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Abstract

This work deals with numerical solution of geodesic curvature flow of curves in the Lagrangian framework
using a finite difference method leading to a semi-implicit numerical scheme. The primary focus is on solv-
ing the geodesic curvature flow of open curves and closed curves are mentioned marginally. For practical and
numerical reasons, the basic model is enriched with a tangential term. Geodesic curvature flow is used for the
approximation of open geodesies on surfaces, especially with an emphasis on discrete surfaces. The presented
approximative method for finding open geodetics is experimentally compared with several known methods. It
is also implemented in Rhinoceros CAD software. Along with other known methods, it is used to generate cut-
ting patterns for tensile membrane structures in civil engineering. Many results and experiments are presented.

Keywords: geodesic, geodesic curvature flow, curve evolution, cutting patterns, tensile membrane structures,
Rhinoceros software, Grasshopper plug-in, Grasshopper component

Abstrakt

Táto práca sa zaoberá numerickým riešenením vývoja kriviek podl’a geodetickej krivosti v Lagrangeovskej
formulácii na plochách pomocou metódy konečných diferencíí vedúcim na semiimplicitnú numerickú schému.
Prioritne sa zameriava na riešenie modelu vývoja otvorených kriviek podl’a geodetikej krivosti, okrajovo sa ve-
nuje uzavretým krivkám. Z praktických a numerických dôvodov je model obohatený o tangenciálny člen. Tok
podl’a geodetickej krivosti sa používa na approximáciu otvorených geodetík na plochách, aj na hladkých, ale
hlavne s dôrazom na diskrétne plochy. Prezentovaná aproximatívna metóda na hl’adanie otvorených geodetík
je experimentálne porovnávaná s viacerými známymi metódami. Je tiež implementovaná v Rhinoceros CAD
softvére. Spolu s d’alšími známymi metódami je použitá na generovanie strihových plánov pre konštrukciu
plachtových membránových štruktúr v stavebníctve. Je prezentovaných vel’a experimentálnych výslekov.

Kl’účové slová: geodetika, tok podl’a geodetickej krivosti, vývoj krivky, strihové plány, plachtové membrá-
nové štruktúry, Rhinoceros softvér, Grasshopper plug-in, Grasshopper komponent



Contents

1 Introduction 3
1.1 Related work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.2 Overview of our work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2 Geodesic Curvature Flow 6
2.1 Mathematical model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.2 Curve-shortening property of the geodesic curvature flow . . . . . . . . . . . . . . . . . . . . 6
2.3 Tangential redistribution of points of a curve . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

3 Discrete Geodesic Curvature Flow 9

4 Implementation Details of Discrete Lagrangian Algorithm 12

5 Experiments and results 15
5.1 Comparison with the Fast Marching Method . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
5.2 Examples of a cutting pattern design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

References 20

2



Chapter 1

Introduction

A geodesic on a surface is defined as a curve with zero geodesic curvature in each point. Every shortest
path on a surface is a geodesic. The problem of the extremal path, i.e. the geodesic problem, is occurring in
many applications in different fields. In practice, geodesics occur either as smooth curves on smooth surfaces
(in engineering mainly on NURBS surfaces) or as discrete curves on discrete surfaces (meshes).

One of the main sources of applications involving geodesics is, of course, industry, where the shortest
paths are used for example in programming of CNC machines (6), filament winding technologies (32), or in
examination of polymer material properties (5). Other industrial applications of geodesics are in manufacturing
of fuselage of an aircraft, CNC machines (30), tent manufacturing, cutting and painting path finding, fiberglass
tape windings in pipe manufacturing, textile manufacturing (15), ship design, NC machining (22). Another
important field of application of geodesics is computer graphics, computer vision and CAD/CAM technologies
(19), (14), (4), (31). Geodesics are of great importance in robotics (7), (40) and in geography related fields
such as seismology (33) or geographical information systems (GIS) (4). Our main motivation comes from
manufacturing of tensile membrane structures in civil engineering. An example of such a structure is shown in
Figure 1.1.

Figure 1.1: An example of a tensile membrane structure, a tram station roof in Vienna, Austria.

Tensile membrane structures are in general designed as non-developable surfaces, however, in reality they
are assembled from planar pieces of textile or other similar material. During the manufacturing process the
CAD model of the membrane structure is cut into smaller elements that are then developed into planar pieces.
The original curved elements can be, in general, developed only with a certain error and it is important to
minimize the distortion between the curved element and its planar counterpart as much as possible. The planar
elements are usually cut from a fabric roll of a relatively narrow width and in an efficient manufacturing process
the waste of material should be minimized. Therefore, the elements to be cut should preferably have straight
or only slightly curved borders. If an element with geodesic borders is narrow enough, after developing we get
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4 CHAPTER 1. INTRODUCTION

a planar strip with almost straight borders. This is the main advantage of cutting along geodesics and it allows
optimal usage of the material as well as easier dealing with the shear loading and aesthetic criteria. A more
detailed insight in the cutting pattern generation problem and using geodesic cuts can be found for example in
the paper (10) or other works by the same authors.

1.1 Related work

The problem of finding geodesics is widely studied for many years. Depending on the accuracy there are
two types of methods which are used for finding the shortest paths on meshes: exact algorithms and approxima-
tion algorithms. The most of exact algorithms are using an unfolding technique. The idea of unfolding is based
on the well-known property of the shortest paths (14) – if we have a geodesic path that connects two points
along an edge sequence, then the planar unfolding of the path along this sequence is a straight line segment.

The largest groups of approximation methods are the group of differential equation methods and graph
based methods.

The curvature flow of curves in the plane has been studied for many years by many researchers. The
geodesic curvature flow on surfaces, also called curve shortening flow (39), has been studied less, but one can
find papers with theoretical results (21), (8), (9), (24). The evolution is called curve shortening flow because
the flow lines in the space of closed curves are tangent to the gradient of the length functional of the curve (9).
When a curve is evolving by this flow, its length is monotonously strictly decreasing (8), (21). Grayson (21),
(9), proved that any embedded curve during the curve shortening flow either shrinks to a point in a finite time
or its curvature converges to zero in the C∞ norm as t→ ∞.

The geodesic curvature flow can be mathematically formulated in several different ways. For example,
in the work of Osher and Sethian (28), the geodesic curvature flow algorithms are based on Hamilton-Jacobi
formulations. Probably the most popular approach with several practical advantages is the level set (otherwise
called Eulerian) formulation (17), (39), where the evolving curve is considered to be a level set of a higher
dimensional map. The geodesic curvature flow on parametric surfaces is studied in (36), (35). Another possi-
bility is the direct (Lagrangian) approach that directly prescribes the evolution of each point of the curve. This
approach has been elaborated for example in the papers by Mikula et al. (24), (27) that use the Lagrangian
formulation of geodesic curvature flow. In the former paper, the authors reduce the dimension of the problem
for closed curves by projection into a plane and in the latter paper they solve the problem by an explicit method
for geodesic curvature flow of open curves on an analytically given surface. Barrett et al. (2) use the Lagrangian
formulation of geodesic curvature flow for closed curves and present its parametric finite element approxima-
tions. They study more general flows, e.g. gradient flows of curves on manifolds, as well. Recently, in the
work (3), the finite element method for evolving closed curves on triangulated surfaces has been explored. The
authors use Lagrangian framework and solve topology changes of evolving closed curves, too.

Each of the approaches has its advantages and drawbacks. The authors of the paper (39) very well explain
the differences between the Lagrangian and the Eulerian framework and some pros and cons. In order to model
the geodesic curvature flow, they used the Eulerian framework which works particularly well for closed curve
evolution and benefits from its ability to easily handle topology changes. On the other hand, it has difficulties
with open curves and therefore they model only geodesic curvature flow of closed curves. Actually we found
only one article (18) using the level set method for geodesic curvature flow of open curves, however, only for
surfaces which can be injectively projected into plane and the problem is solved only on a rectangular grid.
On the other hand, the Lagrangian framework handles both open and closed curves quite well. Moreover,
the Lagrangian framework is a direct approach that does not need to add another dimension like the level
set method. Therefore, we can expect the algorithms to be faster and also less demanding with respect to
memory consumption. In contrast to the Eulerian framework, in the Lagrangian framework for closed curves
it is necessary to solve the problem of changing the topology of the evolving curve in addition. This can be
quite tricky, though efficient algorithms dealing with topology changes already exist at least for plane curves
(1). Other drawbacks of the Lagrangian approach appear in the discrete setting. First, the points of the evolving
discretized curve can deviate from the mesh on which they should be situated. Second, the points of a discrete
curve can meet and form instabilities and self-crossings of the curve during the evolution. The first issue is
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solved by back-projection to the mesh. The second issue is standardly solved by tangential redistribution of
points. To the best of our knowledge, only the authors (24), (2), (3), (25) studied geodesic curvature flow of
closed curves by the Lagrangian approach and related problems which arise from Lagrangian approach such as
tangential redistribution of points and topology changes. The topic of tangential redistribution is solved in the
works (20), (12), (13), too.

1.2 Overview of our work

We propose an algorithm based on numerical solution of the geodesic curvature flow in the Lagrangian
setting called Discrete Langrangian Algorithm (DLA). We chose to apply the geodesic curvature flow, since,
as we have said before, it shrinks the curve as fast as it can and it uses only local information. Thus the
performance of the algorithm is independent of the size of the mesh, if we exclude the construction of the
initial approximation from our consideration. With an appropriately set time discretization step, the algorithm
quickly converges to an approximation of a geodesic that is accurate enough for practical purposes. To further
motivate the use of a Lagrangian evolution, let us note that in our specific application of cutting pattern design,
we practically deal only with open geodesics connecting two points. Moreover, if we choose a reasonable initial
condition, no topology changes during the evolution are expected. These facts make the Lagrangian framework
the approach of our first choice.

To overcome the disadvantages of the Lagrangian approach that remain, our procedure includes an algo-
rithm for back-projecting the evolving curve to our mesh as well as a method for tangential redistribution of the
discretization points during the evolution. For a better practical applicability, we designed our method so that
it is able to deal not only with simple meshes but also with more challenging triangular surfaces, for example
large meshes or the ones with sharp corners. We also propose a procedure for an automatic choice of time step,
in case it is convenient.

In order to make our algorithm accessible to a broader community of users, we created a Grasshopper
assembly library for Rhinoceros called MeshPaths (23) that includes our method for finding geodesics.

This work is organized as follows. Chapter 2 describes the analytical model of geodesic curvature flow and
some of its features and it also describes the geodesic curvature flow model extended by a tangential term. The
next Chapter 3 is devoted to the discrete model of geodesic curvature flow and the derivation of a numerical
scheme. Chapter 4 briefly describes auxiliary algorithms and implementation details of our Discrete Lagrangian
Algorithm (DLA). The last Chapter 5 presents chosen experimental results from thesis: comparisons DLA with
FMM method and example of cutting pattern generation with comparison between geodesic and non-geodesic
cutting patterns. The implementation for cutting patterns generations is made in Grasshopper as library called
CuttingPatternDesign library.



Chapter 2

Geodesic Curvature Flow

2.1 Mathematical model

Let γγγγγγ : I→ S be a smooth curve, where I ⊂ R is an interval, on a smooth surface S embedded in R3. If we
denote by κ the curvature of the curve γγγγγγ and by NNN its principal normal, then its curvature vector is KKK = κNNN.
Now let NNNVVV (u) be the unit normal to the curve in the tangent space of S at the point γγγγγγ(u). Then NNNVVV = NNNSSS×TTT ,
where NNNSSS(u) is the unit normal to S at γγγγγγ(u) and TTT is the unit tangent vector to the curve γγγγγγ . The geodesic
curvature vector is defined as the projection of the curvature vector KKK in the direction of NNNVVV , which means

KKKggg = (KKK ·NNNVVV )NNNVVV .

The scalar geodesic curvature is then defined as

Kg = KKK ·NNNVVV .

Geodesic curvature flow is a motion of a curve evolving by geodesic curvature on a surface. Let

γγγγγγ = γγγγγγ(u, t) : I×〈0,T 〉 → S, I ⊂ R

be a curve evolving by geodesic curvature Kg on surface S embedded in R3. The evolution of the curve by its
geodesic curvature is described by

∂tγγγγγγ = KgNNNVVV , (2.1)

where NNNVVV is the unit normal to the curve in the tangent space of S, NNNVVV = NNNSSS×TTT , NNNSSS is the unit normal to S, TTT
is a unit tangent vector to the curve γγγγγγ . This is a motion only in the normal direction. For our purposes we will
consider a model with an additional tangential term

∂tγγγγγγ = KgNNNVVV +αTTT . (2.2)

If we consider an evolving closed curve, the model (2.1) or (2.2) is accompanied by the periodic boundary
condition, otherwise we consider the Dirichlet boundary condition, i.e. fixed boundary points.

2.2 Curve-shortening property of the geodesic curvature flow

A curve evolving by geodesic curvature is monotonously becoming shorter during the evolution. This
shortening property of geodesic curvature flow is crucial for us, because we want to use the geodesic curvature
flow for finding the shortest path on the surfaces. The proof that the length L = L(t) = L(γγγγγγ(t)) is monotonously
strictly decreasing in time can be found in (8), (21). We prove it in a different way, we find the expression for
the length of an arbitrary evolving curve on surface and the length of a curve evolving by geodesic curvature is
only a special case.

Theorem 2.1. The geodesic curvature flow of a curve strictly monotonously decreases its length until the flow
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stops, i.e.

Lt < 0, ∀t ∈ 〈0,T 〉.

Proof. Without any loss of generality we can consider only the motion of a curve on a surface in the normal
direction to the curve NNNVVV , because the tangential motion does not affect the length of the curve, supposed
that the boundary points are fixed. Let the curve γγγγγγ = γγγγγγ(u, t) evolve on the surface S with a unit normal NNNSSS.
Let us denote the tangential vector of the curve γγγγγγ by TTT , the geodesic curvature vector by KKKggg. Standardly∥∥NNNSSS

∥∥= ‖TTT‖= 1. Let the curve move on the surface by the equation

γγγγγγ t = βNNNVVV . (2.3)

By differentiating ‖γγγγγγu‖
2 = γγγγγγu · γγγγγγu with respect to the time variable we get

2‖γγγγγγu‖ · ‖γγγγγγu‖t = γγγγγγut · γγγγγγu + γγγγγγu · γγγγγγut ,

so we obtain

‖γγγγγγu‖t = γγγγγγut ·
γγγγγγu

‖γγγγγγu‖
= γγγγγγut ·TTT . (2.4)

The length L = L(t) of the curve is equal to
∫
I
‖γγγγγγu‖du, so its time derivative is

Lt =
∫
I

‖γγγγγγu‖t du.

Therefore we need to express ‖γγγγγγu‖t . From (2.3) we get

γγγγγγut = γγγγγγ tu = (βNNNVVV )u

and

‖γγγγγγu‖t = γγγγγγut ·TTT = (βNNNVVV )u ·TTT = (βuNNNVVV +βNNNVVV
u ) ·TTT =

= βuNNNvvv ·TTT +βNNNVVV
u ·TTT = βNNNVVV

u ·TTT ,
(2.5)

since NNNVVV ⊥ TTT . Using

NNNVVV
u = (NNNSSS×TTT )u = NNNSSS

u×TTT +NNNSSS×TTT u

we can modify (2.5) to

‖γγγγγγu‖t = βNNNVVV
u ·TTT = β (NNNSSS

u×TTT ·TTT +NNNSSS×TTT u ·TTT ) = βNNNSSS×TTT u ·TTT , (2.6)

where

TTT u = TTT s · su =
∣∣∣s = ∫ ‖γγγγγγu‖du⇒ su = ‖γγγγγγu‖

∣∣∣= TTT s · ‖γγγγγγu‖

and from Frenet–Serret formulas we get TTT s = kNNN = KKK and therefore TTT u = ‖γγγγγγu‖KKK. The relationship (2.6) can
be modified in following way

‖γγγγγγu‖t = β (NNNSSS×TTT u ·TTT ) = β (NNNSSS× (‖γγγγγγu‖KKK)) ·TTT =

= β ‖γγγγγγu‖TTT · (NNNSSS×KKK) = β ‖γγγγγγu‖NNNSSS · (KKK×TTT ) = β ‖γγγγγγu‖KKK · (TTT ×NNNSSS) =

= β ‖γγγγγγu‖KKK · (−−−NNNVVV ) =−β ‖γγγγγγu‖‖KKKggg‖ .

Finally

Lt =
∫
I

‖γγγγγγu‖t du =−
∫
I

β ‖KKKggg‖‖γγγγγγu‖du =−
∫
I

βKg ds.

Specifically for the geodesic curvature flow i.e. β = Kg it holds

Lt =−
∫
I

K2
g ds < 0 (2.7)
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for Kg 6= 0. Equation (2.7) means that the length of a curve evolving by geodesic curvature is strictly decreasing
during evolution and the evolution stops, when KKKggg ≡ 0.

2.3 Tangential redistribution of points of a curve

Using only the normal evolution of curve points, some difficulties can arise after discretization – the distance
between the discretization points can become too small or even self-intersections of the discretized curve can
appear. This can lead to instabilities or crossings. Therefore, for practical purposes, we use the extended model
(2.2) with an additional tangential term. We develop a formula for the coefficient α = α(u, t) in (2.2). In the
papers (26), (24) there are derived equations for a redistribution of points of evolving curves. We use the same
ideas and techniques for our model here and derive equations for tangential redistribution of points of a curve
evolving by its geodesic curvature. Let the relative length (ratio of the local length and the length) be

‖γγγγγγu‖(u, t)
L(t)

= f (u, t).

Then ‖γγγγγγu‖= f ·L and after differentiating we get

‖γγγγγγu‖t = ft ·L+ f ·Lt . (2.8)

In Section 2.2 We have already found the formula for ‖γγγγγγu‖t for the evolution without tangential motion. There-
fore we get this formula for case with the tangential motion easily. Since

(αTTT )u ·TTT = (αuTTT +αTTT u) ·TTT = αu +αTTT u ·TTT = αu +α ‖γγγγγγu‖KKK ·TTT = αu

we have

‖γγγγγγu‖t =−β ‖γγγγγγu‖‖KKKggg‖+αu =−‖γγγγγγu‖K2
g +αu. (2.9)

Using the fact that αu = αs · su = αs · ‖γγγγγγu‖ we get

‖γγγγγγu‖t =−‖γγγγγγu‖K2
g +αs · ‖γγγγγγu‖ . (2.10)

By comparing the equations (2.8) and (2.10) we get the equation

−‖γγγγγγu‖K2
g +αs · ‖γγγγγγu‖= ft ·L+ f ·Lt . (2.11)

Further,
f (t)
‖γγγγγγu‖

=
1

L(t)
and from the equation (2.11) we get

αs = K2
g +

Lt

L
+

ft
f
. (2.12)

We choose the relative length f (t) in a similar manner as the authors in (26) f (t) = e−k0t +1, which guarantees
the asymptotically uniform redistribution of points. Here k0 is a constant coefficient of the redistribution speed.
Then

ft = e−k0t(−k0) = ( f −1) · (−k0) = (1− f )k0

and

ft
f
=

(
1
f
−1

)
k0 =

(
L
‖γγγγγγu‖

−1

)
k0. (2.13)

Substituting (2.13) into the equation (2.12) and using the expression for Lt , which we have found in Section
(2.2) we get

αs = K2
g −

1
L

∫
I

K2
g ds+

(
L
‖γγγγγγu‖

−1

)
k0. (2.14)

Equation (2.14) is formally the same as in the works (27), (26), but with geodesic curvature.



Chapter 3

Discrete Geodesic Curvature Flow

In order to construct a numerical scheme for solving the equations (2.1) and (2.2), we choose a semi-
implicit time discretization and a finite difference space discretization approach. The semi-implicit scheme is
more stable than the explicit scheme and its advantage with respect to the fully implicit scheme is that it leads
to a linear system of equations instead of non-linear.

We start by describing the discretization of the basic model (2.1) with no tangential redistribution and the
tangential redistribution term and its discrete version will be added later.

Time discretisation First, let us discretize the equation (2.1) in time. For this purpose, let us use a uniform
discretization with time step hτ . The principle of our semi-implicit approximation is that the curvature vector
KKK is taken from the new time step, while the normal NNNVVV is taken from the actual time step. This choice is made
in order to be able to use the already known values of non-linear terms. The discretized equation has the form

γγγγγγ j+1− γγγγγγ j

hτ

=
(

KKK j+1 ·
(
NNNVVV ) j

)(
NNNVVV ) j

, (3.1)

where γγγγγγ j is the approximation of γγγγγγ(·, jhτ) and KKK j+1,
(
NNNVVV ) j

are understood analogously.

Space discretisation Now let us assume that the surface S is approximated by a triangular mesh T(S) and let
us also discretize the curve γγγγγγ j by n+ 2 nodal points γγγγγγ

j
i ≈ γγγγγγ (ui, t j), i = 0, . . . ,n+ 1. The values γγγγγγ0,γγγγγγn+1 are

determined according to the boundary conditions, the rest of the points will be the uknowns of the resulting
linear system. In our approximation scheme, we will also use the points

γγγγγγ
j
i− 1

2
=

γγγγγγ
j
i−1 + γγγγγγ

j
i

2
, γγγγγγ

j
i+ 1

2
=

γγγγγγ
j
i+1 + γγγγγγ

j
i

2
.

The curvature vector at the point (ui, t j) is defined as

KKK(ui, t j) =
∂TTT
∂ s

(ui, t j),

where s denotes the arc-length of the curve. Therefore we can take the approximation

KKK j+1
i =

TTT j+1
i+1/2−TTT j+1

i−1/2

h j
i+1 +h j

i

2

, (3.2)

where we use approximations of the unit tangent vectors in the form

TTT j+1
i+1/2 =

γγγγγγ
j+1
i+1 − γγγγγγ

j+1
i

h j
i+1

, TTT j+1
i−1/2 =

γγγγγγ
j+1
i − γγγγγγ

j+1
i−1

h j
i

, (3.3)

with h j
i =

∥∥∥γγγγγγ
j
i − γγγγγγ

j
i−1

∥∥∥. In order to approximate the normal NNNVVV (ui, t j), we first need to construct an approx-

9



10 CHAPTER 3. DISCRETE GEODESIC CURVATURE FLOW

imation of the surface normal NNNSSS in the point γγγγγγ (ui, t j). If the point γγγγγγ
j
i happens to be a vertex of the mesh,

the corresponding surface normal is approximated by the arithmetic mean of the normals of the neighboring
triangles. If the point lies on an edge of the mesh, we use the normal of one of the neighboring triangles. The
cases when the angle between these two triangles is too large are treated separately as described in Section 4.
However, we have to mention that except for the initial condition that usually consists of mesh vertices, the
points of the evolving curve are (after projection) almost always situated inside a mesh triangle. In this case,

naturally,
(

NNNSSS
) j

i
is the normal of this triangle. Having approximated NNNSSS, we take

(
NNNVVV ) j

i =
(

NNNSSS
) j

i
×TTT j

i , TTT j
i =

γγγγγγ
j
i+1− γγγγγγ

j
i−1∥∥∥γγγγγγ

j
i+1− γγγγγγ

j
i−1

∥∥∥ .
Now, plugging the formulas (3.2) and (3.3) into the equation (3.1), we obtain

h j
i+1 +h j

i

2
γγγγγγ

j+1
i − γγγγγγ

j
i

hτ

=

{[
γγγγγγ

j+1
i+1 − γγγγγγ

j+1
i

h j
i+1

−
γγγγγγ

j+1
i − γγγγγγ

j+1
i−1

h j
i

]
·
(
NNNVVV ) j

i

}(
NNNVVV ) j

i . (3.4)

Fully discrete formulation In order to provide a fully discrete formulation of our evolution model, we use
an auxiliary notation

γγγγγγ
j+1
i−1 = aaa, γγγγγγ

j+1
i = bbb, γγγγγγ

j+1
i+1 = ccc,

(
NNNVVV ) j

i = ddd, (3.5)

where aaa = (a1,a2,a3) . We consider all vectors in this section to be column vectors. After using this notation in
(3.4) we get

h j
i+1 +h j

i

2
bbb− γγγγγγ

j
i

hτ

=

{[
ccc−bbb

h j
i+1

− bbb−aaa

h j
i

]
·ddd

}
ddd. (3.6)

After a simplification we have[
ccc−bbb

h j
i+1

− bbb−aaa

h j
i

]
·ddd =

ccc ·ddd
h j

i+1

+

(
− 1

h j
i+1

− 1

h j
i

)
bbb ·ddd +

aaa ·ddd
h j

i

. (3.7)

We can use the identity

(ccc ·ddd)ddd = ddd ·dddT · ccc
and rewrite the system (3.6) in the the form

ω[bbb− γγγγγγ
j
i ] = ω+ddd ·dddT · ccc+(−ω+−ω−)ddd ·dddT ·bbb+ω−ddd ·dddT ·aaa, (3.8)

where we used new variables

ω− =
1

h j
i

, ω+ =
1

h j
i+1

, ω =
h j

i+1 +h j
i

2hτ

. (3.9)

After a rearrangement we get the system

ωbbb−ω−ddd ·dddT ·aaa+(ω++ω−)ddd ·dddT ·bbb−ω+ddd ·dddT · ccc = ωγγγγγγ
j
i . (3.10)

Now, returning to the original indexed notation according to (3.5) and denoting ddddddT = D j
i , we get a compact

block three-diagonal matrix form of the linear system that we have to solve. The i-th block row is of the form

(
A j

i

∣∣B j
i

∣∣C j
i

)
γγγγγγ

j+1
i−1

γγγγγγ
j+1
i

γγγγγγ
j+1
i+1

= ωγγγγγγ
j
i , (3.11)
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where

A j
i =−ω− D j

i , B j
i = ωI +(ω++ω−) D j

i , C j
i =−ω− D j

i . (3.12)

For a closed curve, the periodic boundary conditions γγγγγγ
j
0 = γγγγγγ

j
n and γγγγγγ

j
n+1 = γγγγγγ

j
1 are added to the discretized system.

In the case of an open curve, the model is accompanied by Dirichlet boundary conditions and two unknowns
are excluded using γγγγγγ

j
0 = γγγγγγL, γγγγγγ

j
n+1 = γγγγγγR, where γγγγγγL,γγγγγγR are fixed points – the endpoints of the geodesic.

Discretization of the tangential term The tangential term αTTT is approximated as

α(ui, t j)TTT (ui, t j)≈ α
j

i TTT j
i = α

j
i

γγγγγγ
j
i+1− γγγγγγ

j
i−1

h j
i+1 +h j

i

,

where α
j

i is obtained from the discretized version of (2.14) that reads

α
j

i+1 = α
j

i +

((
K2

g
) j

i −
1
L j

n+1

∑
m=1

(
K2

g
) j

m h j
m

)
h j

i +

(
L j

n+1
−h j

i

)
k0. (3.13)

Here we set α
j

0 = 0 and

L j =
n+1

∑
i=1

h j
i

is the approximation of the total length of the curve γγγγγγ j .
The tangential speed in the form (3.13), being based on a rigorous mathematical reasoning, guarantees that

the space discretization grid approaches a uniform discretization as the curve evolves. However, the formula
requires a non-negligible amount of arithmetic operations in each time step. Now, taking in account our specific
situation, we can consider using a simplified version of (3.13). Let us recall that as our curve evolves, its
geodesic curvature converges to zero. Moreover, in practical applications, the initial condition for the evolution
model is usually a curve, which is already quite close to the searched geodesic (most often the shortest path
found by the Dijkstra algorithm). That means we start with a curve whose geodesic curvature is quite close
to zero. If this is the case and if our primary interest is a fast computation, we can approximate the tangential
speed α by omitting the terms containing Kg, that means we can use

α
j

i+1 = α
j

i +

(
L j

n+1
−h j

i

)
k0. (3.14)

Numerous practical experiments with open curves that we performed show that the formula (3.14) is sufficient
in a lot of situations.

By addition of the tangential term to our model, we get a linear system of the form (3.11) with almost the
same coefficients. The only change takes place on the right-hand side, namely it is equal to

ωγγγγγγ
j
i +α

j
i

(
γγγγγγ

j
i+1− γγγγγγ

j
i−1

)
/2,

where α
j

i is the redistribution speed expressed by either (3.13) or (3.14).
The same consideration can be made for closed curves. Let the discretized closed curve have n nodes. Then

the formula (3.14) is in the form:

α
j

i+1 = α
j

i +

(
L j

n
−h j

i

)
k0. (3.15)



Chapter 4

Implementation Details of Discrete
Lagrangian Algorithm

We will briefly mention some implementation details. For efficiency, we used C ++ programming lan-
guage with STL libraries. We use the Dijkstra algorithm to determine the initial approximation for our DLA
algorithm. To achieve its effective implementation, we used the structure the so-called container adapter
std::priority_queue and created a structure for the triangulated surface to get neighbours to the given
vertex immediately. Another condition which we require from the created structure for the triangulated surface
was to immediately get the vertices incident to a given edge, which in turn ensures the efficiency of the PTA
algorithm that we use to project of evolving curve to the surface.

We use the BiCGStab (biconjugate gradient stabilized) method (38) for solving the linear system (3.11) of
our DLA method. The PTA algorithm is described in detail in the thesis. Since the points of two consecutive
iterations of the evolving curve are relatively close to each other on the triangulated surface, PTA proves to be a
suitable algorithm for obtaining an unknown point position as well as its projection on the triangulated surface.
By back-projection of the points of the evolving curve, we have ensured that its points lie on the surface, but
the lines of the adjacent points of the curve can still lie outside the surface. In order to make comparisons on
triangulated surfaces with known methods, it is essential that the nodes of the discretized curve lie on the edges
of the triangulated surface. Again, we used PTA algorithm for it. The comparisons of our DLA algorithm with
several known algorithms are presented in the thesis in detail.

For practical reasons, it is necessary to have an automatic choice of the time step. Based on the condition
of diagonal dominance of the system matrix 3.12 of our DLA algorithm, we have estimated the time step h j

τ by
formula

h j
τ = min

i

(√
2

4
h j

i+1h j
i

)
. (4.1)

In our experiments, we chose a uniform time step calculated from the matrix in the first iteration, i.e. hτ = h0
τ .

A large number of practical experiments have shown that we can use at least 100 times bigger the time step
than the one determined by the formula (4.1).

We chose the stopping criterion as follows. The geodetic curvature flow stops when the average absolute
value of the geodesic curvature at the points of the evolving curve falls below a certain threshold of ε or if the
number of iterations reaches the chosen maximum value of Nmax.

In addition to the C ++ implementation, we have also made an implementation in C# programming language
for the Rhinoceros Grasshopper plug-in. Grasshopper is a graphical editor for Rhinoceros software. It can
also be interpreted as a visual programming language where components represent objects and algorithms
themselves. The program is created by joining these components and filling inputs for these components.
An example of such a program can be seen in Figure 4.1, where our geodetic component is visualized on
the right hand side and a discretized surface along with computed geodesics on the left side of figure. We
implemented DLA as two components, one for Mesh, which is a Rhinoceros representation of the triangulated
surface and one for Surface, which represents the analytically given surfaces, of which the largest class is

12
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Figure 4.1: An a example of a surface visualization in Rhinoceros software (left) and Grasshopper graphic user
interface with visual programming components (right).

NURBS. Both are part of the MeshPaths Grasshopper Library, which is presented along with documentation
and examples in (23). Because the implementation is in C# and for Rhinoceros software, there are major
implementation differences compared to the original C ++ implementation. In this implementation, we use
Rhino.Geometry.Mesh, which is a structure that represents a triangulated surface in Rhinoceros software,

and it is possible to use all known operations on it, such as looking for neighbours for a given vertex, etc. We use
the Mesh.ClosestMeshPoint method on the Mesh structure instead of the PTA algorithm. The implementation
of DLA for analytically defined surfaces, i.e. the implementation of a component on the Surface structure,
differs mainly in the choice of initial iteration and Surface is used instead of Mesh. An example of geodesics
created by our DLA component can be seen in Figures 4.2, 4.3.

Figure 4.2: Geodesics on the surface with the highlighted irregular triangulated surface.
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Figure 4.3: Geodesics on the same surface as in Figure 4.2 without displayed edges of the triangulated surface.



Chapter 5

Experiments and results

In this chapter we present results of several experiments. All computations were performed on a Lenovo
B50 machine with Intel(R) Pentium(R) CPU N3540 2.16GHz processor, 8GB RAM and a 64-bit operation
system.

5.1 Comparison with the Fast Marching Method

In order to demonstrate the efficiency and performance of our DL algorithm, we provide a comparison with
the algorithm by Kimmel and Sethian (16) based on the Fast Marching Method (FMM). The FMM is one of
the most popular methods for numerical computation of distance functions. The distance function to a certain
point can be used to backtrack geodesic paths beginning in that point, which is exactly what the authors of the
mentioned paper do.

We used a Matlab implementation of FMM from Matlab Toolbox Fast Marching (29). As for the DLA, we
used the tangential redistribution model with the simplified tangential speed (3.14). The initial condition for
the method was the Dijsktra shortest path and the time step was set automatically by the procedure described
in Chapter 4. The endpoints of the geodesics used for testing were generated randomly. Each experiment has a
detailed description providing the size of the mesh, the number of computed geodesics, the CPU time needed
for the computations (these values are also listed in Table 5.1) and, of course, the evaluation of the results.
We also list the CPU times needed to initialize the mesh structure in table. As we have shown in thesis, back-
projection of curve points and mesh structure initialisation took only a small portion of the overall CPU time,
up to about 3% altogether.

First, we performed experiments on a triangulated elephant surface with 24955 vertices and 49918 faces,
which is a sample mesh in Matlab Toolbox Fast Marching (29). The computed geodesics are shown are shown
in Figure 5.1 and we can see that DLA and FMM give visually almost the same approximations of geodesics.
As for the computational time, the computation by DLA including the construction of the initial conditions took
9.74 seconds and for FMM algorithm it lasted 10.73 seconds. The stopping threshold ε was set to ε = 0.002.
This value was chosen since it provided results of a quality comparable to FMM, which specifically means that
the lengths of the approximate geodesics were about the same as those obtained by FMM. Actually, the lengths
of the approximations of geodesics computed by DLA were shorter than the FMM approximations in 88 out of
100 experiments; however, the relative differences of the lengths are less than 1% in all cases, see the graph in
Figure 5.2. The PTA algorithm was called 136941 times and exceptions occurred in 107 cases, i.e. the brute
force searching algorithm was called 107 times. The tangential redistribution speed for this experiment was
set to k0 = 100.0. Second, we performed experiments on a triangulated torus, see Figure 5.3. And the third
comparison was made on the triangular mesh of Stanford bunny. The results are presented in Figure 5.4. Other
data from these two experiments with the same meaning as in the first experiment are presented in the table 5.1.
To provide a complete image of the performance of our algorithm, we also note that in all experiments how
long the mesh initialization took, see the mesh DLA column of table 5.1.
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Figure 5.1: The approximate geodesics computed by the DLA (left) and FMM (right) algorithms on the elephant
mesh.

Figure 5.2: Comparison of the lengths of the approximate geodesics obtained by DLA and FMM for the elephant
mesh. The relative difference of the DLA and FMM length (100∗ (LDLA−LFMM)/LFMM) is depicted for each of
the 100 computed approximations of geodesics.

mesh vertices faces mesh DLA ε k0 CPU DLA CPU FMM LDLA < LFMM

elephant 24955 49918 0.182 s 0.002 100.0 9.74 s 10.73 s 88/100

torus 15045 30090 0.039 s 0.002 1.0 5.82 s 6.56 s 99/100

bunny 31467 60650 0.196 s 0.002 100.0 11.25 s 11.41 s 68/91

Table 5.1: Comparison of DLA with FMM. The table shows the computation time needed by both algorithms and
the number of approximate geodesics computed by DLA that were shorter than their FMM counterparts.

To conclude, we would say that our algorithm provides results of about the same quality (with respect to
speed and accuracy) as the fast marching method. As for the difficulty of implementation, we would also say
that both algorithms are at about the same level. For sure, both methods could be still tuned for ideal values
of parameters for each test and maybe both implementations could be optimized even more. However, we
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think the presented results demonstrate that the Discrete Lagrangian Algorithm is a good alternative to the Fast
Marching Method.

Figure 5.3: The approximate geodesics computed by the DLA (left) and FMM (right) algorithms on a triangulated
torus.

Figure 5.4: The approximate geodesics computed by the DLA (left) and FMM (right) algorithms on the Stanford
bunny mesh.

5.2 Examples of a cutting pattern design

Our goal was to design a cutting pattern for a given membrane structure model that is represented by a
triangulated surface. This means that we want to find such shapes of planar strips that form the desired 3D
shape after joining. We proceeded as follows. On the given triangulated surface, we found geodesics that serve
as cutting curves for the cutting pattern generation. Consider cutting geodetics in Figure 5.5.
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Figure 5.5: The geodesics for the initial polygonal front generations

These curves divide the surface into parts that we need to re-triangulate so that the union of these parts
once again constitutes one triangulated surface. That is, the cutting curve nodes are the vertices of the newly
formed triangulated surface. Therefore, we proceed as follows. We find the boundaries of the parts that we get
by dividing the surface by cutting geodesics and dividing them almost equally by discrete step δT . We call such
closed discrete curves polygonal fronts. These polygonal fronts are the initial condition for the triangularization
algorithm that we have implemented according to the article(11). The polygonal fronts, together with the newly
created triangulation (blue colour), can be seen in Figure 5.6.

Figure 5.6: The mesh obtained by the marching triangulation algorithm for geodesic cutting curves.

After receiving the required triangulation, we project the individual parts of it into the plane. We use an
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algorithm for each of these projections (37), which iteratively minimizes the difference between the edge length
of the original and the projected triangulation. This will provide a cutting pattern for each cutting section. The
final geodesic cutting pattern can be seen in Figure 5.7. In the same way, we constructed a non-geodetic cutting
pattern for the same triangulated surface. We chose the cutting curves in a standard way, i.e. the curves formed
by the edges of the triangulated surface. We calculated material waste for both created cutting patterns, the
results are presented in Table 5.2.

Figure 5.7: The individual strips of cutting pattern for triangulated surface shown in Figure 5.6 after developing
into plane constructed from geodesics cutting lines. The corresponding bounding boxes are shown too.

Cutting Strip 1 Strip 2 Strip 3 Strip 4 Strip 5 Overall

geodesic 18.732 3.209 1.358 3.195 18.771 45.265

layout curves 20,301 4.340 1.526 4.354 20.313 50.834

Table 5.2: Cutting pattern experiment - the waste of material corresponding to the geodesic and non-geodesic
cutting patterns in area units. We show the waste for each of the five strips and the overall waste. The strips are
numbered from left to right.

In this case, the total material saving using the geodesic cutting pattern is 12.3%.
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