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Abstrakt
V práci opisujeme dve numerické metódy na odhad optického toku z dvoch po sebe

nasledujúcich obrazov vo videosekvencii. Obe metódy sú založené na rovnici advekcie
a hlavný rozdiel medzi metódami je v pridaných podmienkach na vektorové pole v rov-
nici advekcie. Pri riešenı́ rovnice advekcie použı́vame metódu charakteristı́k a optický
tok zı́skame použitı́m spätného sledovania charakteristı́k. Hlavným výsledkom práce je
nová metóda na numerické riešenie rovnice advekcie pre pohyb v smere normály pomo-
cou bilineárnej interpolácie, ktorá je vhodná pre odhad optického toku medzi obrazmi. V
numerickej časti práce prezentujeme výsledky oboch metód, ktoré sme zı́skali použitı́m
2D dát. Metódy sme testovali na dátach s presným riešenı́m a použili sme ich aj pri od-
hade optického toku v reálnych dátach.

Kl’účové slová: optický tok, rovnica advekcie, charakteristické krivky, metóda spätného
sledovania

Abstract
In this work we describe two numerical methods for optical flow estimation between

two consecutive images in a video sequence. Both methods are based on the advection
equation and the difference is on the choice of additional constraints for the velocity vec-
tor field. For solving the advection equation the characteristic curves are used and the
optical flow is obtained using the backward tracking method to approximate the charac-
teristics. The main results of this work is a new method for the numerical solution of
advection equation for the motion in normal direction that is suitable for the optical flow
estimation between images. We present numerical experiments on 2D synthetic data
with exact solutions and on two dimensional real data.

Keywords: optical flow, advection equation, characteristic curves, backward tracking
method
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1 Introduction

Optical flow is an important topic in medicine, computer vision and image process-
ing [1, 3, 5–7, 12]. It is a technique that is used to describe a deformation between
images of a video sequence. The algorithms of optical flow estimation studied in this
work are based on searching a deformation of one image toward the second one.

There are many methods that are dealing with the estimation of optical flow and the
most popular ones are so-called differential methods [1, 6, 7, 12] as they are based on
spatial derivatives of images.

Let the image sequence be described by a function f = f (x, t) defined on a domain
x ∈Ω⊂ R2 where x = (x,y) denotes the location and t ∈ [0,T ] is the time. In such way
the particular images are obtained for discrete values of t, e.g. t = 0,1,2 and so on.
The methods of optical flow estimation describe in this work are based on the advection
equation in the form

∂t f (x, t)+u(x, t)∂x f (x, t)+ v(x, t)∂y f (x, t) = 0, (1.1)

where~u =~u(x, t) = (u,v) = (u(x, t),v(x, t)) is the deformation and the subscripts denote
the partial derivatives. In optical flow estimation the function f in (1.1) is considered to
be known and the deformation~u has to be determined.

If a method of optical flow is estimating the deformation~u having a general vectorial
form, the problem is typically underdefined. It means that the solution of formulated
problem needs not to be unique. Therefore, some additional conditions are typically
imposed on the estimated deformation~u to formulate a problem with an unique solution.

In our work we describe two approaches for the estimation of the optical flow. Both
approaches are based on the advection equation (1.1) and a backward tracking of char-
acteristics. The first approach we are interested in is derived from the mathematical
model created by Lucas and Kanade [7]. We use the idea of this method but in nu-
merical implementation we modify it by suggesting a natural control of so-called CFL
(Courant-Friedrichs-Lewy) [10].

The second approach is based on the level set formulation [8] and it is directly mo-
tivated by the model described in Sapiro et al. [1] and Vemuri et al. [12] that is slightly
modified. We propose here a new numerical method of optical flow estimation. The new
proposed numerical scheme is explicit, it means the numerical solution in one time step
is defined directly and no linear system of equations must be solved.

This work is organized as follows. Chapter 2 contains the mathematical formulation
of the advection equation and its solution. We introduce the mathematical models of the
Lucas and Kanade method and the method based on the level set motion. In Chapter 3 we
describe the numerical implementation of backward tracking method and we propose the
numerical implementation of both methods. Chapter 4 includes numerical experiment
on synthetic data with exact solution. Finally, conclusions and further research can be
found in Chapter 5.
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2 Mathematical model
In this chapter we describe the mathematical formulation of optical flow based on

advection equation and its solution using characteristic curves. The method of Lucas
and Kanade and the method based on level set motion are described in this chapter.

2.1 The optical flow estimation
Let F and G be a given two-dimensional functions e.g. the functions of the intensity

of grayscale images. The functions F = F(x) and G = G(x) are defined on a domain
Ω ⊂ R2 for x ∈ Ω. The main aim of optical flow estimation is to find a deformation ~U
under which the function F is transferred to the function G. As we define later this can
be described by a vector function ~U = ~U(x) such that

F(x−~U(x)) = G(x) . (2.1)

The solution of this problem does not seem to be complicated, but the opposite is
true. The solution of the optical flow estimation is nontrivial because different situations
can occur, e.g. the optical flow does not exist (see Fig. 1) or there are many optical flows
(see Fig. 2).

Therefore, some additional constraints are typically imposed on the estimate of ~U
to formulate a problem with an unique solution. In our work we consider two methods
with different additional constraints on ~U for the optical flow estimation. The first one
is based on minimization of function and the second one is based on level set motion.
The both approaches are related to the advection equation that we introduce in the next
section.

Figure 1: The optical flow does not exist. From the left to the right: the function F , the
function G.

Figure 2: There are many optical flows. From the left to the right: the function F , the
function G, rotation in the clockwise direction, rotation in the counter-clockwise direction.
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2.2 The advection equation

The basic idea of our approach in this work is to search for a function f = f (x, t)
that fulfils the advection equation (1.1), i.e.

∂t f (x, t)+~u(x, t) ·∇ f (x, t) = 0 , f (x,0) = F(x) . (2.2)

Our aim is to define ~u such that f (x,T ) = G(x) where T > 0 is not yet specified time.
The notation ∇ f (x, t) = (∂x f (x, t),∂y f (x, t)) is the spatial gradient of function.

2.3 The method of characteristics

For solving the advection equation in the form (2.2), the method of characteristics
can be used. Let ~u in (2.2) be known, then the characteristic curves X = X(x, t̃; t) for
some t̃ ∈ [0,T ] and x ∈Ω are the solutions of ordinary differential equations

Ẋ(x, t̃; t) =~u(X(x, t̃; t), t) , X(x, t̃; t̃) = x . (2.3)

The value X(x, t̃; t) denotes the position X of characteristic curve at time t for which the
position at time t̃ is x.

For the solution f (x, t) of (2.2) we see that the time derivative of f (X(x, t̃; t), t) van-
ishes along X(x, t̃; t)

d
dt

f (X(x, t̃; t), t) = ∂t f (X(x, t̃; t), t)+ Ẋ(x, t̃; t) ·∇ f (X(x, t̃; t), t)

= ∂t f (X(x, t̃; t), t)+~u(X(x, t̃; t), t) ·∇ f (X(x, t̃; t), t)
= 0 ,

(2.4)

if all derivatives exist. We can conclude that the function f is constant along the charac-
teristic curves.

In our work we consider so-called backward tracking of characteristics for x ∈ Ω

from t = t̃ = T to t = 0 in the form

Ẋ(x,T ; t) =~u(X(x,T ; t), t) , X(x,T ;T ) = x . (2.5)

Let f be a smooth solution of the advection equation (2.2) such that f (x,T ) = G(x) for
x ∈Ω, we obtained

F(X(x,T ;0)) = f (X(x,T ;0),0) = f (X(x,T ; t), t) = f (X(x,T ;T ),T )

= f (x,T ) = G(x) ,
(2.6)

so we can define the deformation ~U as follows

~U(x) = x−X(x,T ;0). (2.7)

There are several methods how to solve the advection equation (2.2) numerically
when ~u is given. We search for a numerical approximation of the function f (x, t̃) by
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using the property (2.4), i.e.

f (x, t̃) = F(X(x, t̃;0)), (2.8)

where to obtain X(x, t̃;0) in (2.8) we solve (2.3) numerically.

2.4 Lucas and Kanade method

The Lucas and Kanade [7] method assumes that the optical flow is constant within
some local neighbourhood of the location x ∈ Ω. The method is used mostly to find
a small and approximately constant geometric deformation. The required additional
constraints on~u are obtained by a minimization of some appropriate function.

For determining~u for each x ∈Ω and t ∈ [0,T ] we minimize the function

ELK(u,v) = Kσ ∗
(
(∆t f +u∂x f + v∂y f )2) , (2.9)

where ∆t f = (G− f ) and ∗ denotes the convolution of the Gaussian function Kσ and
(∆t f +u∂x f + v∂y f )2.

Consequently, we can determine u and v at some location x∈Ω and at time t by using
a necessary condition for the minimum of ELK in (2.9) that is reached if ∂uELK(u,v) = 0
and ∂vELK(u,v) = 0, i.e.

Kσ ∗ [2(∂x f u+∂y f v+∆t f )∂x f ] = 0 ,
Kσ ∗ [2(∂x f u+∂y f v+∆t f )∂y f ] = 0 . (2.10)

The solution of this minimization problem (2.10) can be obtained from the linear system
in the form(

Kσ ∗ (∂x f )2 Kσ ∗ (∂x f ∂y f )
Kσ ∗ (∂y f ∂x f ) Kσ ∗ (∂y f )2

)(
u
v

)
=

(
−Kσ ∗ (∂x f ∆t f )
−Kσ ∗ (∂y f ∆t f )

)
. (2.11)

Consequently, to determine the evolving function f one has to solve the advection equa-
tion (2.2) coupled with the additional equations (2.11) for~u.

2.5 Method based on level set motion

This approach is based on the mathematical models proposed by Sapiro et al. [1]
and Vemuri et al. [12]. It is based on level-set formulation and the additional required
constraints for~u are obtained by restricting the optical flow only in normal directions to
the level sets of the evolving function f .

Our aim in this method is to evolve the function f from F toward the function G
by prescribing the motion only in normal direction. In this case we consider ~u in the
advection equation (2.2) of the form

~u =

{
−sgn(G− f ) ∇ f

|∇ f | |∇ f | 6= 0 ,
~0 |∇ f |= 0 .

(2.12)
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where sgn is the standard sign function, it means that

sgn(p) =

 −1 p < 0 ,
0 p = 0 ,
1 p > 0 ,

(2.13)

where p is a real number. The vector field ~u for |∇ f | 6= 0 represents the normal vectors
to level sets of f . The orientation of the normal vectors are given by sgn(G− f ).

Note that the equation (2.2) can be rewritten into the level set equation

∂t f = sgn(G− f )|∇ f |. (2.14)

The level set equation (2.14) describes the movement of level sets of the function f in
normal direction. If ∇ f (x, t) 6=~0 then the speed in normal direction is 1 if f (x, t)> G(x)
or −1 if f (x, t) < G(x). It can change to 0 if f = G or ∇ f =~0 that must be taken into
consideration in numerical methods. We note that by setting the normal component of
∇ f to zero at boundary ∂Ω of the domain Ω we define the boundary conditions for the
advection equation (2.2).

The level set equation (2.14) can be solved directly for the function f . The vector
function~u can be determined from (2.12) afterwards. Once the function~u is known, we
can compute the characteristic curves using the backward tracking method (2.5).

3 Numerical models
In this chapter we start with the discretization of the given domain and the functions

and the implementation of backward tracking method. In detail we present the numerical
implementations of the Lucas and Kanade method defined in Section 2.4 and the method
based on level-set motion defined in Section 2.5.

3.1 Discretization of the domain and the functions

We create a uniform grid with the centres xi j =(xi,y j) :=(ih, j h) where i= 0, . . . , I−
1 and j = 0, . . . ,J−1 are the coordinates and h > 0 is a discretization step. We suppose
that the functions F(x) and G(x) for x are obtained by standard bilinear interpolation
of given discrete values Fi j = F(xi j) and Gi j = G(xi j). The main goal of this work is
to find a numerical approximation of deformation ~U(x) represented by discrete values
~Ui j ≈ ~U(xi j) such that Gi j ≈F(xi j−~Ui j). The positions xi j−~Ui j rarely coincide with the
positions of points, therefore the values F(xi j− ~Ui j) are obtained by using the bilinear
interpolation.

The bilinear interpolation is a method that uses the distance weighted average of
the four nearest values to estimate a new value (see Fig. 3). Let di j = d(xi j) be the
known discrete values of function d. To compute d(x) for any x we use the bilinear
interpolation. We compute i =

⌊ x
h

⌋
, j =

⌊ y
h

⌋
, ti = x

h − i, t j =
y
h − j where b·c is the floor
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function. Of course we require that 0≤ i≤ I−1 and 0≤ j ≤ J−1. To define the value
d(x) by the bilinear interpolation we use the four known neighbouring values di j, di+1 j,
di j+1, and di+1 j+1, such that

d(x) = (1− ti)
[
(1− t j)di j + t jdi j+1

]
+ ti
[
(1− t j)di+1 j + t jdi+1 j+1

]
. (3.1)

d
ij

d
i+1j

d
ij+1

d
i+1j+1

d(x)

Figure 3: The bilinear interpolation.

3.2 Discretization of the backward tracking method

First, we discretize the time steps tn. For simplicity the time steps are chosen to be
tn = nτ for n = 0, . . . ,N, where the choice of N is described later in this section. The
choice of τ is different for each method and it will be presented in sections on numerical
implementations of the methods.

The characteristic curves are approximated by the discrete values Xn,m
i j ≈X(xi j, tn; tm).

We are interested only in the approximation of X(xi j, tn;0) we propose the approxima-
tion of the form Xn+1,0

i j = X(xi j, tn+1;0) given by

Xn+1,0
i j = Xn,0(xi j− τ~un

i j) , X0,0
i j = xi j , (3.2)

where Xn+1,0 is the bilinear interpolation of values Xn+1,0
i j . Only one bilinear interpola-

tion is used per each time steps.
Once the approximated characteristics are available we can approximate f n

i j ≈ f (xi j, tn)
as in equation (2.8) by

f n
i j = F(Xn,0

i j ) , (3.3)

for n > 0 and for n = 0 we set f 0
i j = Fi j.

Now we can define the choice of N. The stopping time tN is reached if an estimate
of the distance between the functions f N

i j and Gi j is small enough, such that f N
i j ≈Gi j for

all indices i and j. For the method based on the level set motion the norm of the gradient
of the function f N

i j can be approximately zero that will be also considered for the choice
of stopping time, see later.

Finally, when n = N the discrete values ~Ui j of the proximate deformation between
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two functions Fi j and Gi j is given by the approximation of (2.7) using (3.2)

~Ui j = xi j−XN,0
i j . (3.4)

3.3 Discretization of the advection equation

In this section we consider a numerical approximation of the advection equation
(2.2) in the form

f n+1
i j = f n

i j− τ~un
i j ·∇ f n

i j , f 0
i j = Fi j , (3.5)

where the choice of values ~un
i j = (un

i j,v
n
i j) will be defined for the Lucas and Kanade

method and the method based on level set motion in next sections. Note that to compute
the values f n+1

i j we use the method (3.3) and not the method (3.5). The main purpose of
this section is to define a control of time steps τ using (3.5). Moreover the approxima-
tions of gradients are introduced here.

In the case of the numerical approximation (3.5) of the advection equation (2.2) a
restriction on the time step τ is available in the form of CFL (Courant-Friedrichs-Lewy)
condition [10] for each time tn, namely

τ ≤ h
|un

i j|+ |vn
i j|

, (3.6)

if~un
i j 6=~0. We use it later in next sections.

Furthermore, for an approximation of the gradient ∇ f n
i j ≈ ∇ f (xi j, tn) we introduce

two types of approximation.

Firstly, the spatial derivatives ∂x f n
i j and ∂y f n

i j can be approximated by central finite
differences

2h∂x f n
i j = f n

i+1 j− f n
i−1 j ,

2h∂y f n
i j = f n

i j+1− f n
i j−1 .

(3.7)

On the boundary the forward and backward finite differences are used

h∂x f n
0 j = f n

1 j− f n
0 j ,

h∂x f n
I−1 j = f n

I−1 j− f n
I−2 j ,

h∂y f n
i0 = f n

i1− f n
i0 ,

h∂y f n
iJ−1 = f n

iJ−1− f n
iJ−2 .

(3.8)

The approximations of the gradient as defined in (3.7) and (3.8) will be used in the Lucas
and Kanade method. Note that such approximation is not suitable to be used in (3.5).

The second type of approximation of the gradient is used for the method based on
the level set motion. The gradient ∇ f n

i j is approximated by upwind scheme from [11] as

8



follows

h∂x f n
i j =


f n
i j− f n

i−1 j f n
i−1 j = ext{ f n

i−1 j, f n
i j, f n

i+1 j}
f n
i+1 j− f n

i j f n
i+1 j = ext{ f n

i−1 j, f n
i j, f n

i+1 j}
0 f n

i j = ext{ f n
i−1 j, f n

i j, f n
i+1 j}

(3.9)

h∂y f n
i j =


f n
i j− f n

i j−1 f n
i j−1 = ext{ f n

i j−1, f n
i j, f n

i j+1}
f n
i j+1− f n

i j f n
i j+1 = ext{ f n

i j−1, f n
i j, f n

i j+1}
0 f n

i j = ext{ f n
i j−1, f n

i j, f n
i j+1}

(3.10)

where ext denotes the extreme values among the three disrete values of f n
i j in (3.9) or

(3.10) with the choice

ext =
{

min (Gi j− f n
i j)< 0

max (Gi j− f n
i j)> 0 (3.11)

We modify the definitions (3.9) and (3.10) on the boundary by simply skipping the
discrete values of f outside of the computational domain.

3.4 Numerical implementation of Lucas and Kanade method

In this section we perform the discretization of Lucas and Kanade method defined
in 2.4. The numerical implementation of this method is described in [3, 7]. In detail
we present a slightly modified version of this method that we use later in our numerical
experiments.

Let the values f n
i j be known, in particular f 0

i j = Fi j, then the linear system defined in
(2.11) is approximated by(

Wσ ∗ (∂x f n
i j)

2 Wσ ∗ (∂x f n
i j∂y f n

i j)

Wσ ∗ (∂y f n
i j∂x f n

i j) Wσ ∗ (∂y f n
i j)

2

)(
un

i j
vn

i j

)
=

(
−Wσ ∗ (∂x f n

i j∆t f n
i j)

−Wσ ∗ (∂y f n
i j∆t f n

i j)

)
.

(3.12)
where Wσ represents a discrete form of Gaussian function Kσ . This linear system can
be solved if the matrix in (3.12) is invertible. The matrix is invertible if a determinant of
the matrix is nonzero. If this determinant is less than a regularization parameter εe, see
later, then we set~un

i j =
~0, otherwise we solve the system (3.12) to obtain~un

i j.
The spatial derivatives ∂x f n

i j and ∂y f n
i j are approximated by the central differences

defined in (3.7) and (3.8).
Let g(xi j, t) be a function than the discrete convolution of Wσ and the function g that

approximates the integral convolution is given by

Wσ ∗g(xi,y j, tn) =
1

∑k,l wkl
∑
k,l

wkl f (xi + kh,y j + lh, tn) , (3.13)

9



where −3σ < k < 3σ and −3σ < l < 3σ and

wkl =
1

2πσ2 exp−
k2+l2

2σ2 , (3.14)

where σ is a standard deviation. In practice, to compute the discrete approximation
of (3.13) the elements wi j for −3σ > k > 3σ and −3σ > l > 3σ are neglected. In
image processing programs the discrete Gaussian function is presented with a matrix of
dimension d6σe×d6σe, where d·e is the ceiling function.

In our numerical implementation of Gaussian function we choose the convolution
matrix with a size M×M, where M is an odd integer and the standard deviation σ is
set to M/6. For the values outside of the area we use the reflection of these values.
The dimension M determines the neighbourhood of each pixel for which the assumption
about constant optical flow is considered. The choice of the size M of the convolution
matrix is a non-trivial task.

The origin idea of Lucas Kanade method [7] is to apply no restrictions on the magni-
tude of the vector ~un

i j. In [2], they use Gaussian pyramidal representation for estimating
large deformation between images. In our work we use the CFL condition defined in
(3.6). We propose to choose in each contribution τ~un

i j the maximal value for τ between
1 that corresponds to the origin Lucas Kanade method and a variable choice fulfilling
the CFL condition. The simplest way is to define the variable time step τn

i j of the form

τ
n
i j = min{1, h

|un
i j|+ |vn

i j|
} , (3.15)

and (3.2) becomes

X̃n+1,0
i j = X̃n,0(xi j− τ

n
i j~u

n
i j) , X̃0,0

i j = xi j . (3.16)

Once the values un
i j and vn

i j are found using (3.12) the characteristic curves X̃n,0
i j

defined in (3.2) are used to determine new value f n+1
i j by (3.3). When n = N the optical

flow estimation by ~Ui j between F and G is given by (3.4)

3.5 Numerical implementation of the method based on level set mo-
tion

In this section we present the numerical implementation of the method based on
level set motion defined in Section 2.5.

First we consider a numerical approximation of the advection equation (3.5), where
~un

i j defined in (2.12) is approximated by

~un
i j =

 −sn
i j

∇ f n
i j

|∇ f n
i j |
|∇ f n

i j| 6= 0
~0 |∇ f n

i j|= 0 .
(3.17)
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Now the equation (3.5) can be rewritten using (3.17) in the form

f n+1
i j = f n

i j + τsi j
∇ f n

i j

|∇ f n
i j|
·∇ f n

i j , (3.18)

if |∇ f n
i j| 6= 0 and si j is defined by

si j = sgn(Gi j−Fi j) . (3.19)

Note that if f n
i j = Gi j we require f n+k

i j ≡ f n
i j for k = 1,2, . . .. We remind that the scheme

(3.18) is introduced only to derive a control of time steps τ .

Let the values f n
i j be known for some n ≥ 0, e.g. f 0

i j = Fi j . If f n
i j = Gi j we simply

replace (3.19) by si j = 0. In what follows we suppose that f n
i j 6= Gi j and that sgn(Gi j−

f n
i j) = sgn(Gi j−Fi j) = si j.

We apply the Rouy-Tourin scheme [9, 11] to define the values f n+1
i j in (3.17), where

the approximation of ∇ f n
i j is given by (3.9) and (3.10). We rewrite the scheme (3.18)

using the components of ∇ f n
i j = (∂x f n

i j,∂y f n
i j) into the form

f n+1
i j = f n

i j + τsi j

(
∂x f n

i j

|∇ f n
i j|

∂x f n
i j +

∂y f n
i j

|∇ f n
i j|

∂y f n
i j

)
. (3.20)

One can easily show that h|∂x f n
i j| = | f n

i+k j − f n
i j| = si j( f n

i+k j − f n
i j) and h|∂y f n

i j| =
| f n

i j+l − f n
i j| = si j( f n

i j+l − f n
i j), where k, l ∈ {−1,0,1} be such that the value fi+k j is the

extreme value chosen in (3.9) and the value f n
i j+l is chosen in (3.10).

Furthmore, let

Un
i j =

τ

h

|∂x f n
i j|

|∇ f n
i j|

, V n
i j =

τ

h

|∂y f n
i j|

|∇ f n
i j|

, (3.21)

so the scheme (3.20) can be written in the form

f n+1
i j = (1−Un

i j−V n
i j) f n

i j +Un
i j f n

i+k j +V n
i j f n

i j+l . (3.22)

The scheme (3.22) defines the new value f n+1
i j as a convex combination of three values

f n
i j, f n

i+k j and f n
i j+l is the following restriction is fulfilled,

Un
i j +V n

i j ≤ 1 . (3.23)

The sufficient condition for (3.23) is that τ ≤ h√
2

that follows from (3.21).

Note that the definition (3.22) corresponds to a linear interpolation of three values
f n
i j, f n

i+k j and f n
i j+l and that the “corner” value f n

i+k j+l is not involved. As discussed in
Section 3.1 one prefers the bilinear interpolation for data representing images which uses
in general four discrete values of the interpolated function. For this reason we suggest
another numerical scheme that is based on so called Corner Transport Upwind scheme

11



[4, 10] and that can be viewed as an extension of the scheme (3.22), namely

f n+1
i j = (1−Un

i j−V n
i j) f n

i j +Un
i j f n

i+k j +V n
i j f n

i j+l +Un
i jV

n
i j( f n

i j− f n
i+k j− f n

i j+l + f n
i+k j+l) ,

(3.24)
The scheme (3.24) defines the new value f n+1

i j as a convex combination of four
values f n

i j, f n
i+k j, f n

i j+l and f n
i+k j+l if

max
{

Un
i j,V

n
i j
}
≤ 1 . (3.25)

A sufficient condition to obtained (3.25) is to require that τ ≤ h. We see that this re-
striction for Corner Transport Upwind scheme is less restrictive than the restriction for
Rouy-Tourin scheme defined in (3.23).

In what follows we derive particular choices of the time step τ in (3.24) for each
index i and j. To do so using (3.21) we rewrite the equation (3.24) in the form

f̃ n+1
i j (τ) = f n

i j + τsi j|∇ f n
i j|+ τ

2 dn
i j

|∇ f n
i j|2

, (3.26)

where

dn
i j :=

1
h2 |∂x f n

i j ∂y f n
i j|
(

f n
i j− f n

i+k j− f n
i j+l + f n

i+k j+l

)
. (3.27)

Finally we can suggest a choice of the time step τ to be used in (3.26), respectively
in (3.24). As f̃ n+1

i j (τ) is a quadratic function of τ , and d
dτ

f̃ n+1
i j (0) = si j|∇ f n

i j|, we can
claim that if |∇ f n

i j| 6= 0 and si j 6= 0 then for enough small time step τ > 0 one has that

| f̃ n+1
i j (τ)−Gi j|< | f n

i j−Gi j| . (3.28)

This means that for a small enough time step the value f̃ n+1
i j (τ) will be closer to the

value Gi j than the value f n
i j that is, of course, the desired property.

Our aim is to use the maximal value τ = h to speed up the evolution of the values
f̃ n+1
i j towards the values Gi j. Nevertheless, there are two cases for this choice of τ when

the scheme (3.26) has to be used with different time step. These two cases will be
described formally by a variable choice of τ = τn

i j in (3.26).
In the case 1 we want to avoid that sgn(Gi j− f̃ n+1

i j (τ)) 6= si j for τ = h, where si j is
defined in (3.19). If this happens there exists τn

i j < h such that f̃ n+1
i j (τn

i j) = Gi j that is, of
course, the aim of our method. Therefore in the case 1 we use (3.26) with τ = τn

i j.
In the case 2 we want to avoid that there exists some τn

i j < h when the derivative
d

dτ
f̃ n+1
i j (τn

i j) vanishes. The reason is that for such situation one has for τ > τn
i j that

| f̃ n+1
i j (τ)−Gi j| > | f̃ n+1

i j (τn
i j)−Gi j|, and, such property is not desired. Therefore in the

case 2 we use again τ = τn
i j.

Consequently, in both cases we should use the scheme (3.26) with the variable time
steps τ = τn

i j, otherwise we can take the maximal time step τ = h.
In what follows we define the variable time steps τn

i j in detail that will be used in

12



(3.26). To do so we suppose that |∇ f n
i j| 6= 0 and f n

i j 6= Gi j. We need to distinguish three
situations.

Firstly, if dn
i j = 0 then f̃ n+1

i j (τ) becomes a linear function. To control the case 1 and
to follow the restriction of maximal time step we require in the first situation that

τ
n
i j = min{h,

|Gi j− f n
i j|

|∇ f n
i j|
} . (3.29)

Furthermore let dn
i j 6= 0. To control the case 1 and the case 2 we search for such τ

that

Gi j = f n
i j + τsi j|∇ f n

i j|+ τ
2 dn

i j

|∇ f n
i j|2

. (3.30)

and d
dτ

f̃ n+1
i j (τ) = 0, it means

si j|∇ f n
i j|+2τ

dn
i j

|∇ f n
i j|n

= 0 . (3.31)

We denote the discriminant of quadratic equation (3.30) by

D = s2
i j|∇ f n

i j|2−4dn
i j
( f n

i j−Gi j)

|∇ f n
i j|2

. (3.32)

The second situation how to determine τn
i j is the situation when D < 0. In this case

there exists no τ such that f̃ n+1
i j (τ) = Gi j, therefore we need to control only the case 2

by requiring from (3.31)

τ
n
i j = min

{
h,−

si j|∇ f n
i j|3

2dn
i j

}
. (3.33)

Note that if D < 0 then sgn(dn
i j) =−si j, so one has that τn

i j > 0 in (3.33).
The third situation is given by D > 0. In this case there exists two values of τ such

that f̃ n+1
i j (τ) = Gi j, but only one root satisfies that 0≤ τ . Using the standard formula for

the roots of quadratic equation one can show that to control the case 1 one has to define

τ
n
i j = min

h,
si j|∇ f n

i j|2
(√

D−|∇ f n
i j|
)

2dn
i j

 . (3.34)

Note that if si jdn
i j < 0 then

√
D < |∇ f n

i j| and if si jdn
i j > 0 then

√
D > |∇ f n

i j|, so one has
that τn

i j > 0 in (3.34).
We can summarize that depending on the value of dn

i j in (3.27) and D in (3.32) one
can define the value of τn

i j by (3.29),(3.33), or (3.34) that can be used in (3.26) to define
the values f̃ n+1

i j (τn
i j).

13



Having the value τn
i j the approximate characteristic curves X̃n,0

i j defined in (3.2) can
be used to determine the new value f n+1

i j by (3.3). When n = N the optical flow ~U
between F and G is given by (3.4).

4 Numerical experiment with exact solutions

We present here the results obtained by the Lucas and Kanade method and the
method based on level set motion. This chapter includes the synthetic data for which
we know the exact solutions.

We consider here a two dimensional distance function on a unit square, it means that
h = 1

I−1 for I = J. The image F is defined using the distance function (see Fig. 4) in the
form

Fi j =
√
(ih− sx)2 +( jh− sy)2 , (4.1)

where (sx ,sy) are the coordinates of the center of the unit square. We describe two
numerical experiments - a movement of the distance function in the x direction and an
expansion of the distance function.

Figure 4: The distance function Fi j.

Once we determine the approximation of function f n
i j using (3.3) we check the ap-

proximation quality of numerical method by comparing f n
i j with the function Gi j. The

difference function En is obtained by En
i j = (Gi j− f n

i j) and the norm of En
i j is calculated

as follow

‖En‖1 = h2
∑

i, j∈Ω

|En
i j| . (4.2)

For the experiment we will known the exact deformation of optical flow that we
denote by ~Vi j = (V 1

i j,V
2
i j). We compute the L1-norm of the error for the deformation in

x-direction ‖X‖1 as follows

‖X‖1 = h2
∑

i, j∈Ω

|V 1
i j−U1

i j| . (4.3)
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and the L1-norm of the error in the deformation in y-direction ‖Y‖1

‖Y‖1 = h2
∑

i, j∈Ω

|V 2
i j−U2

i j| . (4.4)

The optical flows are presented graphically as −~Ui j, resp. −~Vi j using arrows, be-
cause we want to show that the position xi j in the image G (where an arrow starts)
comes from the image F in the position xi j−~Ui j (where the arrow ends). In our numer-
ical experiments the known deformation−~V is presented by blue color and the obtained
deformation −~U by red color.

4.1 Expansion of the distance function
In this experiment an expansion of the distance function with known optical flow is

considered, see Fig. 5. This example is chosen to test a correct behaviour of our method.
The first image is given by the values F defined in (4.1). The second image G for some
chosen speed S ∈ R > 0 of the expansion in normal direction is defined as follows

Gi j = max
{

0,
√

(ih− sx)2 +( jh− sy)2−S
}
. (4.5)

The illustrative images of the expansion for S = 0.1 are shown in Fig. 5.
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Figure 5: The expansion example. From the left to the right: the function F , the function
G, the exact deformation −~V .

The expansion for this experiment is chosen such that S = 0.1. In this experiment we
use the Lucas and Kanade method and the method based on level set motion. We aim
to show an importance of the choice of convolution matrix for the Lucas and Kanade
method on the approximation quality of numerical results. For the method based on
level set motion we aim to show that the estimated deformation converges to the exact
values. The results are shown in Fig. 6 - Fig. 9 for Lucas and Kanade method and in
Fig. 10 - Fig. 11 for the method based on the level-set motion.

We begin with a discussion on the results obtained by Lucas and Kanade method.
Firstly, we describe the influence of the choice of the convolution matrix for this method.
We solve the problem with I = J = 11, i.e. h = 0.1 and N = 2 when the convolution
matrices of dimensions M = 3, 5, 7, 9, 11 are used. The obtained deformations for the
discrete convolution matrices 3×3, 7×7 and 11×11 are shown in Fig. 6 - Fig. 8(left).
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The comparison of the obtained deformation −~U with the known deformation −~V are
shown in Fig. 6 - Fig. 8(right). The L1 norms defined in (4.2)-(4.4) is presented in Tab.
1.
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Figure 6: The results of expansion obtained by Lucas and Kanade method. From the
left to the right: the deformation −~U obtained using the convolution matrix 3× 3, the
comparison of the obtained optical flow −~U (red) with the exact solution −~V (blue).
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Figure 7: The results of expansion obtained by Lucas and Kanade method. From the
left to the right: the deformation −~U obtained using the convolution matrix 7× 7, the
comparison of the obtained deformation −~U (red) with the exact solution −~V (blue).
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Figure 8: The results of expansion obtained by Lucas and Kanade method. From the
left to the right: the deformation −~U obtained using the convolution matrix 11× 11, the
comparison of the obtained deformation −~U (red) with the exact solution −~V (blue).

From the visual inspection of deformations in Fig. 6 - Fig. 8(right) we can see that
the deformation obtained by the matrix 11×11 is much more accurate when compared
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I N M ‖EN‖1 ‖X‖1 ‖Y‖1

11 2 3 0.002112 0.014650 0.014650
11 2 5 0.003449 0.013484 0.0,013484
11 2 7 0.004652 0.010969 0.010969
11 2 9 0.005852 0.009109 0.009109
11 2 11 0.006926 0.007085 0.007085

Table 1: The L1-norms of expansion for Lucas and Kanade method for I = 11, N = 2 and
M = 3,5,7,9,11.

with the results obtained by matrix 7×7 or 3×3. It can be seen not only from a visual
inspection of the deformations in Fig. 6 - Fig. 8(right) but also from the norms in
x-direction ‖X‖1 and y-direction ‖Y‖1 in Tab. 1. On the other hand with increasing
the size of convolution matrix the norm of EN is also increasing, see ‖EN‖1 in Tab.
1. The first reason for such behaviour can be a worse quality of the approximation
~U in a neighbourhood of the center (sx,sy) where the assumption of locally constant
deformation for the Lucas Kanade method is not so appropriate. Another reason might
be that the values Gi j are obtained in (4.5) from the distance function F and not from
the bilinear interpolation of values Fi j.

From this experiment we see that it needs not to be trivial to choose a proper size of
the matrix for the convolution, because the results are quite sensitive to this choice.

Next, we discuss the results obtained by the Lucas and Kanade method and the
method based on level set motion for different sizes of data. For both methods we con-
sider the same sizes I = J = 11,21,41,81,161, i.e. h= 0.1,0.05,0.025,0.0125,0.00625.
The number of steps N will be doubled for each I and we choose N = 2,4,8,16,32 for
the Lucas and Kanade method and N = 1,2,4,8,16 for the method based on level set
motion. The larger value of N for the Lucas Kanade method is motivated by more re-
strictive condition (3.15) on the time steps than the condition (3.25) given for the method
based on level set motion.

For a better visualization of deformations, the deformations are presented for I = J =
21,41,81 using only the positions xi j given by the coarsest grid with I = J = 11. The
size of convolution matrices for Lucas and Kanade method is set to M = 3,5,9,17,33
for the increasing value of I. The results obtained by Lucas and Kanade method are
shown in Fig. 9 and all L1-norms are written in Tab. 2. From a visual inspection of
deformations in Fig. 9 we can see that the deformation is more accurate with the refined
grids. It can seen also from the L1-norms in Tab. 2, but the rates of convergence for this
example using the Lucas Kanade method is decreasing for the chosen parameters.
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Figure 9: The results of expansion obtained by the Lucas and Kanade method. From the
left to the right and from the top to the bottom: (a) the deformation −~U obtained using
I = 11, N = 2 and M = 3, (b) the deformation−~U obtained using I = 21, N = 4 and M = 5,
(c) the deformation−~U obtained using I = 41, N = 8 and M = 9, (d) the deformation−~U
obtained using I = 81, N = 16 and M = 17.

I N M ‖EN‖1 rate ‖X‖1 rate ‖Y‖1 rate

11 2 3 0.002112 - 0.014650 - 0.014650 -
21 4 5 0.001042 1.01925 0.010397 0.494733 0.010397 0.494733
41 8 9 0.000583 0.837787 0.008118 0.356971 0.008118 0.356971
81 16 17 0.000345 0.756900 0.006641 0.289924 0.006641 0.289924

161 32 33 0.000292 0.240628 0.006489 0.0334043 0.006489 0.0334043

Table 2: The L1-norms of expansion for deformation obtained by the Lucas and Kanade
method for S = 0.1 and I = 11,21,41,81,161 and the rate of convergence.

The results obtained by the method based on level-set motion are shown in Fig. 10
for I = 11 and in Fig. 11 for I = 11,21,41,81. From a visual inspection of deformations
in Fig. 10 we can see that the estimated deformation is more accurate with the refined
grids and we conclude that the results are satisfactory. For this method the rates of
convergence for all norms, i.e. ‖EN‖1, ‖X‖1 and ‖Y‖1, are approaching the value 1 as it
can be seen in Tab. 3.
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Figure 10: The result of expansion obtained by method based on level-set motion for
expansion. From the left to the right: the obtained deformation −~Ui j, the comparison of
the exact deformation (blue) and the obtained deformation (red).
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Figure 11: The result of expansion example obtained by method based on level-set motion
for expansion. From the left to the right and from the top to the bottom: (a) the deformation
−~U for I = 11, (b) the deformation−~U for I = 21, (c) the deformation−~U for I = 41, (d)
the deformation −~U for I = 81.

19



I N ‖EN‖1 rate ‖X‖1 rate ‖Y‖1 rate

11 1 0.003120 - 0.004433 - 0.004433 -
21 2 0.001307 1.2556 0.002379 0.8985 0.002379 0.8985
41 4 0.000528 1.3075 0.001259 0.9175 0.001259 0.9175
81 8 0.000220 1.2667 0.000659 0.9339 0.000659 0.9339
161 16 0.000096 1.1947 0.000339 0.9590 0.000339 0.9590

Table 3: The L1-norms of expansion for deformation obtained by method based on level-
set motion for S = 0.1 and I = 11,21,41,81,161 and the rate of convergence.

5 Conclusions
In this work we present two numerical methods of optical flow estimation between

two input functions. The both methods are based on the solution of advection equation
that gives us the function evolving from the initial condition given by the first function
towards the second function at some finite time.

The final optical flow is obtained sequentially for consecutive time steps. For each
time step the advection equation is solved numerically where we suggest suitable numer-
ical discretization for each method of the optical flow estimation. To find the deforma-
tion for the optical flow the backward tracking of characteristic curves for the advection
equation is used in both methods. We describe the modification for the numerical track-
ing of characteristics that is less computationally demanding than the standard form of
backward tracking method.

The two numerical methods for optical flow estimation differ in the approach which
additional constraint is required for the velocity field in the advection equation.

The first method is based on the Lucas and Kanade method defined in [7]. This
method assumes constant optical flow within some local neighborhood of each point in
the computational domain. Using this assumption the additional constraint on the veloc-
ity field in the advection equation is obtained by the minimization of suitable functional
where the convolution integral is involved. Our modification of this method introduces
the CFL condition on the choice of time steps that enables us to apply the method also
for large deformations to some extend.

The second method is based on level set motion and it is motivated by works of
Sapiro et al. [1] and Vemuri et al. [12]. The additional constraint for ~u is obtained by
restricting the optical flow only to normal directions to the level sets of the evolving
function. We slightly modify the level set equation presented in [1, 12] by allowing
the speed in normal direction having only three discrete values. Moreover we propose
the new discretization method for the solution of advection equation for the motion in
normal direction that is based on the more natural bilinear interpolation of the numerical
solution. The modified formulation of the level set equation and the new discretization
methods enables us to use less restrictive CFL condition for the choice of time steps and
apply it for the functions representing images for which the bilinear interpolation is used
typically.
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