

computations usually handled by a CPU. Thanks to video cards being separate integrated

circuits with their own memory and processing units, multiple video cards can be connected

in one computer which further parallelizes the already parallel nature of GPUs. As discussed

in section 1.2 and further in [12], one GPU can have thousands of cores, where as commercial

CPUs only have up to 28-cores. This means that if CPU has 220 GFLOPS (section 2.5.4), a

similarly priced GPU can have 4500 GFLOPS in raw arithmetic computational potential.

Chapter 2

Parallel programming

Large problems, such as matrix operations, can be often divided into smaller tasks, which

can be executed at the same time without affecting the result. Creating parallel programs be-

came broader interest due to physical constraint preventing increase in processor frequency.

Along with increase in power consumption (and heat generation) led to focus on parallel

architecture of computers, in form of multi-core systems.

Different approaches in code execution and memory usage allow for further optimization

and maximizing the raw computational potential a system.

2.1 Models of parallel programming

Different approaches of parallel programming are classified according to the level at which

the hardware supports parallelism. Either having multiple cores, processors or processing

elements (e.g. graphics card) withing a single machine, or by using multiple computers

working on the same task[20].

SMP

Mainly used for workloads where all tasks running concurrently need to share memory.

While some tasks has to run in sequence, other can be forked, executed and afterwards

joined together in one process to form fork-join model.

11

CHAPTER 2. PARALLEL PROGRAMMING 12

Figure 2.1: Difference between sequential and fork-join process [19]

Every fork creates its own thread in the same process. Widely used API (application

programming interface) that focuses on shared memory multiprocessing is OpenMP (more

in section 2.3.1).

Simple MPP

Simple MPP is characterized as a single process running on one node of the system while

they communicate with other nodes through a network (e.g. Ethernet connection). Normally,

the processes running on every node run longer on their own as if they ran in sequence on

one node, but the ability to run these processes sequentially allows up to 4x decrease in

computational time.

Hybrid MPP

By connecting multiple SMP nodes together, we get hybrid multiprocessor systems. This

approach maximizes the effectiveness, availability and expandability, therefore it is mostly

used today.

2.2 Communication

Memory is either shared or distributed. Access to local memory is typically faster than

access to distributed memory. Physical communication between different types of memory

is done through crossbar switch, a shared bus or an interconnected network. But before we

CHAPTER 2. PARALLEL PROGRAMMING 13

talk about two main approaches to distributed memory communication[20], an important

question of all communication is the speed at which data gets from one end to the other.

2.2.1 Communication speed

Two aspects affect communication speed, latency and bandwidth. Latency is time from

receiving the instruction, to retrieving the data, to return of the value. It varies by the amount

and dispersion of data in the memory and physical interference from other sources, e.g.

magnets. It can be reduced by increasing the frequency of the memory. Bandwidth is further

discussed in section 2.5.3.

2.2.2 Collective communication

As the name suggests, the base aspect of collective communication is receiving or sending

data from one or multiple sources to all other sources. As this communication requires the

participation of multiple sources, to prevent losses in data, it also acts as an synchronization

point between nodes/processes.

2.2.3 Point-to-point communication

Second type of communication is used to share data between two specific processes. It

is important for patterned and irregular communication, e.g. when each process routinely

swaps regions of data with specific other processors between calculation steps, or master-

slave architecture in which the master sends new data to a slave whenever the previous task

is completed.

2.3 Load balancing

Load balancing improves the distribution of workloads across multiple resources, such

as computers, clusters, network links, CPUs etc. It aims to optimize resource use, mini-

mize response time, avoid overload of any single resource but most importantly maximize

throughput. Thanks to using multiple components with load balancing instead of a single

one, we may increase reliability and availability. When we talk about scheduling algorithms,

we mean persistence of computation and memory usage. Further we will discuss the different

load balancing APIs on CPUs and GPUs.

2.3.1 Multi-processing CPU APIs

As discussed previously, multi-processing depends on whether the load is divided within a

single node or into multiple nodes withing the system. Different APIs were created for this

CHAPTER 2. PARALLEL PROGRAMMING 14

purpose. For our needs we will talk about OpenMP and MPI.

OpenMP

OpenMp is an API supporting multi-platform shared memory multiprocessing program-

ming in C, C++ and Fortran, instruction set architectures and operating systems (e.g. Win-

dows, macOS, Linux). It consinsts of a set of compiler directives, library routines, and

environment variables that influence run-time behavior[18].

Managed by the nonprofit technology consortium OpenMP Architecture Review Board,

which includes companies like AMD, Intel, Nvidia, HP, Texas instruments, and more.

It is an implementation of multi-threading, where a master thread forks into a number of slave

threads and tasks are divided among them. Threads then run concurrently, while threads are

allocated to different processors. Each thread has an id attached to it, through which the pro-

grammer distinguishes between the executions. After the execution of the parallelized code,

it joins back into the master thread, which continues with the execution of the program. More

in [18]. An realistic expectation is up to N-times speedup on N processor platform. However

this is rarely the case as a large part of the program may not be parallelized, memory band-

width does not scale up N times and the need for the process to wait until the data it depends

on are computed.

MPI

Message passing interface is a standardized and portable message-passing standard. It de-

fines syntax and library routines for writing portable message-passing programs in C, C++,

and Fortran. Multiple implementations of MPI are available, many of which are open-source

and run on multiple operating systems (e.g. Open MPI on Windows, Linux, macOS). MPI

implementations consists of specific set of routines that are directly callable from C, C++ and

more. One of the advantages of MPI over other message-passing libraries is its portability

and speed.

The interface provides essential virtual topology, communication functionality between pro-

cesses and synchronization. Programs utilizing MPI always work with processes, that are

commonly referred to by programmers as processors. For maximum performance, a single

process is assigned to each CPU/core (depending on the amount of cores a certain CPU has).

MPI also specifies thread safe interface. More info in [27].

2.3.2 Multi-processing GPU APIs

For multi-processing on a GPU multiple APIs can be used. Some are focused mainly on

3D graphics such as Vulkan, Mantle, DirectX, OpenGL and more. Others like CUDA and

CHAPTER 2. PARALLEL PROGRAMMING 15

OpenCL are focused on allowing software developers to do general purpose processing on

GPUs. These are the APIs we will talk about.

CUDA

CUDA is a parallel computing architecture from NVIDIA. As said before it allows software

developers to do general purpose processing on GPUs that are CUDA-enabled. This API has

been designed to work with programming languages such as C, C++ and Fortran. CUDA

also supports working with other programming frameworks such as OpenACC and OpenCL.

CUDA provides both low level API and a higher level API. It contains multiple libraries

specified for certain tasks, e.g. Random number generation library, fast Fourier transform

library, graph analytics library, basic linear algebra subroutines library and more. Advantages

of doing general purpose programming with CUDA are:

• Scattered reads

• Unified virtual memory

• Unified memory

• Shared memory - fast shared memory region that can be shared among threads without

communication

• Full support for integer and bit wise operations

• Support for multiple operating systems (Windows, Linux, macOS)

These advantages decrease the learning curve when programming on GPUs, reduce the

need for constant data passing between threads when parallelizing code and increase the

effectiveness of code. Unfortunately disadvantages include:

• CUDA-enabled GPUs are only available from NVIDIA

• Copying between host and device may cause a performance hit due to the system bus

bandwidth and latency

• all newer versions of CUDA Source code is now processed according to C++ syntax

rules, it is therefore possible that old C-style CUDA source code will either fail to

compile or will not behave as originally intended.

• Interoperability with rendering languages such as OpenGL is one way only, with

OpenGL having access to registered CUDA memory but CUDA not having access

to OpenGL memory.

CHAPTER 2. PARALLEL PROGRAMMING 16

cuBLAS

cuBLAS, acronym for basic linear algebra subroutines, is fast GPU accelerated implemen-

tation of the standard basic linear algebra. It consists of basic functions that perform scalar

and vector based operations, matrix-vector operations and matrix-matrix operations. Further

information in [6].

In our testing we will use:

• cublasSgemm - matrix multiplication

• cublasSgemv - matrix vector multiplication

OpenCL

Open computing language is a framework for writing programs that execute across plat-

forms consisting of central processing units (CPUs), graphics processing units (GPUs), dig-

ital signal processors, field-programmable gate arrays and other processors. It is open,

royalty-free standard for cross-platform parallel programming. One of the biggest advan-

tages of OpenCL is its portability between platforms, this advantage comes at a cost of

performance. Without the direct effort of a programmer the code won’t run optimally on all

platforms without making changes. Another advantage is of OpenCL being standard, mean-

ing it will pass of the information entirely, using the GPU as a separate general purpose peer

processor.

2.4 Memory limitations

One restriction for all algorithms is the data they operate with, when the need for precision

is high, the amount of memory that is needed increases. While a processor can take hours,

days even months to process the data it is only a "tube" through which the data passes. This

data has to be stored somewhere and when the storage runs out of space there can be no

more data. This limitation is a problem all programmers face. Further we will go over

differences between the memory limitations when programming on a CPU and GPU as well

as techniques that allow to compress data into smaller chunks.

2.4.1 Programming on CPU

When programming on CPU the overall limits are theoretically as big as the storage

space on the computer. Most operating systems have safety measures to continue working

when the system memory limit is reached. Mainly because without any system memory the

computer would not be able to work properly. The safety measure when applied starts to

CHAPTER 2. PARALLEL PROGRAMMING 17

write the data that would normally be written to RAM, to storage devices. Storage memory

has more than 10 times lower bandwidth than RAM.

In theory this works, in practice when the memory limit is reached and the safety measure

is applied, the calculation speed is slowed more than only by the bandwidth gap. Operating

system has to manage writing, reading and replacing the system memory, and storage mem-

ory it has allocated for this reason and the computer becomes almost impossible to use until

the computation is finished.

2.4.2 Programming on GPU

Due to specific use of graphic cards in regards to CPU, the memory limitations while

programming on GPU are much bigger than on CPU. One reason, why the memory limita-

tions are higher, is cost. Memory for GPUs is pricier due to the fact that it cannot be simply

replaced or added when more memory is needed. When memory is needed the whole graph-

ics card has to be replaced which does not mean that the graphics card with more memory

will also be more powerful, fortunately that is usually the case.

Generally the GPU can process more data than the CPU (when the code is optimized

to work on the GPU). Although this only applies when the problem does not have very big

memory requirements which cannot be bypassed. One technique of bypassing the GPU

memory limitation is use of streams when working with CUDA (section 3.5.2).

To better visualize the limitation, e.g. Nvidia GTX 960M with 4GB of memory is able to

work with 4096 million bits, that means 512 million numbers of type "double", in perspective

this amount of memory is able to calculate matrix multiplication of 2 matrices of about 15000

x 16000 when both matrices are copied over to the GPU. One way to increase the ability to

use bigger arrays is e.g. use of hierarchical matrices[14].

Another memory limitation is copying data from RAM to GPU memory(see section

2.5.3). Software-wise this limitation can be easily determined by 3rd party software such

as CUDA-Z.

2.5 Comparison of computing performance

Computing performance is very specific fact that talks about how fast can a component

process and calculate specified code. Though this seems as an easy task to determine, it is

connected to multiple factors that are associated with it. There are four major factors, archi-

tecture, frequency, number of cores and memory bandwidth over which we will talk about[4].

Factors like power delivery problems, not enough storage space and similar limitations will

be ignored.

CHAPTER 2. PARALLEL PROGRAMMING 18

2.5.1 Architecture

The goal of computer architectures is to trade of standards, power versus performance

(power needed for 1 GFLOP), cost, memory capacity, latency and throughput. One way to

measure computers performance is in IPC (instructions per cycle). This shows the efficiency

of the architecture at any clock frequency. While older processors had IPC count as low as

0.1, new processors easily reach near 1 and higher. Therefore a good indicator of a processor

performance is to look at combination of multiple factors, one of which is IPC.

2.5.2 Frequency and number of cores

Frequency or clock rate refers to the frequency at which a chip like CPU, or core, is

running. It is measured in clock cycles per second. Basic unit of frequency is hertz(Hz), the

speed of today’s processors is commonly advertised in gigahertz(GHz). This metric is most

useful when comparing processors from the same architecture.

While multi-core processors means that a single computing component has more than one in-

dependent processing unit called core, which reads and executes programs. Multiple cores al-

low for higher level of parallelism, therefore faster computations. Having more cores doesn’t

not mean directly better performance, because not all software can take advantage of higher

number of cores.

2.5.3 Bandwidth

On its own bandwidth can mean more than one thing, a range withing a band of frequen-

cies or wavelengths or in our case amount of data that can be transmitted in a fixed amount of

time. In digital devices bandwidth is usually expressed in bits or bytes per second. For CPUs

and GPUs we talk about memory bandwidth. Knowing how much data can flow through a

CPU or GPU is a useful information but this is known as absolute memory bandwidth. When

we look closer the picture is a little different.

For CPUs we take one of the newer architectures of processors (7th gen.), the Intel Core

i7-7700k. This CPU has about 50GB/s bandwidth with its 4 cores. That is about 12.5GB/s

per core. With core frequency of 4.2GHz that comes just under 3 bytes per cycle of memory

bandwidth. The modern architecture allows the CPU core to execute multiple (up to three)

256-bit SIMD(simple instruction, multiple data) operations in one cycle. If we treat the

CPU like a GPU and divide this 256-bit SIMD into 32-bit vectors and treat them as separate

threads, we get 24 instructions executed per cycle and memory bandwidth of about 0.125

bytes per cycle per simulated thread which adds up to one byte every 8 instructions[15].

CHAPTER 2. PARALLEL PROGRAMMING 19

This gets even worse with GPUs, if we take a modern high-end GPU, the Nvidia GTX

1080Ti with bandwidth of 484GB/s as an example it seems that there is no comparison

between the CPU and the GPU, but the story is completely different. Even though with core

frequency of 1.48 Ghz, 327 bytes/cycle for the whole GPU, the bandwidth is higher, it has

28 Shading Multiprocessors (comparable to CPU cores) and 3584 CUDA cores we get about

11.7 bytes/cycle per SM (Shading multiprocessor), that is 4x more what the 7700k gets,

but each SM has 128 CUDA cores corresponding to a thread. That means we get one byte

every 11 instructions meaning the GPU is even worse in than the 7700k. Fortunately it has

a big advantage and that is the number of compute units on the GPU, meaning it can handle

multiple small tasks at once which results in the much higher bandwidth[15].

One more thing to take into consideration when running a computation on a GPU is

copying the data over to the GPU and back. That means that the task has to be large enough,

that the data allocation and copy process is significantly lower that the computation of the

said problem itself. E.g. for matrix multiplication with I7 - 6700HQ and Nvidia GTX 960M

and matrix size of 10x10 the CPU is able to multiply two matrices in 0.000001 seconds while

the data copy to the GPU and back along with the calculation takes 0.000769 seconds which

is mroe than 700-times slower than the CPU.

2.5.4 FLOPS

When it comes to computing performance it is possible and very practical to represent

component performance by one number. This number is called FLOPS (floating point op-

erations per second). FLOPS were first introduced by Frank H. McMahon to measure and

compare computing performance of supercomputers.

This value can be calculated by a simple equation:

FLOPS =
cores

sockets
∗ cycles

sec
∗ FLOPs

cycle
(2.1)

Where the number of FLOPs per cycle is determined by the manufacturer. It is not wise to

build and work with particular components only by the amount of FLOPS. Compatibility

and especially price is a big factor about which we will talk next.

2.5.5 Price/performance comparison

When it comes to comparing of raw potential of a processing unit, multiple factors have

to be taken into consideration. Power consumption, raw compute performance (given by

equation in section 2.5.4), raw compute performance per watt, memory bandwidth and the

benefits of adopting CPU or GPU computing approach.

CHAPTER 2. PARALLEL PROGRAMMING 20

As time passed the raw compute performance difference between CPUs and GPUs became

evident as seen in Figure 2.2 and 2.3. In our comparisons we will look over these devices:

• Intel Xeon CPUs - professional / workstation grade CPUs

• Nvidia GeForce GPUs - consumer grade GPUs

• Nvidia Tesla GPUs - professional / workstation grade GPUs

• AMD Radeon GPUs - consumer grade (up to year 2013), professional / workstation

from 2014-2016

• Intel Xeon Phis - x86 CPU based add-on card designed for massive parallelism and

vectorization

between years 2009 and 2016.

Figure 2.2: Theoretical peak performance comparison over time, single precision

(GFLOP = 109FLOPS) [5]

CHAPTER 2. PARALLEL PROGRAMMING 21

Figure 2.3: Theoretical peak performance comparison over time, double precision

(GFLOP = 109FLOPS) [5]

This performance increase wasn’t without its drawbacks. As the performance rose, so

did the energy consumption.

Figure 2.4: Thermal design power consumption comparison over time [5]

Similarly to theoretical peak performance, the GPUs are better optimized per watt of

energy than the CPUs.

CHAPTER 2. PARALLEL PROGRAMMING 22

Figure 2.5: Theoretical peak Floating point operations per watt compatison over time, single

precision [5]

Figure 2.6: Theoretical peak Floating point operations per watt compatison over time, double

precision [5]

In order to use all arithmetic units efficiently, the respective data must be available in

registers. Unless the data is already available to be used in registers or cache, they need to

loaded and written back at some point. These loads and stores are a bottleneck that slows

down many operations. Therefore memory bandwidth is one of the things to take into con-

sideration.

CHAPTER 2. PARALLEL PROGRAMMING 23

Figure 2.7: Theoretical peak memory bandwidth comparison over time [5]

And at last the biggest consideration is the price. As an example we will take the most

powerful CPU + the most powerful GPU for single and double precision from our compar-

isons.

Single precision

While the Xeon E5-2699v4 is priced at 4115$ the Nvidia Titan X is priced at 1100$ and

offers about 10-times higher raw performance than the Xeon while consuming only about

150 watts more.

Double precision

When it comes to double precision computation the consumer grade cards are not match a

to the professionally oriented cards which are priced at much higher premiums. This causes

that at double precision computations, while the Xeon is priced at 4115$ the Tesla P100 is

priced at around 6000$. Even though the price is 1.5-times higher, the theoretical perfor-

mance increase is almost 10-times higher.

Another important part of the comparison is the hardware/space limitation when it comes

to motherboards. While server motherboards can have 4 sockets with one CPU in each of

them. Depending on the CPU and the number of memory lanes it supports, one motherboard

with one CPU can have up to 10 GPUs. For comparison a server where each server computer

has 4 CPUs and has space for 9 of these server computers, a server that uses mainly GPUs

can have 3 computers where every computer has 10 GPUs which take the same amount of

space as the CPU based system, while offering much higher performance. This approach

while more expensive since there are 30 GPUs + 3 CPUs, which, when taking the best of the

CHAPTER 2. PARALLEL PROGRAMMING 24

best, adds up to 192345$ (in processing unit costs only), while the CPU based system with

36 CPUS, adds up to 148140$ (in processing unit costs only), is space effective compared to

performance per m3 of space.

2.5.6 Conclusion

When we take all the aspect that were presented in this chapter into consideration, the final

conclusion is, that using a combination of one CPU plus multiple GPUs can theoretically

extremely increase the performance potential of a system (by up to 10 or more times) and

decrease the need for another computer connected into a grid. This advantage comes at

a price of learning new techniques of working with GPUs oriented libraries and closely

managing the memory.

Chapter 3

Implementation

In this chapter we will go over the process and troubles we faced during implementation of

our algorithms, the programming language we used, environment we worked in and things

to look out for when working with CUDA and implementing algorithms along practical

examples.

3.1 Language C++

From many different programming languages we chose C++, because of its ability to cre-

ate classes, libraries for further use and compatibility with CUDA, OpenMP and MPI which

are tied to use of C, C++, and a few of other programming languages. Biggest advantages

of C++ are it being an object oriented language, that can be compiled and used irrespective

of operating system as well as Hardware. To our purpose it also provides performance and

memory efficiency as well as good re-usability of code. Despite it being an high-level pro-

gramming language, it is useful for the low level programming language and very efficient

for general purpose.

3.2 Development environment

Experiments were made with Visual Studio 2015 Community, which is free to use for

everyone, as their development environment. With easy access to all the projects in one

solution, simple debugging and user friendly library management Visual Studio 2015 Com-

munity was the choice while working with C and C++. Not only it has a great documentation

and support, but also includes Intellisense, the so called intelligent sense, that automatically

completes the command that was being written and increases the speed of writing the code.

Visual Studio has pre-loaded project templates to which one can program directly without

creating additional files when starting a project from scratch. It allows for direct memory

usage monitoring. This feature is an essential tool when working with GPUs and big data

25

CHAPTER 3. IMPLEMENTATION 26

sets, because it gives the programmer instant idea of the data set memory size without a di-

rect calculation.

Part of working with Visual Studio and CUDA together is installing the CUDA toolkit which

automatically integrates CUDA support into Visual Studio.

3.3 Unit testing

Unit testing is a part of software testing where individual components of a software are

tested. In our case individual parts of code, such as matrix addition, image transformation,

etc. The purpose is to validate each component, so that it performs as designed. In proce-

dural programming, a unit can be an individual program, function, etc. In object-oriented

programming it is a method.

For this purpose we created two libraries, one with methods running on a CPU and the other

with methods running on a GPU. Each library contains the same methods, with the same

inputs and the same outputs.

3.4 Differentiation between programming on CPU/GPU

Writing a program using CUDA and C++ is a little bit more complicated than writing a

simple code in C++ only as seen in Figure 3.2. In this section we will go over the aspects that

are needed for a code to be able to run on a GPU using CUDA. Further information about

things mentioned in this section can be found in [6] or directly from NVIDIA [7]. In further

reading we will refer to the CPU as host and GPU as device.

3.4.1 Memory allocation and copying on device

Same as programming without a GPU, the memory has to be allocated before it can be

used. At first the memory on the device has to be allocated, after which the data needed for

the calculation must be copied to the device. At this point the calculation on the GPU can be

run, after which the data is copied back to the host and freed on the device to not cause any

memory leeks.

// Allocation of host specific array

float * hostMap;

cudaHostAlloc((void **)&hostMap,

sizeof(float)*width*height, cudaHostAllocDefault);

// Allocating pointers on host to be passed to device

float * deviceMap;

CHAPTER 3. IMPLEMENTATION 27

// Allocating GPU memory

cudaMalloc((void **)&deviceMap,

sizeof(float)*map->height*map->width);

// Copy memory to the GPU

cudaMemcpy(deviceMap, data, sizeof(float)*height*width,

cudaMemcpyHostToDevice);

...

Calculate new pixel values on the GPU

...

// Copy the results in GPU memory back to the CPU

cudaMemcpy(hostMap, deviceMapNew,

sizeof(float)*height*width, cudaMemcpyDeviceToHost);

// Free the GPU memory

cudaFree(deviceMap);

cudaFreeHost(hostMap);

Listing 3.1: Memory allocation on device

3.4.2 Kernel

Kernels are small functions defined in C with support for C++ features (in C++11):

• auto

• lambda functions

• range base for loops

• std::initializer_list

• variadic templates

• static_asserts

• constexpr

• rvalue references

and features not supported:

• thread_local

• standard std:: libraries

CHAPTER 3. IMPLEMENTATION 28

that, when called are executed in parallel N times by N different CUDA threads where N

is the number of threads on the GPU. Kernel is differentiated from other code by using the

__global__ specifier and the number of CUDA threads, blocks and grids, that should exe-

cute the kernel is specified using the <<<...>>> execution configuration syntax, followed

by the arguments needed for the task within the kernel to be executed. With CUDA new

variables are introduced for the device, such as __constant__ (constant for the device),

shared (shared variables between blocks), tex2D (textures used in graphics to create vi-

sual appearance of a surface e.g. picture),__device__ (functions defined to run on GPU,

which are callable from kernel) etc. Each thread is given a unique thread ID, that can be

called withing the kernel by threadIdx variable.

__global__ void myKernelFunction(kernel arguments)

{

int indexOfThread = threadIdx.x;

}

int main()

{

...

myKernelFunction <<<1,N>>> (kernel arguments) // N is the

number of threads

...

}

Listing 3.2: Kernel implementation example

It is possible to call another kernel from within the kernel, called dynamic parallelism

(up to 3x), that is supported from CUDA 3.5 and higher.

3.4.3 Blocks and grids

Let us a consider a GPU with 4 multiprocessing units within the main processing unit, from

which each can run 768 threads, which is dependent on graphics card specification and can

be found in CUDA profiler. That means at any given moment no more than 4 ∗ 768 threads

will be really running in parallel. If we differentiate the tasks at hand into more than the

amount of threads the GPU has available, they will be waiting until the threads before them

are finished with their task. In CUDA, threads are organized into blocks, which are then

executed by a multiprocessing unit. The threads of a block are indexed using 1D(x), 2D(x,y)

or 3D(x,y,z) indexes, but in any case the dimensions must be xyz <= 768 (other restriction

apply according to the device capabilities). If the data is bigger than 4 ∗ 768, you obviously

need more than 4 blocks. These can be also indexed in 1D, 2D or 3D into grids. There is a

CHAPTER 3. IMPLEMENTATION 29

queue of blocks waiting to be run on GPU. In our case, since the GPU has 4 multiprocessing

units, only 4 blocks are being executed simultaneously.

As an example, we will use processing of an image with dimensions 256 x 256. If we

want one pixel {ai,j} with space coordinates (i, j) to be processed in one thread we will

need 256 ∗ 256 threads. Lets consider using blocks of 64 threads each. Then we need

256 ∗ 256/64 = 1024 blocks. For easier manipulation we will organize the threads in 2D

blocks 8× 8,

dim3 threadsPerBlock(8,8);

and 2D grid of 32 x 32 blocks (the 1024 needed).

dim3 dimBlocks(imageWidth/threadsPerBlock.x,

imageHeight/threadsPerBlock.y);

As the last part we have to tell the GPU how it should divide its resources through kernel

parameters

kernelCall <<<dimBlocks,threadsPerBlock>>> (function parameters)

This means that there will be a queue of 1024 blocks, from which, each is waiting to be

assigned to one multiprocessor to get its 64 threads executed.

As the threads are running simultaneously, only information they know is their index in the

block, the block id and the block dimensions, therefore to get the global index of the pixel in

picture that threads represent, it has to be calculated:

int i = (blockIdx.x * blockDim.x) + threadIdx.x;

int j = (blockIdx.y * blockDim.y) + threadIdx.y;

Correctly dividing threads into blocks and further into grids can severely increase or

decrease the performance potential of a GPU.

From hardware perspective, a GPU consists of multiple streaming multiprocessors, which

consist of CUDA cores. Connecting hardware and software perspective (Figure 3.1) means

that one thread, is executed by one CUDA core, one block is executed by one streaming

multiprocessor and one grid is executed by the whole GPU unit (e.g. graphics card).

CHAPTER 3. IMPLEMENTATION 30

Figure 3.1: Correlation of a programmers perspective versus a hardware perspective [6]

Another thing to bear in mind are so called "warps", physical part of a GPU so called

"warp scheduler" can schedule certain amounts of threads per warp. This means that the

scheduler can give tasks only to a certain amount of threads per cycle. How warps affect

performance can be seen in Table 4.2. In our case the warp size was 32. Information about

warp sizes is available from the manufacturer for every graphics card. Knowing the num-

ber of threads in a warp and taking it into consideration becomes important when trying to

maximize the performance of an algorithm.

3.4.4 Error handling

While debugging a code running on the host, our development environment provides an

easy way to go through each line of code step by step, to see if any error has occurred.

Unfortunately this capability is not available for device code, thus another approach has to

be implemented to compensate for this. Every function in CUDA returns cudaError_t

statement. This statement consists of information if the kernel were run successfully or not

and the error message that may point the developer in the direction of the problem.

For this purpose we have written a simple function that evaluates this statement and either

stops all calculations and returns the error or continues on.

void funcCheck(cudaError_t stmt)

{

cudaError_t err = stmt;

if (err != cudaSuccess)

{

printf("Got CUDA error ... %s \n",

cudaGetErrorString(err));

cudaDeviceReset();

exit(-1);

}

}

CHAPTER 3. IMPLEMENTATION 31

Listing 3.3: Cuda error checking function

3.4.5 Comparison of code on host vs. code on device

When we combine all of the above we can write an example and show the differences

between code on running host and on device. Other than defining kernel, allocating memory

and error handling, important command to use are:

• cudaSetDevice(0) - used to select on which graphics card the following code is sup-

posed to be run

• cudaDeviceSynchronize() - needed to run after kernel launch, to guarantee the kernel

to finish, before the application is allowed to continue

• cudaDeviceReset() - a good practice to call at the end of a program, to free all the

memory on the device and stop all calculation running on it

CHAPTER 3. IMPLEMENTATION 32

#define N 1000

__global__ void timesTwo(int *a,

int *b) {

int i = blockIdx.x;

if (i<N) \\ to ensure we are

withing the range of our

vector

{

b[i] = 2*a[i];

}

}

int main() {

int *hosta,

int *hostb;

cudaHostAlloc((void **)&hosta,

N*sizeof(int),

cudaHostAllocDefault);

cudaHostAlloc((void **)&hostb,

N*sizeof(int),

cudaHostAllocDefault);

int *devicea, *deviceb;

cudaMalloc((void **)&devicea,

N*sizeof(int));

cudaMalloc((void **)&deviceb,

N*sizeof(int));

for (int i = 0; i<N; ++i)

{

hosta[i] = i;

}

cudaMemcpy(devicea, hosta,

N*sizeof(int),

cudaMemcpyHostToDevice);

add<<<N, 1>>>(devicea, deviceb);

cudaMemcpy(hostb, deviceb,

N*sizeof(int),

cudaMemcpyDeviceToHost);

cudaFree(devicea);

cudaFree(deviceb);

return 0;

}

Listing 3.4: Sample code running on device

#define N 1000

int main() {

int hosta[N], hostb[N];

for (int i = 0; i<N; ++i) {

hosta[i] = i;

}

for (int i = 0; i<N; ++i) {

hostb[i] = 2*hosta[i];

}

return 0;

}

Listing 3.5: Sample code running on host

Figure 3.2: Example of a code on host and device with the same purpose and result

CHAPTER 3. IMPLEMENTATION 33

We can see that simple code that calculates b = 2 ∗ a where a, b are of dimension N × 1

can be written either on the device or on the host. The code on the host is much easier to

write, but does not offer the parallel capabilities of the GPU. Please bear in mind that this

example is too simple, to see any performance increase, rather the opposite is happening,

because the data allocation and transfer from host to device and back takes more time than

the calculation itself on the CPU as is further described in section ??. The performance

increase is evident on larger problems as seen in the next chapter.

3.5 Data passing and performance decrease

There are three approaches we will go over when passing data to and from the GPU, their

benefits over other methods and their drawbacks. Unfortunately since we have to move the

memory whether we want to or not when doing general purpose computing on a GPU, we

often encounter performance hits, which cause our code to run longer than on a CPU. This

is due to the time it takes to copy data from memory that is available to the CPU to memory

that is available to the GPU.

3.5.1 GPU memory types

CUDA-enabled devices have different types of memory spaces. Each type of memory on

the device has its advantages and disadvantages. Incorrectly using available memory can

cause performance decreases. In terms of speed and types they are:

• Register file - available only to the thread that wrote it and lasts only for the lifetime

of that thread

• Shared memory - visible to all threads within a block and lasts for the duration of the

block (used for communication between threads)

• Constant memory - read-only memory used for data that wont change during the exe-

cution

• Texture memory - read-only memory specially designed for reading physically ad-

jacent memory (e.g. Linear filtration with heat transfer, where every new pixel is

calculated from nearby pixels)

• Local and Global memory - local memory has the same rules as register memory but

performs much slower, while global memory is visible to all threads with the applica-

tion and lasts for the duration of the host allocation

CHAPTER 3. IMPLEMENTATION 34

3.5.2 Direct copy

The most basic way of passing data to the device from host is creating a hard copy and

passing it as a whole at one time (Listing 3.4.1). This means, that the device has to wait

until all the data is transferred to continue with code execution. This is known as serial data

passing.

Figure 3.3: Serial data passing

3.5.3 Data streaming and concurrency

Concurrency of CUDA, is the ability to perform multiple CUDA operations simultaneously.

This is another type of parallelism, specifically different components of a system working

on one task simultaneously. Four tasks can run in parallel:

• CUDA kernel

• HostToDevice copy

• DeviceToHost copy

• operations on the CPU

Concurrent data passing is done through streams. Stream is a sequence of operations that

executes in issue-order on the GPU. The simplest way of concurrency is 2-way concurrency,

which can speed the process up to 2x in comparison to Figure 3.3.

Figure 3.4: 2-way concurrency

The idea behind 2-way concurrency as seen in Figure 3.4, is running kernel alongside

the data transfer from device to host. The data that has been already calculated is sent from

CHAPTER 3. IMPLEMENTATION 35

device to host. This approach can be further improved by also concurrently sending data

from host to device in 3-way concurrency (Figure 3.5), which can speed up the process up to

3x in comparison to serial approach.

Figure 3.5: 3-way concurrency

Until this point the CPU has been waiting for the calculation to finish on the GPU. For

further improvement we can appoint one part of the calculation to run simultaneously on the

CPU to achieve 4-way concurrency as seen in Figure 3.6, which can speed up the process up

to 3x+ in comparison to serial approach.

Figure 3.6: 4-way concurrency

4-way concurrency can be further broadened to 4+ way concurrency by further division

of the kernel runs. For examples and tutorials about dividing your code can be found in [13].

3.5.4 Unified memory

Unified memory is a single memory address space accessible from any processor in a

system. This technology allows applications to allocate data that can be used either on CPUs

or GPUs (Figure 3.7). Allocating this memory is done by replacing malloc() or new

with cudaMallocManaged(). Cuda system software and the hardware takes care of

migrating memory pages to the memory of the accessing processor. Important point is that

older GPUs based on the Kepler and Maxwell architecture also support unified memory, but

CHAPTER 3. IMPLEMENTATION 36

in a more limited form. Newer Pascal GPU architecture is the first with hardware support for

virtual memory page faulting and migration, via its Page Migration Engine.

This means that on pre-Pascal GPUs, all data must be resident on the GPU when the kernel

is running, therefore the performance increase next to direct copy approach is negligible and

the GPU cannot use more data than its own memory can hold. Main goal of unified memory

is improving ease of GPU programming[21]. More in [26].

Figure 3.7: Unified memory representation

Another way of allocating memory that is accessible to the device is cudaHostAlloc.

Which allocates size bytes of host memory that is page-locked. Since the memory can

be accessed directly by the device, it can be read or written with much higher bandwidth

than page-able memory obtained with functions such as malloc(). Allocating excessive

amounts of pinned memory may degrade system performance, since it reduces the amount of

memory available to the system for paging. As a result, this function is best used sparingly

to allocate staging areas for data exchange between host and device.

Chapter 4

Experiments

To test the improvements in computational speed on a GPU we have concluded few tests

that should give the reader broadened picture about when it is good to incorporate GPU into

computing and when it is better not to risk the time loss of copying data from one process-

ing unit to the other (CPU -> GPU). All experiments were done in Release mode without

debugging. All calculation times of CUDA implementations are including data transfer to

and from GPU and GPU array allocations. For most of the algorithms either on the CPU or

a GPU, unit testing was done to ensure proper functionality, for algorithms that unit testing

was not implemented the comparison of result between CPU and GPU was done to ensure

correct results.

Specifications of used GPU:

• Nvidia GTX 960m 4GB

• 640 cuda cores

• 1096 Mhz processor clock speed

• 588 Mhz graphics clock speed

• 128-bit memory interface width

• 80GB/s memory bandwidth

• 1024 - max_threads_per_block

• 1024 - max_block_dim_X

• 1024 - max_block_dim_Y

• 64 - max_block_dim_Z

37

CHAPTER 4. EXPERIMENTS 38

• 2048 - max_threads_per_multiprocessor

• 2147483647× 65536× 65536 - max_num_of_blocks_in_grid (x× y × z)

These specifications can be retrieved from Nsight - system info tool withing Visual Stu-

dio.

4.1 Matrix operations

Working with matrices is the basics to most iterative methods. Therefore basic matrix

operations are a target of continuous optimization and computing speed improvement. These

operations are easily parallelised and thus can be implemented on a GPU to further decrease

the computational time. In the next sections we will talk only about matrix multiplication,

matrix additions and why some operations are good to be parallelised and some are not.

4.1.1 Matrix additions

The most basic matrix operation, matrix addition, can be easily parallelised on a GPU since

the cores don’t need to know anything about each other to calculate the solution.

A+B = C

A ∈ Rm×n,

B ∈ Rm×n,

C ∈ Rm×n

(4.1)

In computing this means adding first element of matrix A with first element of matrix B

and so on to get the full matrix C. Therefore the number of additions that have to be done

is n × m while they are each independent of one another. This fact allows it to be easily

parallelised into n×m operations.

n x m 1-core CPU cuda custom kernel

10 x 10 0.000001 0.000905

500 x 500 0.000181 0.002071

5000 x 5000 0.023387 0.083861

10000 x 10000 0.096804 0.328139

Table 4.1: Computational time matrix addition (seconds) using different implementation

methods and different matrix dimensions

As seen in the Table 4.1, the drawback of copying data from one processing unit to the

other causes the computational time to be longer than without the need of data transfer.

CHAPTER 4. EXPERIMENTS 39

In simple operations where the complexity of the operation is not bigger than O(N), we

don’t see improvement in computation on GPU. The computational time can be affected by

correctly choosing the amount of threads in a block as seen in Table 4.2 with constant matrix

size of 10000 x 10000 and the times are an average of 10 runtimes.

Number of blocks Block size cuda custom kernel

100000000 1 0.9629981

12500000 8 0.3698929

6250000 16 0.3357488

3125000 32 0.3189522

1562500 64 0.3148245

781250 128 0.315618

390625 256 0.3154788

195313 512 0.3157323

97657 1024 0.3148105

Table 4.2: Computational time matrix addition (seconds) using different block sizes

4.1.2 Matrix-vector multiplication

Matrix-vector multiplication is a great example of an algorithm, that shows where the GPU

is starting to take advantage of its more cores.

A.b = c

A ∈ Rn×m,

b ∈ Rn,

c ∈ Rn

(4.2)

Which means that each element ci of the newly calculated vector c is a dot product of the

vector b and row Ai of A. This fact allows the division of this problem into n threads, where

every thread calculates one element ci of c.

-

Anxm.bn 1-core CPU cuda custom kernel

A10x10.b10 0.000001 0.001490

A500x500.b500 0.000416 0.004817

A5000x5000.b5000 0.039974 0.035103

A10000x10000.b10000 0.148150 0.126872

Table 4.3: Computational time matrix-vector multiplication (seconds) using different imple-

mentation methods and different matrix dimensions

CHAPTER 4. EXPERIMENTS 40

As we can see from Table 4.3, the bigger the matrix and vector is, the GPU is slowly

starting to take advantage of its cores. Unfortunately this problem is still small enough, that

the advantage over CPU is not very significant.

4.1.3 Matrix multiplication

Many algorithms suffer with long computational times because of matrix multiplications,

where for matrix m× n you need m ∗ n ∗ n operations.

A.B = C

A ∈ Rn×m,

B ∈ Rn×m,

C ∈ Rn×m

(4.3)

Thanks to the fact that this operation can be divided into multiple, where each thread

needs only one row of matrix A and one column of matrix B to calculate an element in

matrix C, which are independent of each other, makes this a perfect example where GPU

computation is much faster than on the CPU.

n x m 1-core CPU 4-core MPI cuda custom kernel cublas

10 x 10 0.000001 0.000001 0.000769 0.267797

100 x 100 0.001681 0.0004952 0.001808 0.288092

500 x 500 0.194761 0.056821 0.005838 0.276858

1000 x 1000 1.777029 0.48565 0.023176 0.264300

5000 x 5000 1306.742310 357.2365 1.853558 0.533037

Table 4.4: Computational time matrix multiplication (seconds) using different implementa-

tion methods and different matrix dimensions

The times tell us, that for very small matrices, the time to initialize and transfer the data

onto the GPU, takes much longer than the computation itself. Fortunately when the dimen-

sions grow past a certain point, the data transfer is not the major part of the computation

anymore, therefore it is effective to solve this problem on the GPU. It is very important to

consider the amount of memory the GPU has, when the size of the data is higher than the

memory of the GPU, each matrix has to be divided into smaller submatrices and computed

alone.

We have chosen matrix multiplication to demonstrate the differences between using sequen-

tial code (Listing 4.5), MPI (Listing 4.5), CUDA (Listing 4.5) and cuBLAS (Listing 4.5).

CHAPTER 4. EXPERIMENTS 41

4.2 Iterative methods

The term “iterative method” refers to a wide range of techniques that use successive

approximations to obtain more accurate solutions to a linear system at each step. Usually

they are divided into two categories, stationary methods that are much older, simpler to

understand and implement but less effective and nonstationary methods, harder to understand

but can be highly effective. We will discuss nonstationary methods based on the idea of

sequences of orthogonal vectors.

For an iterative method to be effective it cannot improve its approximation forever.

Therefore there must be a stopping criterion, tolerance at which the approximation is within

a set error. The rate at which an iterative method converges depends greatly on the spectrum

of the coefficient matrix. This leads to usually transformation of the coefficient matrix into

one with a more favorable spectrum. The transformation matrix is called a preconditioner.

Not only does a good preconditioned improves the convergence of the iterative method but

without a preconditioner the iterative method may even fail to converge.

Examples of stationary iterative methods are Jacobi, Gauss-Seidel, SOR, SSOR, etc.

For nonstationary methods Conjugate Gradient, Minimum residual method, Genera minimal

residual method and more. More information in [25]. We have chosen to implement and

focus on Biconjugate Gradient Stabilized (BiCGStab) method.

4.2.1 Preconditioned BiConjugate Gradient Stabilized method (BiCGStab)

This method was developed to solve nonsymmentric linear systems while avoiding the of-

ten irregular convergence patterns on Confugate Gradient Squared method (see [1]). BiCGStab

computes i− > Qi(A)Pi(A)r0 where Qi is an ith degree polynomial describing a steepest

descent update. To reduce and save time by a few operations this method uses two stopping

criteria. At the start if the method has already converged at the first test on the norm of s, to

continue updating would be irrelevant.

Pseudo-code for the BiCGStab with preconditioner M is given in the next Figure.

CHAPTER 4. EXPERIMENTS 42

Figure 4.1: The Preconditioned BiConjugate Gradient Stabilized Method

Challenges

As seen in the Figure 4.1 to successfully use the BiCGStab method it is required to do two

matrix-vector products and four inner products. Because of the computational complexity of

O(n m) when working with matrix-vector products it would be highly inefficient to calculate

them sequentially.

Possible implementations

One approach to solve the BiCGStab method is to completely parallelise it on the CPU.

Not only is this approach very fast, but also easy to implement. But the fact that matrix

operations like matrix-vector products, matrix multiplication etc. have a very high ability to

divide it into smaller tasks. CPU is very fast for tasks that can be done only in sequence, but it

lacks the possibility to divide an algorithm into thousands of smaller tasks computed in par-

allel on its own. Fortunately that is the inner workings of a GPU, f.e. matrix-vector products

can be divided into at least m-tasks (m is the number of rows) running simultaneously.

CHAPTER 4. EXPERIMENTS 43

Our implementation

As talked in section 2.5.3 it is important to use the GPU/CPU to its full potential and for

tasks that have small data-sets it is counterproductive to copy the data over to the GPU and

copy it back to for the algorithm to continue. A balance of CPU and GPU usage must be

found. Operations like sums, dot products, number multiplications are implemented on the

CPU and more time demanding tasks e.g. matrix-vector products, matrix multiplications are

done on the GPU.

Dataset 1-core 4-core 4-core cuda custom cuda custom

CPU CPU MPI CPU OpenMp kernel kernel opt

902 0.3145 0.152 0.234 0.435785 0.409

1298 1.062 0.378 0.625 0.853864 0.871107

3602 54.203 17.538 25.063 16.7105 15.064

Table 4.5: Computational time comparison (seconds) using different implementation meth-

ods and different data-set sizes

After running BiCGStab on small data-sets we can see that the speed difference is not

that significant. Though after running the algorithm on bigger data-sets we have gotten a

measurable improvement in performance. As the data-set got bigger and copying became

less costly than the calculation itself the improvement became evident. One way to further

improve the performance would be to use a combination of these approaches and use the

GPU only on the most demanding tasks of the algorithm.

4.3 Image processing algorithm - Linear filtration

Filtration is an important part of image processing and image analysis. Its goal is to reduce

image noise, where noise is a set of random variation of pixel values. Further we will go over

few examples of noise.

Additive noise

Is specified as adding or subtracting random values from some distribution(most commonly

N(0, 1) ∗ constant) to original pixel values. For reduction of such noise we use methods

that don’t change the picture average function e.g. linear diffusion.

CHAPTER 4. EXPERIMENTS 44

Salt and pepper noise

Salt and pepper noise is characterized by taking a random set of pixels and assigning them

values from range 0,...,Q-1 (where Q is maximal possible intensity of a pixel).

4.3.1 Linear filtration using transient heat transfer

In image Ω, with pixels x with the iteration time of σ, we are looking for a function u(x, t),

where x ∈ Ω, t ∈ [0, σ],

∂u(x, t)

∂t
= 4u(x, t),Ω× [0, σ] (4.4)

∂u(x, t)

∂n
= 0 , ∂Ω× [0, σ] (4.5)

u(x, 0) = u0(x) , x ∈ Ω, (4.6)

n is normal on edge ∂Ω and u0(x) represents the image intensity of initial image.

Explicit scheme for solving transient heat transfer

At first, time ([0, T]), where T is the end-time, is discretized into N parts, with time step

τ . Solution in time step n = un. Time difference is replaced with an approximation, time

difference in our case. We will use explicit time difference,

un+1 − un

τ
,

after which, explicit time discretization,

un+1 − un

τ
= 4un = 5.(5un), (4.7)

where N(p) is a set of surrounding pixels that share an edge with the pixel p. Next step

is space discretization of 4.7, with

Figure 4.2: Pixel structure[24]

using finite volume method as seen in [24] we get explicit scheme for solving transient heat

transfer.

CHAPTER 4. EXPERIMENTS 45

un+1
p = (1− τ

h2

∑
q∈N(p)

1)unp +
τ

h2

∑
q∈N(p)

unq . (4.8)

Neumann boundary conditions ∂u
∂n

= 0 on ∂Ω, in 4.8 can be represented as use of mirror

image of one row of boundary pixels.

4.3.2 Implementation comparison

With given parameters τ = 0.2, h = 1, where h is the height and width of each pixel and

pictures with dimensions 385 x 288 and 2400 x 1204 pixels. We continually increase the

number of iterations τ .

τ 1-core CPU cuda custom kernel

385x288

10 0.008418 0.005174

500 0.390428 0.036612

5000 3.608867 0.299972

10000 7.149872 0.587601

2400x1204

10 0.197871 0.005804

500 9.486399 0.38331

5000 93.991882 0.695056

10000 187.109116 0.980782

Table 4.6: Computational time of Explicit scheme for solving transient heat transfer (sec-

onds) using different implementation methods and different number of iterations

With very generous estimate of linear reduction of computational time when increasing

number of cores on a CPU, we see that as the number of iterations increases the computing

efficiency of GPU is more and more visible.

4.4 Distance function in image processing

Let us consider a digital image A described as a discrete function in domain D of size

N ×M with binary values from set {0, 1}. We consider the image A as a set of pixels {Ai,j}
with values {ai,j} where every pixel is defined by spatial coordinates (i, j).

Distance function or distance map gives each pixel value with the distance to the nearest

obstacle pixel. In case of a binary image a boundary pixel of an object.

f(x) = d(x, ∂Ω) if x ∈ Ω (4.9)

CHAPTER 4. EXPERIMENTS 46

Where ∂Ω denotes the boundary of Ω and for any x ∈ D

d(x, ∂Ω) = inf
y∈∂Ω

d(x, y) (4.10)

Another type of distance function is signed distance function. It is defined as:

f(x) =

d(x, ∂Ω) if x ∈ Ω

−d(x, ∂Ω) if x /∈ Ω
(4.11)

One more way to differentiate distance functions is to introduce different types of metrics.

In our calculations we will use Euclidean metric.

4.4.1 Brute force distance function

For ease of implementation and purpose of computational improvement we have chosen

brute force distance function with slight modification to image scanning.

Brute force algorithm is based on looping through the whole image for each pixel and cal-

culating distance to each pixel containing a value of 1. By comparing all the calculated

distances we get the lowest distance which is then assigned to the given pixel.

define mapD (N,M)

for each pixel X

for each pixel Y

where Y = 1

d = distance(X,Y)

end for

mapD(X) = min(d(Y))

end for

Listing 4.1: Brute force distance function pseudo code

The need of looping through the image one time for each pixel gives the complexity of

O(n2). We can reduce this need of looping through the image n2 times, where n is N ×M ,

by introducing a different approach to image scanning. We take each pixel as the center of

a circle s with gradually expanding diameter r. Upon encountering a pixel with a value of

1 the r is the distance for given pixel s. In the worst scenario, when the image is empty,

this approach has no effect on calculation time, in the best scenario, it is more than three

times faster. By using midpoint circle algorithm [16], we ensure to cover all the pixels in the

image.

Implementation comparison

Using the same binary image with dimension 256 x 256 and 512 x 512 pixels.

CHAPTER 4. EXPERIMENTS 47

Figure 4.3: Binary image used

N x N 1-core CPU cuda custom kernel

Brute force algorithm

256 x 256 7.718576 0.134052

512 x 512 27.302315 2.227006

Brute force algorith with modified image scanning

256 x 256 0.840206 0.028177

512 x 512 12.012230 0.327531

Table 4.7: Computational time of brute force distance function (seconds) using different

implementation methods and different image sizes

4.5 Shape registration

A process of transforming different sets of data into one coordinate system is called shape

registration. Often used in computer vision, military automatic target recognition, medical

imaging, etc. Another use case is in astrophotography, where multiple images of a faint

objects are registered to one another to increase the signal from the object and reduce the

noise.

In our use case we consider two images D and S and we are looking for a transformation

A =

 cosΘ sinΘ 0

−sinΘ cosΘ 0

0 0 1




1
s

0 0

0 1
s

0

0 0 1


 1 0 0

0 1 0

Tx Ty 0

 , (4.12)

CHAPTER 4. EXPERIMENTS 48

that minimizes the difference between the transformed image S and the image D. Where

Θ is the degree of rotation, s is the scaling factors and Tx and Ty are the translation coef-

ficients. We define ΦD as distance function of the image D, then we define a functional

E, which is represented by the sum of squares of the source image and destination image

distance function, which we are trying to minimize.

E(s,Θ,T) =

∫
D

(ΦD(x, y)− ΦS(AT (x.y))2dxdy,where

T =

[
Tx

Ty

] (4.13)

translation factor. By following [17] we get modified optimization criterion

E(s,Θ,T) =

∫
D

Nδ(ΦD,ΦS)(ΦD(x, y)− ΦS(AT (x, y)))2dxdy, where

Nδ(Φ1,Φ2) =

0,min(|Φ1|, |Φ2|) > δ

1,min(|Φ1|, |Φ2|) ≤ δ
.

(4.14)

As stated in [17], this modification accelerates the calculation and focus optimization

just on the area that interests us the most. For registering the two images we used gradient

method[11] and calculated new distance functions after each iteration. Where particular

components of the gradient are

d

dt
Θ = 2

∫
D

Nδ(ΦD,ΦS)(∇ΦS.∇ΘA
T)(ΦD(x, y)− ΦS(AT (x, y))dxdy

d

dt
s = 2

∫
D

Nδ(ΦD,ΦS)(∇ΦS.∇sA
T)(ΦD(x, y)− ΦS(AT (x, y))dxdy

d

dt
T = 2

∫
D

Nδ(ΦD,ΦS)(∇ΦS.∇TA
T)(ΦD(x, y)− ΦS(AT (x, y))dxdy.

(4.15)

To approximate∇ΦS we used central difference

∇ΦS(x, y) =

(
∇xΦS(x, y)

∇yΦS(x, y)

)
=

(
ΦS(x+1,y)−ΦS(x−1,y)

2h
ΦS(x,y+1)−ΦS(x,y−1)

2h

)
, (4.16)

where h is the pixel size and forward difference

∇ΦS(x, y) =

(
∇xΦS(x, y)

∇yΦS(x, y)

)
=

(
ΦS(x+1,y)−ΦS(x,y)

h
ΦS(x,y+1)−ΦS(x,y)

h

)
(4.17)

for beginnings of ∂D and ∂S and backward difference

∇ΦS(x, y) =

(
∇xΦS(x, y)

∇yΦS(x, y)

)
=

(
ΦS(x,y)−ΦS(x−1,y)

h
ΦS(x,y)−ΦS(x,y−1)

h

)
(4.18)

CHAPTER 4. EXPERIMENTS 49

for endings of ∂D and ∂S. Where particular components of∇ΘA
T ,∇sA

T and ∇TA
T are

∇ΘA
T =

(
ycos(Θ)

s
− xsin(Θ

s

−xcos(Θ
s
− ysin(Θ)

s

)

∇sA
T =

(
−xcos(Θ)

s2
− ysin(Θ)

s2

−ycos(Θ)
s2

+ xsinΘ
s2

)

∇TxA
T =

(
1

0

)
,∇TyA

T =

(
0

1

)
.

(4.19)

Our testing was done using binary image (Figure 4.3) with dimensions 512 x 512. Where

the transformation we were looking for was Θ = −0.2, s = 0.8, Tx = 40 and Ty = −100.

As our initial approximation of transformation parameters for gradient method we used

Θ = 0.1, s = 1.1 and the difference of image centroids between the transformed image and

the original as translation parameters. Where image centroid was calculated as the weighted

average of pixel intensities and their position. As a stopping criterion for gradient method

we used maximum number of iterations of 1000 and E < tol where tol = 1000.

Figure 4.4: Image D and transformed image S

Initial distance functions of image D and transformed image S (Figure 4.5)

Figure 4.5: Distance functions of image D and transformed image S

CHAPTER 4. EXPERIMENTS 50

The registration algorithm finished after 139 iterations with E = 993.715149 and regis-

tered parameters

• Θ = −0.200210

• s = 0.799858

• Tx = 39.987698

• Ty = −100.005966

with less than 1% error from original parameters and max(ΦS − ΦP) = 2.82843 (maximal

difference of 3 pixels), where P is the registered image. As expected from the parameters

approximation, the registered image and distance function look identical to the transformed

image S and its distance function (Figure 4.6).

Figure 4.6: Registered image and its distance function

As a way to improve the time of the calculation, we have resorted in better approxima-

tion of initial parameters, by first down-sampling the image 4-times, registering the image

to approximate the rotation and scaling parameters, next we used these parameters on an

image down-sampled 2-times. Registered it and the new approximation were used for the

final registration. Even though we had to run the registration multiple times, with better ap-

proximation of initial parameters, we have achieved that the final registration took only 85

iterations with E = 998.236 and registered parameters

• Θ = −0.200237

• s = 0.799873

• Tx = 39.985424

• Ty = −100.007820.

CHAPTER 4. EXPERIMENTS 51

The most impressive is the computational increase when using GPU as seen in 4.8.

1-core CPU 1-core CPU 1-core CPU 1-core CPU

1-iter all iter with down-sampling with down-sampling

1-iter (final regist.) all iter

22.4186889 3116.197754 18.74703 2091.466064

cuda custom cuda custom c.c.k. with c.c.k. with

kernel 1-iter kernel down-sampling down-sampling

all iter 1-iter (final regist.) all iter

0.6102348 84.822639 0.615236 62.351429

Table 4.8: Time comparison in seconds of 1-core CPU vs GPU runtime of shape registration

algorithm

The next step in improving the speed of the algorithm, is to combine down-sampling with

increased tolerance to tol = 12000, from experiments we have found that this approximation

is good enough, with translation parameters within half of a pixel from the transformation we

are looking for and rotation with scaling within the 3% margin in an image with dimensions

512 x 512. This tolerance should increase with larger image and decrease with a smaller

one.

This modification leads to approximation (on GPU) of parameters after 582 iterations for

first down-sample by 4:

• Θ = −0.1774377

• s = 0.821956

• Tx = 10.447988

• Ty = −24.996664,

in 3.6947 seconds. For the next down-sample by 2, we take translations parameters from

last down-sample multiplied by 2, which finishes in 99 iterations and 4.785946 seconds.

Approximated parameters of second down-sample:

• Θ = −0.200292

• s = 0.802109

• Tx = 20.008118

• Ty = −50.053726.

CHAPTER 4. EXPERIMENTS 52

Translation parameters are again taken and multiplied by 2 for our final registration on

the original image, resulting in 10 more iterations and 6.750599 seconds and approximated

parameters:

• Θ = −0.199721

• s = 0.800957

• Tx = 40.181030

• Ty = −100.012573.

As is evident from these approximations, they are within the 1% tolerance from the

sought after parameters, with the time of whole registration of 15.231 seconds, which is 4-

times faster than running it on the original image from the start. This optimization increase

would be the same with higher calculation time for the code running on the CPU.

Conclusion

In our work we familiarized ourselves with using CUDA library, its advantages, problems

and seen the performance increase it brings to general purpose computing. During our test-

ing we were able to implement multiple image processing algorithms with CUDA, as well

as some other general algorithms, compared them with other parallel focused APIs. We

have given the reader instruments to minimize the drawbacks of working with CUDA, like

learning new syntax and memory management by using unified memory or computational

time increase due to memory passing by using concurrency. We have seen that even though

GPUs in general have much higher peak performance potential than CPUs, using them is not

always the best solution. When it comes to very simple tasks, the memory passing is too

costly, as to tasks that are more complex, can be easily parallelised and require more work,

we have seen in some cases almost 20x improvement on a GPU using CUDA over a CPU

using MPI. In image processing where a lot of the algorithms is iterative, the improvement

is even more significant, because when every iteration is running X times faster on a GPU,

the consequence is exponential improvement.

In the past using GPUs was not as beneficial as today, not only from a performance stand-

point but also from financial standpoint and space saving standpoint. It has become a trend

that GPU with the same peak performance potential as a CPU can be significantly cheaper.

In some cases even GPUs that are 4x cheaper than a CPU can be 10x faster, which is all

dependent on the task at hand. Since usually an add-on card to the computer, there can be

multiple GPUs in one computer which in the end saves space while increasing compute po-

tential.

All source code and tests used in this diploma project is available on bitbucket for further

use.

53

Resumé

Ciel’om našej práce je integrovat’ algoritmy spracovania obrazu za pomoci CUDA na GPU.

Porovnat’ časové zlepšenie behu algoritmov oproti implementáciam na CPU. Taktiež porov-

nat’ cenové náklady a časové náklady integrácie jednotlivých prístupov. V rámci našej práce

vysvetlíme, výpočtové časti počítača, softvérové komponenty potrebné k paralelizácii algo-

ritmov a následne si prejdeme proces implementácie, od výberu programovacieho jazyka,

problémov, ktoré nastali až po experimenty vedúce k výsledku. Diplomová práca je zložená

z troch častí.

V teoretickej časti sa zaoberáme výpočtovými súčast’ami počítača, ako fungujú, ako a od-

kial dostávajú informácie a ich kombinácie na zvýšenie výpočtového výkonu v rôznych par-

alelných architektúrach. Po hardvérovej stránke sa venujeme softvérovej stránke problému.

Dôležitou súčast’ou porozumenia paralelných algoritmov je ich implementácia v počítači

a teda si spomenieme modely paralelného programovania, ktoré sa nezaobídu bez svojich

obmedzení a výhod. V rámci paralelného programovania sa dozvieme akou formou spolu

jednotlivé vetvy komunikujú, čím je táto komunikácia ovplivnená a prostriedky dostupné pre

programovanie na CPU a GPU. Ako prípravu pre praktickú čast’ našej práce sú vysvetlíme

faktory ovplivňújúce výpočtový výkon a porovnáme finančnú výhodnost’ jednotlivých prís-

tupov.

Praktickú čast sme rozdelili na dve časti. V implementačnej časti sa zameriame na dôvody

výberu programovacieho jazyka C++, ako aj detaily o tomto jazyko ako takom. Ďalej sa

pozrieme na spomenuté vývojové prostredie Visual Studio 2015 Community, ktoré je vol’ne

dostupné pre verejnost’ a pomocou ktorého sme všetky experimenty vykonali. Bližší po-

hl’ad venujeme programovania pomocou CUDA, jej syntaxi, rozdielom oproti iným imple-

mentáciam a hlavne častiam, na ktoré si programátor musí dat’ pozor pri práci s CUDA.

Opíšeme spôsoby ako minimalizovat’ negatívne stránky práce na grafickej karte a vysvetlíme

akým spôsobom paralelné algoritmy bežia na počítači. Následne v experimentálnej časti sa

pustíme do postupného budovania a časového porovnanie behu algoritmov potrebných pre

použité metódy spracovania obrazu. Každý experiment je vysvetlený po teoretickej stránke,

spolu s výsledkami praktickej stránky. Ako prvé su maticové operácie, ktoré su nevyhnutnou

súčastou algoritmou na spracovania obrazu, taktiež su perfektným príkladom na ukázanie

výhod a nevýhod práce s grafickými kartami. Ukážeme si dopad zle implementovaných

54

CHAPTER 4. EXPERIMENTS 55

programov na grafickej karte spolu s porovnaním s implementáciou sekvenčne, MPI alebo

s využitím už existujúcich prostriedkov ako cuBLAS. Ďalším krokom je iteratívna metóda

BiCGStab pre riešenie sústav linearných rovníc, ktorú je možno použit’ pri riešení lineárnej

filtrácie. V tejto metóde sa zvýraznia nevýhody programovania na grafických kartách no

i napriek týmto nevýhodám sa potvrdí hlavná výhoda pri programovaní na grafickej karte.

Následne sa zameriame na algoritmus spracovania obrazu a to lineárnu filtráciu, konkrétne-

jšie filtrácie obrazu pomocou explicitnej metódy vedenia tepla, kde výhoda použitia grafick-

ých kariet začne byt’ evidentná. Predposledým experimentom je vzdialenostná funkcia v

spracovaní obrazu, ktorá je následne použitá pri registrácii tvarou. Ako najpoučnejší prík-

lad sme si zobrali "brute force" dištančnú funkciu, ktorá je časom výpočtu najnáročnejšia,

následne sme ju modifikovali a podarilo sa nám znížit’ dĺžku výpočtu skoro 10-násobne

oproti originálnemu algoritmu. Takto upravenú dištančnú funkciu sme použili v poslednom

experimente a to registrácii tvarou, kde sme si odvodili celý algoritmus registrácie, experi-

mentálne ukázali jeho fungovanie a po jeho vylepšení pomocou prevzorkovania sme dospeli

skoro k 30-násobnému zlepšeniu výpočtového času na GPU oproti jednému jadru na CPU.

Čím sme potvrdili a ukázali hlavnú a velikú výhodu programovania a robenia všeobecných

výpočtou na GPU.

Bibliography

[1] Bi-CGSTAB: A fast and smoothly converging variant of Bi-CG for the solution of non-

symmetric linear systems, SIAM J. Sci. Statist. Comput., 13 (1992), pp. 631–644.

[2] C++ programming language, <https://tekslate.com/c-explain-advantages-

disadvantages/>

[3] Central processing unit, <https://en.wikipedia.org/wiki/Central_processing_unit/>

[4] Computer Architecture Performance Evaluation Methods, Lieven Eeckhout, 2010,

ISBN-978-1-608-45467-9

[5] CPU, GPU and MIC Hardware Characteristics over Time,

<https://www.karlrupp.net/2013/06/cpu-gpu-and-mic-hardware-characteristics-over-

time/>

[6] CUDA programming: A Developers guide to parallel computing with GPUs, Shane

Cook, 2013, ISBN-978-0-12-415933-4

[7] Cuda toolkit documentation, <https://docs.nvidia.com/cuda/>

[8] Current FLOPS prices, <https://aiimpacts.org/current-flops-prices/>

[9] Distance-based functions for image coparison, Vito di Gesu, Valery Starovoitov, Institute

of Engineering Cybernetics, National Academy of Sciences, Belarus, 21. September

1998

[10] FLOPS, <https://en.wikipedia.org/wiki/FLOPS>

[11] Gradient method, <https://web.stanford.edu/w̃fsharpe/mia/opt/mia_opt1.htm>

[12] Graphics processing unit, <https://en.wikipedia.org/wiki/Graphics_processing_unit/>

[13] How to Overlap Data Transfers in CUDA C/C++ , <https://devblogs.nvidia.com/how-

overlap-data-transfers-cuda-cc/>

56

BIBLIOGRAPHY 57

[14] Introduction to hierarchical matrices with applications, Steffen Borm, Lars Grasedyck,

Wolfgang Hackbusch, University Kiel, Germany, 2002

[15] Memory bandwidth in computers, <https://fgiesen.wordpress.com/2017/04/11/memory-

bandwidth/>

[16] Midpoint circle algorithm, <https://en.wikipedia.org/wiki/Midpoint_circle_algorithm>

[17] Nové zlepšenia atlasom riadených segmentácií obrazu, Ing. Jozef Urbán, PhD.,

Stavebná fakulta STU Katedra matematiky a deskriptívnej geometrie, 01.07.2016, pp.

47-50

[18] OpenMP, <http://www.openmp.org/>

[19] Paralelné algoritmy, lectures, Ing. Róbert Čunderlík, PhD.

[20] Parallel Programming For Multicore and Cluster Systems, Thomas Rauber, Gudula

Runger, 2010, ISBN 978-3-642-04817-3

[21] Performance evaluation of unified memory and dynamic parallelism for selected par-

allel CUDA applications, Lukasz Jarzabek, Pawel Czarnul, Faculty of Electronics,

Telecommunications and Informatics, Gdansk University of Technology, Gdansk, 2017

[22] Random access memory (RAM),<https://searchstorage.techtarget.com/definition/RAM-

random-access-memory>

[23] Spracovanie obrazu, lectures, doc. RNDr. Zuzana Krivá, PhD.

[24] Spracovanie obrazu, Zuzana Krivá, Karol Mikula, Ol’ga Stašová , 2016, ISBN 978-80-

227-4535-2, pp. 51-53

[25] Templates for the Solution of Linear Systems: Building Blocks for Iterative Methods;

Richard Barret, Michael Berry, Tony F. Chan, James Demmel, June M. Donato, Jack

Dongarra, Victor Eijkhout, Roldan Pozo, Charles Romine and Henk Van der Vorst

[26] Unified Memory for CUDA Beginners, <https://devblogs.nvidia.com/unified-memory-

cuda-beginners/>

[27] Using MPI, William Gropp, Ewing Lusk, Anthony Skjellum, Massachusetts Institute

of Technology, Cambridge, Massachusetts, 1999, ISBN-0-262-57132-3

[28] What Every Programmer Should Know About Memory,

<http://futuretech.blinkenlights.nl/misc/cpumemory.pdf>

Appendix

#define N 100

void MatrixMultiplicationOnHost(float * A, float * B, float * C,

int numARows,

int numAColumns, int numBRows, int numBColumns,

int numCRows, int numCColumns)

{

for (int i = 0; i < numARows; i++){

for (int j = 0; j < numAColumns; j++){

C[i*numCColumns + j] = 0.0;

for (int k = 0; k < numCColumns; k++){

C[i*numCColumns + j] += A[i*numAColumns + k] *

B[k*numBColumns + j];

}

}

}

return;

}

int main(int argc, char ** argv) {

float * hostA; // The A matrix

float * hostB; // The B matrix

float * hostC; // The output C matrix

hostA = (float *)malloc(sizeof(float)*N*N);

hostB = (float *)malloc(sizeof(float)*N*N);

for (int i = 0; i < N*N; i++){

hostA[i] = 1;

hostB[i] = 1;

}

hostC = (float *)malloc(sizeof(float)*N*N);

MatrixMultiplicationOnHost(hostA, hostB, hostC, N, N, N,

N, N, N);

return 0;

}

58

BIBLIOGRAPHY 59

Listing 4.2: Sample code running on host sequentially

BIBLIOGRAPHY 60

#define N 100

int main(int argc, char *argv[]){

int i, j, rank, size, sum = 0;

int a[N][N];

int b[N][N];

int c[N][N];

int aa[N],cc[N];

for (int i = 0; i < N; i++){

for (int j = 0; j < N; j++){

a[i][j] = 1; b[i][j] = 1;

}

}

MPI_Init(&argc, &argv);

MPI_Comm_size(MPI_COMM_WORLD, &size);

MPI_Comm_rank(MPI_COMM_WORLD, &rank);

//scatter rows of first matrix to different processes

MPI_Scatter(a, N*N/size, MPI_INT, aa, N*N/size,

MPI_INT,0,MPI_COMM_WORLD);

//broadcast second matrix to all processes

MPI_Bcast(b, N*N, MPI_INT, 0, MPI_COMM_WORLD);

MPI_Barrier(MPI_COMM_WORLD);

//perform vector multiplication by all processes

for (i = 0; i < N; i++){

for (j = 0; j < N; j++){

sum = sum + aa[j] * b[j][i];

}

cc[i] = sum; sum = 0;

}

MPI_Gather(cc, N*N/size, MPI_INT, c, N*N/size, MPI_INT, 0,

MPI_COMM_WORLD);

MPI_Barrier(MPI_COMM_WORLD);

MPI_Finalize();

}

Listing 4.3: Sample code running on host with the use of MPI

BIBLIOGRAPHY 61

#define N 100

__global__ void MatrixMultiplicationShared(float * A, float * B,

float * C, int numARows, int numAColumns, int numBRows, int

numBColumns, int numCRows, int numCColumns, int blockLength){

extern __shared__ float blocks[];

float *sA = blocks;

float *sB = &sA[blockLength*blockLength];

int Row = blockDim.y*blockIdx.y + threadIdx.y;

int Col = blockDim.x*blockIdx.x + threadIdx.x;

float Cvalue = 0.0;

sA[threadIdx.y*blockLength + threadIdx.x] = 0.0;

sB[threadIdx.y*blockLength + threadIdx.x] = 0.0;

for (int k = 0; k < (((numAColumns - 1) / blockLength) + 1); k++){

if ((Row < numARows) && (threadIdx.x + (k * blockLength)) <

numAColumns){

sA[threadIdx.y*blockLength+threadIdx.x] = A[(Row*numAColumns) +

threadIdx.x + (k * blockLength)];

}

else{

sA[threadIdx.y*blockLength + threadIdx.x] = 0.0;

}

if (Col < numBColumns && (threadIdx.y + k * blockLength) <

numBRows){

sB[threadIdx.y*blockLength + threadIdx.x] = B[(threadIdx.y + k

* blockLength)*numBColumns + Col];

}

else{

sB[threadIdx.y*blockLength + threadIdx.x] = 0.0;

}

__syncthreads();

for (int j = 0; j < blockLength; ++j){

Cvalue += sA[threadIdx.y*blockLength + j] * sB[j*blockLength +

threadIdx.x];

}

__syncthreads();

}

if (Row < numCRows && Col < numCColumns{

C[Row*numCColumns + Col] = Cvalue;

}

}

BIBLIOGRAPHY 62

void MatrixMultiplicationWithCuda(float * A, float * B, float * C,

int numARows, int numAColumns, int numBRows, int numBColumns,

int numCRows, int numCColumns){

float * deviceA;

float * deviceB;

float * deviceC;

int blockLength = 32;

cudaSetDevice(0); // Choose which GPU to run on, change this on a

multi-GPU system.

// Allocating GPU memory

cudaMalloc((void **)&deviceA, sizeof(float)*numARows*numAColumns);

cudaMalloc((void **)&deviceB, sizeof(float)*numBRows*numBColumns);

cudaMalloc((void **)&deviceC, sizeof(float)*numCRows*numCColumns);

// Copy memory to the GPU

cudaMemcpy(deviceA, A, sizeof(float)*numARows*numAColumns,

cudaMemcpyHostToDevice);

cudaMemcpy(deviceB, B, sizeof(float)*numBRows*numBColumns,

cudaMemcpyHostToDevice);

// Initialize the grid and block dimensions

dim3 dimBlock(blockLength, blockLength, 1);

dim3 dimGrid((numCColumns / blockLength == 0) ? numCColumns /

blockLength : numCColumns / blockLength + 1, (numCColumns /

blockLength == 0) ? numCColumns / blockLength : numCColumns /

blockLength + 1, 1);

// Launch the GPU Kernel here

size_t SharedMemorySize = 2 * blockLength*blockLength *

sizeof(float);

MatrixMultiplicationShared << <dimGrid, dimBlock

,SharedMemorySize>> > (deviceA, deviceB, deviceC, numARows,

numAColumns, numBRows, numBColumns, numCRows, numCColumns,

blockLength);

cudaDeviceSynchronize();

// Copy the results in GPU memory back to the CPU

cudaMemcpy(C, deviceC, sizeof(float)*numCRows*numCColumns,

cudaMemcpyDeviceToHost);

cudaFree(deviceA); // Free the GPU memory

cudaFree(deviceB);

cudaFree(deviceC);

}

int main(int argc, char ** argv) {

float * hostA; // The A matrix

BIBLIOGRAPHY 63

float * hostB; // The B matrix

float * hostC; // The output C matrix

int numARows = N; // number of rows in the matrix A

int numAColumns = N; // number of columns in the matrix A

int numBRows = N; // number of rows in the matrix B

int numBColumns = N; // number of columns in the matrix B

int numCRows; // number of rows in the matrix C

int numCColumns; // number of columns in the matrix C

cudaMallocHost((void**)&hostA,

sizeof(float)*numARows*numAColumns);

cudaMallocHost((void**)&hostB,

sizeof(float)*numBRows*numBColumns);

for (int i = 0; i < numARows*numAColumns; i++){

hostA[i] = 1; hostB[i] = 1;

}

numCRows = numARows; // Setting numCRows and numCColumns

numCColumns = numBColumns;

cudaMallocHost((void**)&hostC,

sizeof(float)*numCRows*numCColumns);

MatrixMultiplicationWithCuda(hostA, hostB, hostC, numARows,

numAColumns, numBRows, numBColumns, numCRows, numCColumns);

cudaFreeHost(hostA);

cudaFreeHost(hostB);

cudaFreeHost(hostC);

return 0;

}

Listing 4.4: Sample code running on device with the use of CUDA

BIBLIOGRAPHY 64

#define N 100

void MatrixMultiplicationWithCublas(float *A, float *B, float*C,

int m, int n, int k){

float *d_A, *d_B, *d_C;// Allocate 3 arrays on GPU

cudaMalloc(&d_A, m * k * sizeof(float));

cudaMalloc(&d_B, k * n * sizeof(float));

cudaMalloc(&d_C, m * n * sizeof(float));

cudaMemcpy(d_A, A, m * k * sizeof(float), cudaMemcpyHostToDevice);

cudaMemcpy(d_B, B, k * n * sizeof(float), cudaMemcpyHostToDevice);

const float alf = 1;

const float bet = 1;

const float *alpha = &alf;

const float *beta = &bet;

cublasHandle_t handle;// Create a handle for CUBLAS

cublasCreate(&handle);

cublasSgemm(handle, CUBLAS_OP_N, CUBLAS_OP_N, m, n, k, alpha,

d_A, m, d_B, k, beta, d_C, m);

cublasDestroy(handle);// Destroy the handle

cudaMemcpy(C, d_C, m * n * sizeof(float),

cudaMemcpyDeviceToHost));

cudaFree(d_A);//Free GPU memory

cudaFree(d_B);

cudaFree(d_C);

}

int main(int argc, char ** argv) {

float * hostA; // The A matrix

float * hostB; // The B matrix

float * hostC; // The output C matrix

int numARows = N; // number of rows in the matrix A

int numAColumns = N; // number of columns in the matrix A

int numBRows = N; // number of rows in the matrix B

int numBColumns = N; // number of columns in the matrix B

int numCRows; // number of rows in the matrix C

int numCColumns; // number of columns in the matrix C

cudaMallocHost((void**)&hostA,

sizeof(float)*numARows*numAColumns);

cudaMallocHost((void**)&hostB,

sizeof(float)*numBRows*numBColumns);

for (int i = 0; i < numARows*numAColumns; i++){

BIBLIOGRAPHY 65

hostA[i] = 1; hostB[i] = 1;

}

numCRows = numARows;// Setting numCRows and numCColumns

numCColumns = numBColumns;

cudaMallocHost((void**)&hostC,

sizeof(float)*numCRows*numCColumns);

MatrixMultiplicationWithCublas(hostA, hostB, hostC, numAColumns,

numAColumns, numBColumns);

cudaFreeHost(hostA);

cudaFreeHost(hostB);

cudaFreeHost(hostC);

return 0;

}

Listing 4.5: Sample code running on device with the use of CUDA and cuBLAS

All source code can be found here:

https://bitbucket.org/xbatka/cuda-diploma-project-source-code/src

	Introduction
	Hardware
	CPU - central processing unit
	GPU - graphical processing unit
	Memory
	RAM
	GPU RAM

	Architecture of parallel computers
	Examples of parallel architectures

	Parallel programming
	Models of parallel programming
	Communication
	Communication speed
	Collective communication
	Point-to-point communication

	Load balancing
	Multi-processing CPU APIs
	Multi-processing GPU APIs

	Memory limitations
	Programming on CPU
	Programming on GPU

	Comparison of computing performance
	Architecture
	Frequency and number of cores
	Bandwidth
	FLOPS
	Price/performance comparison
	Conclusion

	Implementation
	Language C++
	Development environment
	Unit testing
	Differentiation between programming on CPU/GPU
	Memory allocation and copying on device
	Kernel
	Blocks and grids
	Error handling
	Comparison of code on host vs. code on device

	Data passing and performance decrease
	Direct copy
	Data streaming and concurrency
	Unified memory

	Experiments
	Matrix operations
	Matrix additions
	Matrix-vector multiplication
	Matrix multiplication

	Iterative methods
	Preconditioned BiConjugate Gradient Stabilized method (BiCGStab)

	Image processing algorithm - Linear filtration
	Linear filtration using transient heat transfer
	Implementation comparison

	Distance function in image processing
	Brute force distance function

	Shape registration

	Conclusion
	Resumé
	Bibliography
	Appendix

