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na źıskanie akademického titulu philosophiae doctor (PhD.)
v doktorandskom študijnom programe
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Abstract

In this thesis we deal with numerical methods used for solving non-linear time dependent partial
differential equations, where the biggest challenge is numerical approximation of the gradient. We
apply this approach in two fields, therefore is the thesis divided into two parts.

In the first one we present finite volume scheme based on the EHM (Eymard-Handlovicova-Mikula) ap-
proach and apply it in the image segmentation process. We introduce new model, so-called regularised
Riemannian mean curvature flow equation. For this new model we prove the necessary theoretical
aspects as uniqueness of the numerical solution, stability estimates for the numerical solution and
the convergence of the numerical scheme to the solution. Regularised Riemannian mean curvature
flow equation is tested on the benchmark examples to prove its suitability. In the end of the section
two different approaches of the approximation of the non-linear smoothing term are discussed and
compared.

The second part of the thesis is dedicated to the introduction of the discrete duality finite volume
(DDFV) method and the application of this method for modelling of the development of the financial
derivatives’ price in time. So-called Heston model and its regularized version are studied. For the reg-
ularised model the stability estimates on the numerical solution and the convergence of the numerical
scheme to the solution are proven. The last part is dedicated to the numerical experiments for the
DDFV method for the regularised Heston model.

Keywords: finite volume method, level set, image segmentation, regularised Riemannian mean cur-
vature flow equation, DDFV, financial derivatives pricing, regularised Heston model

Abstrakt

V tejto práci sa zaoberáme numerickými metódami na riešenie nelineárnych časovo závislých
parciálnych diferenciálnych rovńıc, kde hlavnou výzvou je aproximácia gradientu. Tento pŕıstup apli-
kujeme v dvoch oblastiach, preto je práca rozdelená na dve časti.

V prvej časti prezentujeme metódu konečných objemov založenú na EHM (Eymard-Handlovičová-
Mikula) pŕıstupe a aplikujeme ju v procese segmentácie obrazu. Zavedieme nový model, takzvanú
regularizovanú level set rovnicu s riemannovskou krivost’ou. Pre tento model sme dokázali potrebné
teoretické vlastnosti ako jedinečnost’ numerického riešenia, stabilitné odhady na numerické riešenie
a konvergencia numerickej schémy k riešeniu. Regularizovaná level set rovnica s riemannovskou kri-
vost’ou je testovaná na pŕıkladoch, aby bola dokázaná jej vhodnost’. Na konci sekcie su diskutované a
porovnané dva rozdielne pŕıstupy k aproximácii nelineárneho zhladzovacieho člena.

Druhá sekcia práce je venovaná uvedeniu diskrétnej duálnej metódy konečných objemov (DDFV)
a použitiu tejto metódy na modelovanie vývoja ceny finančných derivátov v čase. Študovaný je takz-
vaný Hestonov model a jeho regularizovaná verzia. Pre regularizovaný model sú dokázané stabilitné
odhady na numerické riešenie a konvergencia numerickej schémy k riešeniu. Posledná čast’ je vyhra-
dená numerickým experimentom DDFV schémy pre regularizovaný Hestonov model.

Keywords: metóda konečných objemov, level set, segmentácia obrazu, regularizovaná level set rov-
nica s riemannovskou krivost’ou, DDFV, oceňovanie finančných derivátov, regularizovaný Hestonov
model
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Chapter 1

Introduction

The purpose of the thesis is to study problems in mathematical modelling that could be described
by parabolic partial differential equations and to develop tools to solve these problems. As the studied
problems are complex the describing equations are complicated and the corresponding initial-boundary
problems have to be solved numerically.
From the wide range of the numerical methods we chose so-called Gradient Discretisation Method
(GDM) approach based ones. Per his name, GDM approach handles with the numerical approximation
of the gradient as this is the main challenge in our models - how to approximate the gradient of the
solution.
The main publication describing the GDM is, for us, [8] from authors Droniou, Eymard, Gallouet,
Guichard and Herbin, where the linear and non-linear cases for elliptic and parabolic problems are
studied and necessary analysis tools are developed.
A numerical method obviously starts from selecting a finite number of degrees of freedom describing
the finite dimensional space in which the approximate solution is sought. Per [8] XD is meant to
be finite dimensional space (D for ”discretisation”). The two linear operators ΠD and ∇D which
respectively reconstruct, from the degrees of freedom, a function on Ω and its ”gradient”, are such
that

ΠD : XD → L2(Ω), ∇D : XD → L2(Ω)d, (1.1)

where d is dimension of Ω. In other words, the disretisation D in GDM approach contains at least
three following discrete entities:

• a discrete space of unknowns XD - the values at the nodes of the mesh,

• a function reconstruction operator ΠD - transforms an element of XD into a function defined
a.e. on the physical domain Ω,

• an approximate gradient reconstruction ∇D - builds a vector-valued function (discrete gradient)
defined a.e. on Ω from the discrete unknowns.

Then the type of problems we are interested in (searching for the weak solutions of non-linear parabolic
partial differential equations) could be turned to the problem of finding function uD ∈ XD such that
for all vD ∈ XD holds weak formulation of the problem with discrete reconstruction operators defined
above.
We have been speaking only about space discretisation, but there are various approaches to the
time discretisation as well. Usually we can distinguish two main ones - explicit and implicit. The
combination of these two is an option as well. The explicit approach is the simpler one as the state of
a system at a later time is calculated from the state of the system at the current time. In other words if
U(t) is the state of the system at the time t and δt is a small time step we can write U(t+δt) = f(U(t))
with some function f . The main usual disadvantage of the explicit numerical methods is that there
has to be restriction on the time and space step relation prescribed. On the other hand with the
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4 CHAPTER 1. INTRODUCTION

implicit approach the solution is found by solving an equation involving both the current state of the
system and the later one. In mathematical formulation equation g(U(t), U(t + δt)) = 0 has to be
solved to find U(t+ δt).
From all methods that are described by GDM approach we are taking two - Finite Volume Method
(FVM) and Discrete Duality Finite Volume method (DDFV). They are applied in the completely
different fields of applied mathematics, therefore is the thesis divided into two parts, each is dedicated
to the one numerical method and its application. From the time discretisation perspective in the first
part of the thesis there is a semi-implicit method used, where the non-linear terms are taken from
previous time step and the linear terms from the current one, so the system of the linear equations
has to be solved. In the second part we are using fully implicit scheme as the problem prescribing
equation is linear, so we are solving system of linear equations here as well.
Structure of both dissertation thesis parts is basically the same - introduction to the problematic
(used mathematical models and numerical method), definition of the studied problem and appropriate
numerical scheme, theoretical analysis of the defined numerical scheme and numerical experiments.
The FVM is applied in the field of the image processing, concretely in the image segmentation.
Mathematical models based on time dependent partial differential equations used to deal with image
processing and image segmentation problems are stated to introduce the studied problematic to the
reader. As the next step we state the so-called regularised Riemannian mean curvature flow
equation, the problem we are studying in the first part of the thesis, and the semi-implicit FVM
approach based numerical scheme to solve this problem arising in objects segmentation and missing
boundaries competition. The problem is studied from theoretical perspective and the uniqueness of
the solution and convergence of the numerical scheme is proven, and from experimental perspective,
when is the method tested on the benchmark examples to prove its robustness and suitability and
different approaches to the non-linear smoothing term approximation are discussed and compared
visually and numerically.
Second part of the thesis is dedicated to the financial derivatives pricing. Various models based on
PDEs with relevant challenges are discussed, the appropriate numerical method, the DDFV, is stated
and the application of this method in financial mathematics is shown. In the middle of our interest
lies the so-called regularised Heston model and fully implicit DDFV numerical scheme for this
model. In analogy to the first part of the thesis next two sections are dedicated to the theoretical
and numerical study of the numerical scheme. The L∞ stability of the scheme is proven, which leads
to the proof of the DDFV scheme convergence, the main theoretical result of the second part of the
thesis. In the numerical experiments for the regularised Heston model we pay attention especially to
the role and impact of the regularisation parameter on the model results.



Chapter 2

Gradient Schemes in Image
Segmentation Problems

One can find various approaches used in the image processing based on the different mathematical
models, for instance on statistical analysis, graph theory, Fourier transformation or histograms of the
image intensity. These approaches we are not interested in. We do not cover the approach based on
the neural networks and machine learning as well, because this part of our work is dedicated to the
usage of the partial differential equations in the image processing problems, especially in the image
segmentation.

2.1 Mathematical models and numerical method in image segmen-
tation

One of the main challenges we have to deal with in the image processing is noise. Pictures are
often noisy, so they have to be de-noised before other analyses can be done - either extracting crucial
information from the images or building models based on the images.
There are two main models of the noise used in the image processing - additive type of noise and salt
and pepper type. Examples one can can find in [11], [12] and [21].
The very simple model used for pictures de-noising is the one based on the heat equation, which is
actually the convolution of the image density function with the Gaussian kernel. As the heat equation
is linear PDE this is called linear filtration and it smooths the whole image evenly.
There are plenty of generalizations of the image filtration to the non-linear form. We will use, in some
sense, two of them. One, proposed by Perona and Malik in 1987 (see [25] and [26]) is represented by
so-called Perona-Malik equation:

∂u(x, t)

∂t
= ∇ · (g(|∇u|)∇u), (2.1)

where the function g, edge detector, has following properties: g(0) = 1, g(s) > 0, g(s)→ 0 for s→∞
and g′(s) < 0 (g is decreasing function). Function g determinates the power of the smoothing and will
be used in our model as well.
The second approach of the non-linear image filtration we are incorporating to our model is based on
the idea of the curvature driven equations. The point is that the borders of the objects on the pictures
are taken as the curves. Then we let these curves develop by their curvature. The assumption is that
noise has very small radius compared to the actual objects, so after short time it will disappear and
the borders of the objects will not change much. The point of the curvature driven methods is that
borders of objects are represented as curves in 2D and as surfaces in 3D.
In the level set approach are these curves taken as isolines of the level set function (and surfaces as
isosurfaces), so we have to monitor development of the set u(x, t) = c for ∀x ∈ Ω and ∀t ∈ [0, T ], see
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6 CHAPTER 2. GRADIENT SCHEMES IN IMAGE SEGMENTATION PROBLEMS

[24]. Indeed, following condition has to be fulfilled:

0 =
d

dt
(u(x(t), t)) =

∂u

∂t
+∇u · ẋ. (2.2)

Once we consider the curvature driven movement, when ẋ = −∇·
(
∇u
|∇u|

)
∇u
|∇u| the equation (2.2) moves

to the form:

∂u

∂t
−∇ ·

(
∇u
|∇u|

)
∇u
|∇u|

=
∂u

∂t
− |∇u|∇ ·

(
∇u
|∇u|

)
= 0. (2.3)

This equation is called level set equation (see [24]) usually used in the regularised form:

ut = f(|∇u|)∇ ·
(
∇u

f(|∇u|)

)
, (2.4)

where f(s) =
√
s2 + ε2 for ε > 0 sufficient small is called Evans-Spruck regularisation (see [9]) and it

is used to prevent the zero denominators in the numerical scheme (when the gradient of the function
u is zero). In our model we are using its generalised form.
In opposite to the image de-noising process the point and goal of the segmentation process is to divide
the picture into alike groups of pixels called regions, to mark pixels of the object we are interested in or
to add a border to the object where it is missing. The purpose of the segmentation is that sometimes
we prefer picture to be divided into parts, simplified and better analysable.
Idea of the segmentation algorithm derivation is analogical to the ideas for problems of image pro-
cessing presented above. So we can state analogy of the equation (2.4) in the image segmentation,
so-called subjective surfaces equation (see [7]):

ut = f(|∇u|)∇ ·
(
g(|∇I0|) ∇u

f(|∇u|)

)
. (2.5)

We are using the finite volume method (FVM) to handle with the challenges stated above numerically.
The FVM is discretisation method appropriate and therefore used for problems connected with the
conservation laws. In general the conservation laws describe preservation of the quantity modelled by
the function q(x, t) that could be mass or energy and in our case it is the segmentation function. For
more complex introduction to the finite volume method see our main publication regarding this theme
- [10] from authors Eymard, Gallouet and Herbin.
As mentioned in the Introduction very important step in the numerical solution of PDEs is the dis-
cretisation of the domain Ω. For the FVM method it is the division of the domain into so-called
control volumes. The unknown function, solution of the problem, is then approximated by the numer-
ical solution, which is piecewise constant function in the FVM approach.
In addition for the FVM the crucial role in the numerical scheme compiling play the flows through
the borders of the control volumes - on the border of the domain they are given by the boundary
condition and inside of the domain they are linked by the conservation laws. Flow from the control
volume p to the control volume q is equal to the flow from the control volume q to the control volume
p with opposite sign:

~Fp→q = −~Fq→p. (2.6)

We state two semi-implicit numerical schemes used in the image processing based on the finite volume
method in the thesis - HMS (Handlovicova-Mikula-Sgallarri) scheme, see [16], and EHM (Eymard-
Handlovicova-Mikula) scheme, see [12] or [13].
The difference between these two methods is in the gradient approximation principle on the borders
of the control volume. We use the EHM approach, where is the gradient approximated locally on the
given control volume by the so-called diamond cell method, see [23].
One can take a look on the Figure 2.1 taken from Manzini, see [2] or [4], to see the principle of the
diamond cell method:
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Figure 2.1: Finite volume method principle.

2.2 Regularised Riemannian mean curvature flow equation

Our goal is to study following non-linear parabolic equation arising in the image segmentation and
the edge detection and to find numerical scheme for solving it:

ut − f1(|∇u|)∇ ·
(
g(|∇GS ∗ I0|) ∇u

f(|∇u|)

)
= r, a.e. (x, t) ∈ Ω× (0, T ), (2.7)

where u(x, t) is an unknown (segmentation) function defined in QT ≡ Ω × [0, T ], where Ω is a finite
connected open subset of Rd, d ∈ N, [0, T ] is a time interval and I0 is a given image, typically on this
image is an object we want to segment.
We consider zero Dirichlet boundary condition

u = 0, a.e. (x, t) ∈ ∂Ω× [0, T ] (2.8)

and initial condition

u(x, 0) = u0(x), a.e. x ∈ Ω. (2.9)

Assumptions on the data in (2.7)-(2.8)-(2.9) can be summarized to the following hypothesis, we denote
it as Hypothesis (H):
Hypothesis H

• (H1) Ω is a finite connected open subset of Rd, d ∈ N, with boundary ∂Ω defined by a finite
union of subsets of hyperplanes of Rd,

• (H2) u0 ∈ L∞(Ω),

• (H3) r ∈ L2(Ω× (0, T )) for all T > 0,

• (H4) f ∈ C0(R+; [a, b]) is a regularisation - Lipschitz continuous (non-strictly) increasing func-
tion, such that the function x 7→ x/f(x) is strictly increasing on R+. For practical application
we are using f(s) = min{

√
s2 + a2, b}, where a and b are given positive parameters, a ≤ b,

• (H5) f1 ∈ C0(R+; [a1, b1]), in general a1 6= a, b1 6= b, but for now in our model we, just for the
sake of simplicity, consider the case a1 = a and b1 = b,

• (H6) g ∈ C0(R+; [0, 1]) is decreasing function of Perona-Malik type, g(0) = 1, g(s) → 0 for
s → ∞. For practical numerical computation we use g(s) = 1

1+Ks2
, where K is a constant of

sensitivity of function g and we choose it,

• (H7) GS ∈ C∞(Rd) is a smoothing kernel (Gauss function), with width of the convolution mask
S and such that

∫
Rd GS(x)dx = 1,

∫
Rd |GS |dx ≤ CS , CS ∈ R, GS(x) → δx for S → 0, where δx
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is Dirac measure at point x and

(∇GS ∗ I0)(x) =

∫
Rd
∇GS(x− ξ)Ĩ0(ξ)dξ, (2.10)

where Ĩ0 is extension of image I0 to Rd given by periodic reflection through boundary of Ω,

• (H8) initial image I0 is such that I0 ∈ L∞(Ω).

Definition 2.1 (Weak solution of (2.7)-(2.8)-(2.9)) Under the Hypothesis (H), we say that u is
a weak solution of (2.7)-(2.8)-(2.9) if, for all T > 0,

1. u ∈ L2(0, T ;H1
0 (Ω)) and ut ∈ L2(Ω× (0, T )) (hence u ∈ C0(0, T ;L2(Ω))).

2. u(·, 0) = u0.

3. Following holds∫ T

0

∫
Ω

(
ut(x, t)v(x, t)

f1(|∇u(x, t)|)
+ g(|∇GS ∗ I0|)∇u(x, t) · ∇v(x, t)

f(|∇u(x, t)|)

)
dxdt =

=

∫ T

0

∫
Ω

r(x, t)v(x, t)

f1(|∇u(x, t)|)
dxdt,∀v ∈ L2(0, T ;H1

0 (Ω)).

(2.11)

The space discretisation of the domain Ω is the triplet D = (M, E ,P), where the symbolM represents
the so-called control volumes, E is the set of the mesh edges and P are points, there is one point in
every control volume. For the time discretisation we are using the semi-implicit approach - the non-
linear terms are taken explicitly and the linear terms implicitly.
The discrete solution of the problem is piecewise constant function in space and in time and is defined
as

unp = u(xp, t) (2.12)

for t ∈ [nτ, (n+ 1)τ ], n = 1, ..., NT + 1 and ∀p ∈M and norm of its gradient is given by

Np(u)2 =
1

|p|
∑
σ∈Ep

|σ|
dpσ

(uσ − up)2, ∀p ∈M. (2.13)

For the term gSD, approximation of the non-linear smoothing term, we introduce two possible ap-
proaches - (APR1):

gSσ := gS(xσ) = g(|
∫
Rd
∇GS(xσ − ξ)Ĩ0(ξ)dξ|) (2.14)

and (APR2):

gSp := gS(xp) = g(|
∫
Rd
∇GS(xp − ξ)Ĩ0(ξ)dξ|). (2.15)

In the first case is the convolution of the initial image with the Gaussian kernel done on the edge of the
control volume, where it should be done as one can see in the scheme (2.20). For the second approach
it is done in the point inside of the control volume, therefore there is an error included. Quantification
of this error is the task we are solving in the numerical section of the first part of the thesis.
Under the above notations is the semi-implicit scheme for the problem (2.7)-(2.8)-(2.9)) defined by

u0
p = u0(xp), ∀p ∈M, (2.16)

u0
σ = u0(xσ), ∀σ ∈ E , (2.17)

rn+1
p =

∫ (n+1)τ

nτ

∫
p
r(x, t)dxdt, ∀p ∈M, ∀n ∈ N, (2.18)
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un+1
σ = 0, ∀σ ∈ Eext, ∀n ∈ N (2.19)

and

|p|
τ f1(Np(un))

(un+1
p − unp )− 1

f(Np(un))

∑
σ∈Ep

gSD
|σ|
dpσ

(un+1
σ − un+1

p ) =

=
rn+1
p

τ f1(Np(un))
, ∀p ∈M, ∀n ∈ N,

(2.20)

where the following relation is given for the interior edges (balance of the fluxes, see (2.6)):

gSD
un+1
σ − un+1

p

f(Np(un)) dpσ
+ gSD

un+1
σ − un+1

q

f(Nq(un)) dqσ
= 0, (2.21)

∀n ∈ N, ∀σ ∈ Eint (the set of interior interfaces) where σ is the edge between p and q.
For the (APR1) equation (2.21) turns to the form:

un+1
σ − un+1

p

f(Np(un)) dpσ
+

un+1
σ − un+1

q

f(Nq(un)) dqσ
= 0 (2.22)

and for the (APR2) case (2.21) has to be considered in the form:

gSp
un+1
σ − un+1

p

f(Np(un)) dpσ
+ gSq

un+1
σ − un+1

q

f(Nq(un)) dqσ
= 0. (2.23)

2.3 Numerical analysis of regularised Riemannian mean curvature
flow model

Per its name is this section dedicated to the numerical analysis of the studied model, see [29]. As
the first the stability estimates were proven. The L∞ stability of the scheme estimate:

|unp | ≤ |u0|D,∞ + |r|D,τ,∞ n τ ≤ |u0|D,∞ + |r|D,τ,∞ T, ∀p ∈M, ∀n = 0, . . . ,NT . (2.24)

The straightforward implication of (2.24) is the uniqueness of the numerical solution.
Second proven inequality shows L2(Ω× (0, T )) estimate on the numerical solution time derivation and
L∞(0, T ;HD) estimate on the numerical solution itself:

1

2b

m−1∑
n=0

τ
∑
p∈M
|p|

(
un+1
p − unp

τ

)2

+ νS
∑
p∈M
|p| F (Np(u

m))+

+
νS
2b

m−1∑
n=0

∑
p∈M
|p| (Np(u

n+1)−Np(u
n))2 ≤

Cθ‖u0‖2H1(Ω) + ‖r‖2L2(Ω×(0,T ))

2 a
, ∀m = 1, . . . , NT .

(2.25)
This estimate holds unconditionally for the approximation of the smoothing term gSD by (APR2).
For the (APR1) case the space and the time step have to be of the same order and a constant C
depending only on the data of the problem has to be added on the right side of the inequality (2.25).
We use above mentioned estimates and another lemmas to prove following theorem, which guarantees
the convergence of the scheme (2.20)-(2.21) to the weak solution of the problem (2.7)-(2.8)-(2.9).
Convergence of the semi-implicit FVM scheme to the weak solution of the regularised
Riemannian curvature flow equation theorem:
Let the Hypothesis (H) holds and let for all m ∈ N be the function uDm,τm defined as uDm,τm(x, t) =
un+1
p for a.e. x ∈ p, ∀t ∈ (nτ, (n + 1)τ ], ∀p ∈ M, ∀n ∈ N. Let (Dm, τm)m∈N be the extracted

subsequence of the space-time discretisations such that hDm and τm converge to 0 for m→∞.
Then there exists a function ū ∈ L∞(0, T ;H1

0 (Ω)), such that uDm,τm → ū in L2(0, T ;H1
0 (Ω)) and this
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ū is the weak solution of (2.7)-(2.8)-(2.9) in the sense of the Definition 2.1. Moreover if we define:

ĜD,τ (x, t) =
1

|p|
∑
σ∈Ep

(un+1
σ − un+1

p )npσ, (2.26)

for a.e. x ∈ p, t ∈ (nτ, (n+ 1)τ ], ∀p ∈M, ∀n ∈ N, it holds that ĜDm,τm → ∇ū in L2(Ω× (0, T ))d and
ND,τ (x, t)→ |∇ū| in L2(Ω× (0, T )), where N is defined by (2.13).

2.4 Numerical experiments in image segmentation

To demonstrate advantages of our approach we test the model on the benchmark examples - we
chose object with incomplete border and noisy object as examples of the most often appearing errors
in the initial data, noise and missing boundaries of the objects, see [28] or [30]:

(a) Object with incomplete border. (b) Noisy object.

Figure 2.2: Benchmark examples.

As we are using the method based on the level set approach we have to create the initial level
set function as the first step. We will monitor the development of the chosen segmented object by
monitoring the development of the level set function, better say its isolines. The crucial aspect of this
process is that we monitor progress of the whole surface, not just a particular curve, therefore we are
able to easily follow the topological changes.
We can see how the situation is looking at the beginning of the segmentation on the following pictures:

(a) Level set function at the beginning. (b) Isolines at the beginning.

Figure 2.3: Situation at the beginning of the segmentation.

Level set function movement is driven by the curvature, monitored area (it has yellow color on the
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picture bellow and it is the inside of the segmented object) is growing, her borders are pulled to the
borders of the segmented object by the constructed vector field.
Constructed scheme based on the level set approach has shown to be robust against the selected errors
in the initial data and it is able to segment given objects:

(a) Level set function after 100 time steps. (b) Level set function after 100 time steps.

(c) Isolines after 100 time steps. (d) Isolines after 100 time steps.

Figure 2.4: Segmentation of the chosen objects.

Second type of the numerical experiment we are presenting is the non-linear smoothing term
approximation impact analysis, see [31]. We can see minimal impact from both, visual and numerical,
perspectives as demonstrated in the Table 2.1:

Absolute difference after 1 step 10 steps 100 steps 1000 steps

L1 norm 0.00612 0.13982 0.22316 0.29966

L2 norm 0.00001 0.00004 0.00013 0.00009

L∞ norm 0.00086 0.00244 0.00309 0.00098

Relative difference after 1 step 10 steps 100 steps 1000 steps

L1 norm 0.00039 0.00091 0.00151 0.00098

L2 norm 7.53e-08 2.78e-07 8.79e-07 7.20e-07

L∞ norm 5.53e-06 1.59e-05 2.09e-05 7.44e-06

Table 2.1: Absolute and relative norms for sensitivity constant K = 1.

The approach (APR2) seems to be the better one from the two studied, because the scheme with the
approximation (APR2) has better theoretical properties (unconditional stability and convergence)
and it is easier to implement and because (APR1) is better only insignificantly from numerical
perspective.



Chapter 3

Gradient Schemes in Financial
Derivatives Pricing Problems

We pay attention on the application of the parabolic partial differential equations in the financial
derivatives pricing in the second part of the thesis and we solve chosen problem from this problematic
using the DDFV numerical method.

3.1 Mathematical models and numerical method in financial math-
ematics

The idea of financial derivatives is quite straightforward - the price of the derivative depends on
the time and on the price of the underlying asset (stock, bond, interest rate, etc.). This gives the
investor an opportunity to create a portfolio from underlying assets and their derivatives to avoid risk
of potential loss (at least in theory), so-called hedging.
The ground stone of an option pricing - Black-Scholes equation (see [3]):

∂V

∂t
+ rS

∂V

∂S
+

1

2
σ2S2∂

2V

∂S2
− rV = 0. (3.1)

was proposed based on the Ito’s lemma (see [18] or [19]), the principle of hedging and the assumptions
of an idealized financial market:

• (i) trading takes place continuously in time;

• (ii) there are no arbitrage opportunities (no possibility to make riskless profit);

• (iii) the riskless interest rate r is known and constant over time;

• (iv) no transaction costs exist in buying or selling the asset or the option (frictionless market);

• (v) the assets are perfectly divisible and short-selling is permitted;

• (vi) the stock price follows geometric Brownian motion with constant drift and volatility: dS =
µSdt+ σSdw, where w is standard Wiener process, see [27];

• (vii) the stock pays no dividend.

As the assumptions of an idealized financial market were found to be too simplifying for the real
market conditions a lot of generalisations of the original linear model were developed. Many of them
were focused on the assumption (vi), especially to eliminate the the constant volatility of the Brown
motion that models the stock price assumption.

12
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Following stochastic differential equation was proposed in [5] to imitate the behaviour of risk-free
interest rate:

dvt = κ(θ − vt)dt+ σ
√
vtdzt. (3.2)

This idea was taken to be the model of the financial derivative volatility development by Heston in
[17], which led to the so-called Heston differential equations stated here in its usual form:

∂V

∂t
+

1

2
vS2∂

2V

∂S2
+ ρσSv

∂2V

∂S∂v
+

1

2
vσ2∂

2V

∂v2
+ rS

∂V

∂S
+ [κ(θ − v)− λv]

∂V

∂v
− rV = 0. (3.3)

After the substitution x = ln( SE ), y = v, τ = T − t, u(x, y, τ) = V (S,v,t)
E the (3.3) can be expressed in

the compact form

∂u

∂τ
+ ~A · ∇u = ∇ · (B∇u)− ru. (3.4)

Regularisation of (3.4) together with appropriate initial and boundary conditions constitutes the
problem we are studying in this part of our work.
We are using the discrete duality finite volume method (DDFV) for numerical solution. The principle
of the DDFV is that we create so-called dual mesh on the top of the original one. In other words there
is another triplet D̄ = (M̄, Ē , P̄) with the same meaning as explained in the Section 2.1.
On the Figure 3.1 taken from [20] we can see the example for the rectangular square mesh - on the
top of the primal (red) mesh there is a dual (black) mesh created.

Figure 3.1: Primal (red) and dual (black) mesh.

The crucial advantage which this approach brings from numerical perspective is that, as for rect-
angular square mesh one can see above on the Figure 3.1, vertexes of the original mesh are points of
the dual mesh and vice versa. This feature is very convenient especially for approximation of the flux
(represented by gradient in our case) through the boundary of the control volumes.
This is the overall principle of the DDFV derived from the FVM as it is the way we have followed in
our study of these numerical methods. The DDFV was firstly used by Andreianov, Boyer, Hubert in
[1] and by Domelevo, Omnes in [6].

3.2 Regularised Heston model

We consider following problem: find an unknown function u = u(x, y, τ) - approximate solution to
the equation

∂u

∂τ
+ ~A · ∇u = ε4u+∇ · (B∇u)− ru + f(x, y, τ), (x, y, τ) ∈ Ω× [t1, t2], (3.5)

where Ω = (Xa, Xb)× (0, Y ) is a rectangular domain and

f(x, y, τ) =

{
0 for x < −rτ,
εex for x ≥ −rτ.

(3.6)
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The unknown function u fulfils homogeneous initial and boundary conditions, ε is regularisation
parameter of the problem and

B =
1

2
y

(
1 ρσ
ρσ σ2

)
, ~A = −

(
r − 1

2y −
1
2ρσ

κ(θ − y)− λy − 1
2σ

2

)
. (3.7)

Based on the boundary condition we divide Γ, boundary of the domain Ω, into two parts such that

Γ = ΓD
⋃

ΓN ,

where ΓD = {(x, y) ∈ Γ : x = Xa ∨ x = Xb}, part of the Γ where Dirichlet boundary conditions are
prescribed and ΓN = {(x, y) ∈ Γ : y = 0∨ y = Y }, part of the Γ where Neumann boundary conditions
are prescribed.
Parameters of the model (3.5) have following meaning and values:

• ρ ∈< −1, 1 > is the correlation parameter between underlying asset price and the volatility of
the financial derivative;

• σ > 0 is the volatility variance, which is taken to be a stochastic variable as stated in (3.2);

• θ > 0 is the long term variance, around which the financial derivative volatility oscillate;

• κ > 0 is the reversion speed of the financial derivative volatility return to the long term variance;

• r > 0 is the interest rate;

• λ > 0 is the market price of risk, which models the risk impact.

In analogy to the first part we define weak solution of the problem we are studying. At this point we
are following the approach given in [10].

Definition 3.1 (Weak solution of (3.5)) We say that u is a weak solution of (3.5) if, for all
I =< t1, t2 >, 0 < t1 < t2 <∞,

1. u ∈ L2(I;V (Ω)), where V (Ω) := {u ∈ H1(Ω) : u|ΓD = 0}.

2. u(·, 0) = 0.

3. Following holds∫
I

∫
Ω
−u(x, y, τ)

∂ψ

∂τ
(x, y, τ) + ~A · ∇u(x, y, τ)ψ(x, y, τ) + ε∇u(x, y, τ)∇ψ(x, y, τ)+

+ B∇u(x, y, τ)∇ψ(x, y, τ) + ru(x, y, τ)ψ(x, y, τ)dxdydτ =

=

∫
I

∫
Ω
f(x, y, τ)ψ(x, y, τ)dxdydτ,

∀ψ ∈ A := {ϕ ∈ C1(I;C1(Ω)) : ϕ(t2, ·) = 0 ∧ ϕ|ΓD = 0}.

(3.8)

Following the approach presented in [14] and in [15] we can discretize the problem by the fully implicit
DDFV numerical scheme.
Under the symbol unij we mean the piecewise constant approximation of the solution in the points of
the primal mesh, in analogy ūnij is the approximation on the dual mesh. The numerical solution is
then defined as the average of the solution on the primal and dual mesh, similarly for the numerical
solution time derivation approximation. We are using the diamond cell method for the numerical
solution gradient approximation. We construct the admissible mesh such that hx is the space step
in the direction x and hy in the direction y. Once we set the diffusion tensor B elements and the

convection term ~A elements on the common edge of the control volume p and the control volume q as

Bpq
ij =

(
b11
ij,pq b12

ij,pq

b21
ij,pq b22

ij,pq

)
, ~Apqij =

(
a1
ij,pq

a2
ij,pq

)
(3.9)
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we get the scheme for the values unij on the primal mesh

unij − u
n−1
ij

k
hxhy − ε(hy[uij,nx − ui−1j,n

x ] + hx[ūij,ny − ūij−1,n
y ])−

− hy[b11
ij,10u

ij,n
x + b12

ij,10u
ij,n
y ]− hx[b21

ij,01ū
ij,n
x + b22

ij,01ū
ij,n
y ]+

+ hy[b
11
ij,−10u

i−1j,n
x + b12

ij,−10u
i−1j,n
y ] + hx[b21

ij,0−1ū
ij−1,n
x + b22

ij,0−1ū
ij−1,n
y ]+

+ hya
1
ij,10

uni+1j − unij
2

+ hxa
2
ij,01

unij+1 − unij
2

− hya1
ij,−10

uni−1j − unij
2

− hxa2
ij,0−1

unij−1 − unij
2

+ runijhxhy = fnijhxhy

(3.10)

and for the values ūij on the dual mesh

ūnij − ū
n−1
ij

k
hxhy − ε(hy[ūi+1j,n

x − ūij,nx ] + hx[uij+1,n
y − uij,ny ])−

− hy[b11
i+1j+1,0−1ū

i+1j,n
x + b12

i+1j+1,0−1ū
i+1j,n
y ]− hx[b21

i+1j+1,−10u
ij+1,n
x + b22

i+1j+1,−10u
ij+1,n
y ]

+ hy[b
11
ij,01ū

ij,n
x + b12

ij,01ū
ij,n
y ] + hx[b21

ij,11u
ij,n
x + b22

ij,10u
ij,n
y ] + hya

1
i+1j+1,0−1

ūni+1j − ūnij
2

+

+ hxa
2
i+1j+1,−10

ūnij+1 − ūnij
2

− hya1
ij,01

ūni−1j − ūnij
2

− hxa2
ij,10

ūnij−1 − ūnij
2

+ rūnijhxhy = f̄nijhxhy.

(3.11)

Properties of these schemes are studied in the next two sections in the terms of their stability and
accuracy.

3.3 Numerical analysis of regularised Heston model

We proved the stability estimate on the numerical solution and its gradient in analogy to the first
part:

||uk,h||L∞(I;L2(Ω)) ≤ C,
||∇uk,h||2L2(I;L2(Ω)) ≤ C(ε),

(3.12)

where C(ε) is generic constant depending only on the data of the problem and the regularisation
parameter ε, not on parameters k (time step), hx and hy (space steps).
Estimate (3.12) helped us prove following theorem stating the convergence of the scheme (3.10) -
(3.11) to the weak solution of the problem (3.5).
Convergence of the fully implicit DDFV scheme to the weak solution of the regularised
Heston model theorem:
Let Ω be the rectangular domain and I = [t1, t2] be the time interval, 0 < t1 < t2 < ∞. Let uk,h be
the solution of (3.10) - (3.11). Let (km, hm) be the sequence of the space-time discretisations such
that km → 0 and hm → 0 for m → ∞. Then there exists a function ũ ∈ L2(I;H1(Ω)) such that
ukm,hm ⇀ ũ in L2(I;H1(Ω)) for m → ∞ and this ũ is the weak solution of (3.5) in the sense of the
Definition 3.1.

3.4 Numerical experiments in financial derivatives pricing

There are two types of the numerical experiments performed in the financial mathematics part of
the work. The first one is focused on the quantification of the regularisation parameter ε impact as
the term ε4u was added to the original Heston model for the numerical analysis purposes only.
One can find L2 errors of the tested models - classic Heston model (D) and regularised Heston model
(R) solved using the DDFV approach for various values of the parameter ε and number of the time
steps Nts and the space steps Nx and Ny in the Table 3.1:
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Nx Ny Nts L2D L2R, ε = 10−2 L2R, ε = 10−4 L2R, ε = 10−6

20 10 1 0.00815061 0.00827543 0.00815181 0.00815063

40 20 4 0.00607821 0.00613972 0.00607879 0.00607822

80 40 16 0.00548663 0.00553226 0.00548706 0.00548664

160 80 64 0.00529716 0.00533972 0.00529756 0.00529716

Table 3.1: Classic and regularised DDFV scheme errors comparison.

The experiment conclusion is that errors of both models are decreasing with the increasing number
of the time and space steps. In addition one can see that L2R(ε) → L2D as ε → 0 for all listed
meshes and for ε sufficiently small are the results for the regularised model almost the same as for the
non-regularised case.
In the second experiment we are solving one phenomenon for the tensor diffusion problems occurring
for the model:

∂u

∂τ
= ∇ · (B∇u), (x, τ) ∈ Ω× [t1, t2] (3.13)

with the known shape of the exact solution, see [22]:

u(x, τ) =
1

4πτ
√
|B|

e−
xTB−1x

4τ , (x, y) ∈ Ω ⊂ R2, τ ∈ [t1, t2], t1, t2 ∈ R, t2 > t1 > 0. (3.14)

This solution is positive on whole space domain Ω =< −1; 1 > × < −1; 1 > and in the time interval
< 0.2; 0.3 > as seen on the Figure 3.2. Here one can observe that there are stripes where the solution
is negative occurring around axis y = 0, when solving this problem numerically with the FVM or the
DDFV approach:

(a) Shape of the exact solution.
(b) Shape of the DDFV numerical solution without reg-
ularisation.

Figure 3.2: Exact solution negativity zones problem.

There was a regularisation analogical to the one used by us for the Heston model proposed in [15]
to solve this issue:

∂u

∂τ
= ∇ · ((B + ε)∇u), (x, τ) ∈ Ω× [t1, t2]. (3.15)

In opposite to this global regularisation (on the whole domain Ω) we suggested the local regularisation
only on the problematic area around axis y = 0, therefore is the model as follows:

∂u

∂τ
= ∇ · (Bε∇u), (x, τ) ∈ Ω× [t1, t2], (3.16)

where Bε is defined as

Bε(x, y) =

{
B + ε, pre (x, y) ∈ Ωε := {(x, y) : |y| < ε},
B, pre (x, y) ∈ Ω− Ωε.

(3.17)
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On the top of the classic L2 error we are monitoring two new metrics developed for this experiment
only - the first one is percentage of the area, where is the corresponding solution negative and the
second one is the solution maximum value. We state these metrics values for Nx = Ny = 160 and
Nts = 640 for the exact solution (Exact), model without any regularisation (C), model with the global
regularisation (RG) and model with the local regularisation (RL) in the Table 3.2:

metrics Exact C RG, ε = 10−3 RG, ε = 10−5 RL, ε = 10−3 RL, ε = 10−3

percentage 0 1.598 0.262 1.582 0.832 1.578

maximum 12.0919 12.2543 10.5565 12.2333 11.6292 12.247

Table 3.2: Diffusion model experiment tracked metrics.

Only the regularisations with the parameter value ε = 10−3 make sense for the negativeness problem
as seen above. The global regularisation achieved better results in this case, but has a problem with
the error of the solution maximum approximation. Local regularisation can be interesting and useful
compromise with the stated metrics balancing from this perspective.
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