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Katedra aplikovanej matematiky a štatistiky
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Matematický ústav
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Abstract

This thesis deals with a finite volume method on non-uniform 2D quadrilateral and 3D hexahedral

meshes.

In the first part we deal with a construction of such meshes for discretization of 2D surfaces and

3D computational domains. The main tool for grid construction is a surface evolution. In the case of

the construction of hexahedron mesh a quadrilateral mesh is evolved through the 3D computational

domain. In the resulting mesh a time dimension is understood as a third spatial dimension. Then a

method for quadrilateral remeshing of a triangulated surface is developed. The initial quadrilateral

surface evolves in a suitably designed vector field to the given triangulated surface. In both applications

the surface evolutions are accompanied by a tangential redistribution of points to achieve more uniform

meshes.

In the second part we solve the partial differential equations on 3D grids constructed by our meth-

ods. First, we suggest new method for solution of the geodetic boundary value problem on hexahedron

meshes, i.e. we solve the Laplace equation inside a domain and the oblique derivative condition on a

boundary. This oblique derivative boundary condition can be understood as a stationary advection

equation and we design a method for its discretization based on higher order upwind principle. Then

we present a novel second order inflow-implicit/outflow-explicit scheme for solving an advection equa-

tion on non-uniform meshes. For all mathematical models we present numerical experiments showing

their order of convergence and further properties related to applications.

keywords: finite volume method, surface evolution, mesh construction, non-uniform meshes, oblique

derivative, advection equation, Laplace equation
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Abstrakt

Táto záverečná práca sa venuje metóde konečných objemov pre nerovnomerné 2D štvoruholńıkové a

3D šest’stenové (hexahedrálne) siete.

V prvej časti práci prezentujeme postupy na výrobu discretizácie plôch a tvorbu trojrozmerných

výpočtových siet́ı. Hlavná myšlienka spoč́ıva vo vývoji plôch. V pŕıpade 3D hexahedrálnych siet́ı je

vyv́ıjaná 2D štvoruholńıková siet’ vo vnútri 3D výpočtovej oblasti. Vo výslednej hexahedrálnej sieti je

časový rozmer chápaný ako tret́ı priestorový rozmer. Vrcholy šest’stenovej siete sú dané diskrétnymi

bodmi vyv́ıjajúcej sa plochy v diskrétnych časových intervaloch. V d’aľsej časti sa venujeme takzvanému

remeshingu trojuholńıkovej siete na štvoruholńıkovú. Počiatočná štvoruholńıková siet’ je vyv́ıjaná vo

vektorovom poli smerom k trojuholńıkovej sieti. V oboch pŕıpadoch je použitá redistribúcia bodov

plochy na dosiahnutie rovnomerneǰsej diskretizácie.

Druhá čast’ práce sa venuje riešeniu geodetickej okrajovej úlohy na nami vytvorených trojroz-

merných siet’ach. Z matematického pohl’adu to znamená riešit’ Laplaceovu rovnicu s predṕısanou

šikmou deriváciou na jej hranici. Predṕısaná šikmá derivácia sa dá chápat’ ako stacionárna rovnica ad-

vekcie. V práci prezentujeme novú metódu vyššieho rádu na riešenie rovnice advekcie, ktorá je založená

na upwind metóde. Ďalej prezentujeme novú inflow-implicit/outflow-explicit metódu druhého rádu na

riešenie nestacionárnej rovnice advekcie na nerovnomerných siet’ach. Pre všetky matematické modely

prezentujeme numerické experimenty ukazujúce rád konvergencie a možnosti ich aplikácíı.

kl’́učové slová: metóda konečných objemov, vývoj plôch, tvorba siete, nerovnomerné siete, šikmá

derivácia, rovnica advekcie, Laplaceova rovnica
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4 1 INTRODUCTION

1 Introduction

From the times of Isaac Newton and Gottfried Wilhelm Leibniz partial differential equations (PDE)

are the fundamental tool to solve problems in a modern science. The most of the complex problems

can not be solved by an analytical methods. This thesis deals with the finite volume method (FVM)

for solving PDEs and its several applications.

It is divided into two part. The first part deals with a creating a non-uniform 2D surface and 3D

volume grids based on a novel approach of the surface evolution.

The first type of a mesh is a 3D mesh for the geodetic boundary value problem (GBVP). Com-

putational domain for such a problem is a region over a local Earth topography. The Earth surface

is evolved through the 3D computational domain and the 3D grid points are taken as a time-spatial

discrete points of the evolving surface. The 2D surface mesh generation deals with a problem of

remeshing a triangulated surface into the quadrilateral mesh. The method is inspired by a level set

approach to a surface reconstruction from a point cloud. This approaches evolve a level set function

in a vector field that is a gradient of the distance function of the point cloud. We suggest a similar

method for a Lagrangian surface evolution utilizing these principles.

In the rest of the thesis we are dealing with finite volume methods on non-uniform hexahedron

meshes constructed by the method presented in the first part of the thesis. First we deals with

solving the geodetic boundary value problem. Mathematically it is a Laplace equation with an oblique

derivative boundary condition. Oblique derivative boundary condition is given by a prescribed value

of a derivative of the unknown T in the direction of the vector v on the boundary. This can be written

in the form ∇T · v = g . This can be understood as a stationary advection equation for which we

suggest a novel higher order upwind scheme. At last we deal with a non-stationary advetion equation

utilizing the oblique derivative boundary condition discretization from GBVP. We also propose an

improved second order method with more accurate approximations.

1.1 Lagrangian Evolution Model

Let us consider a family of parametric surfaces M(t) = {x(t, u, v)| (u, v) ∈ [0, 1]2 , t ∈ [0, tend]}
obtained by evolving in a time t an initial surface x(0, ·, ·) = S. The evolution is driven by the

following partial differential equation [6]

∂x

∂t
= V N + V T = βN + V T

x(0, ·, ·) = S , (1)

where V T is the evolution in tangential direction.; and V N represents the evolution by speed β in the

outward unit normal direction N to the surface. The component in the normal direction V N affects

the surface image, while, at least in the continuous settings, V T has no impact on the surface image.

In both of the applications, the 3D grid construction and 2D surface remeshing, the surface evo-

lution model is influenced by a mean curvature term so the evolution in the direction of the normal

can be rewritten as

βN = HN + fN , (2)
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∂ux

∂vx

N

∂tx
VN

VT

M(t)

Figure 1: Image of the surface M(t) and the normal and tangent vectors

where HN is the mean curvature vector.

Let us define a local area density

g = |∂ux× ∂vx| =

√√√√det

[
∂ux · ∂ux ∂ux · ∂vx
∂vx · ∂ux ∂vx · ∂vx

]
. (3)

The local area density represents a density of points along the surface. In the quad approximation

of the surface, g is related to the size of the finite volumes. Bigger value of the local area density

means smaller finite volumes and vice-versa. Finite volumes are composed of quads, see the Figure 2.

This quantity is used to control the area of the finite volumes thus indirectly control the area of the

quads.

1.2 Tangential redistribution of points

The surface evolution model (1) for both of the applications is accompanied by a redistribution of

points along the surface. This term is given in the equation (1) by a vector V T . Because of different

nature of both applications, we use different redistributions.

For a computational domain over the Earth topography the surface can be understood as a mesh

of intersected curves, meridians and parallels. In this case we use a redistribution of points relative

to the curves (parallels and meridians) that the surface is composed of. This redistribution leads to a

uniform distribution of points along parallels and meridians.

For a quadrilateral mesh generated by remeshing of a triangulated mesh we use the area redistri-

bution. In this case the image of the initial surface is significantly changing in time and the angle

redistribution is necessary for a good quality output, too.

To this aim the tangential component in (1) is defined as

V T = V r
T + V n

T (4)

where the vector V r
T contributes to the quad area size control and the vector V n

T handles the control

of the angles of the quads. In general V n
T can be any tangential movement.
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1.2.1 Area-based redistribution

We are interested in the evolution of g given by (3) with respect to the normal and tangential velocities

in (1). We want the surface area density g to converge to a prescribed area density c. A one useful

prescribed density c is a constant density resulting in a uniform quad sizes of a discretized surface. In

that case we chose

c(u, v) = A. (5)

Another useful prescribed density c is a density depended on a Gaussian curvature G(u, v). This

results in more dense quad mesh in the areas of high Gaussian curvature. One possibility is to take a

function ĉ defined as

ĉ(u, v) = 1

/(
p max

( |G(u, v)|
Gcut

, 1

)
+ 1

)
, (6)

where p and Gcut are chosen values. In a discrete surface this means that quads with a Gaussian

curvature greater then Gcut will be p+1 times greater then the quads with a zero Gaussian curvature.

For a valid area density it holds that its surface integral is equal to the area of the surface. This is

satisfied by normalizing the function ĉ,

c(u, v) = A
ĉ(u, v)∫ 1

0

∫ 1
0 ĉ dudv

. (7)

A relation between V T and g that satisfies leads to a prescribed area density c is summarized in

Corollary 1 in terms of the Laplace-Beltrami operator [6].

Corollary 1. Let us assume that V r
T is a gradient vector field of a potential ϕ. Then x(t, ·) evolves

to a surface with area density c if the Laplace-Beltrami operator applied on the the function ϕ satisfies

the following relation

∆xϕ = ∇x · ∇xϕ = −∇x · V n
T +Hβ − 1

A

∫∫
M
Hβ dM+

(
c

g
− 1

)
ωr . (8)

By imposing only the Neumann boundary condition for an open surface problem, (8) attains

infinitely many solutions which differ only by a constant, thus the gradient V r
T = ∇xϕ is naturally

the same for each solution. However, a unique solution for (8) can be obtained by imposing a Dirichlet

boundary condition at one point of M.

1.2.2 Angle-based redistribution

A purpose of this redistribution is to control the angles of quadrilaterals that are composing the

surface. Let us assume that the surface is divided into quadrilateral patches. In the discrete settings

these patches are represented by the quads which compose the surface. The angle redistribution is

directly dependent on the vectors ∂ux and ∂vx. Let xi, i = 1, ..., n be a corner point of quadrilateral

patch and n be the number of all corner points of quadrilateral patches on the surface. Let N�(xi)

be a set of quadrilateral patches that contain xi and let #N�(xi) be its cardinality. Let ∂ux
j , ∂vx

j

be the tangent vectors of the j-th neighboring quadrilateral patch.
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At each corner point xi, i = 1, ..., n the angle-based tangential velocity V n
T is constructed as

V n
T = projT

 ωn

#N�(xi)

∑
j∈N�(xi)

(
1 +

∂ux
j

|∂uxj | ·
∂vx

j

|∂vxj |

)(
∂ux

j + ∂vx
j
) . (9)

Formula (9) utilizes the fact that the cosine of angle between two vectors can be computed as the

inner product (∂ux/|∂ux|) · (∂vx/|∂vx|) and such weights are forced to be positive using the shift by

1. Intuitively, in case of an acute angle, moving xi in direction ∂ux + ∂vx enlarges the angle between

∂ux and ∂vx. As the resulting vector does not have to lie in the tangent plane, we project it on the

tangent plane utilizing projT (V ) = V − (V ·N)N . S

2 Construction of the computational grid above the Earth topogra-

phy

Let Ω be a 3D domain bounded by a boundary ∂Ω, which is composed of several parts. The first

part of the boundary ∂Ω represents an approximation of the Earth surface. The second one is given

by an approximation of chosen satellite orbit at the height h. Further two boundaries are given by

planes going through two meridians and the last two boundaries are given by planes going through

two parallels

The main idea is to evolve the initial surface (Earth topography) through the 3D computational

domain and then take the discrete points of the surface in discrete time intervals and use them as

vertices of a 3D mesh. Using this evolution we achieve that the surface continuously forms a shape of

a part of the ellipsoid and the mathematical formulation of this process is given by

∂tx(u, v, t) = ε (HN + fN) . (10)

where the mean curvature term H is smoothing the evolution. The scalar ε is a parameter determining

how fast the surface is moving.

We are going to use a redistribution of points according to the curves forming the surface. These

individual curves can be seen as “deformed” meridians and parallels. The Earths surface can be

parameterized such that x(u, ·) is the u-th meridian and x(·, v) is the v-th parallel.

2.1 Numerical scheme

We adapt the finite volume approach, while a semi-implicit scheme is considered in time to linearize

the Laplace-Beltrami operator and other non-linear terms in (1) in form (10).

The finite volume method assumes in general that the continuous surface M is approximated

by the union of so-called control volumes Vi, see Figure 2. We approximate quad using a bilinear

interpolation.

Let us introduce the local vertex and quad indexing in the barycentric control volume Vi around

vertex xi. The local vertex indices in a quad, see Figure 2, are denoted by xk
j , k ∈ {0, . . . , 3}, with

x0
j = xi, where j is a local index of quad. For a readability we are omitting the index i in a local

indexing.
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x3
0 = x1

1

x1
0 = x3

3

x2
0

xi = x0
1

Vi

x2
1

x2
2

x3
1 = x1

2

x3
2 = x1

3

e30

e10

x2
3

Figure 2: Finite volume Vi (shaded orange area) with local indexing of quad vertices and edges.

Utilizing a Green’s theorem and bilinear interpolation on quads we approximate Laplace-Beltrami

operator by

∫
∂Vi

∇xx · n ds ≈
∑

j∈N�(xi)

m(e1j )

|N1
j |

[
1

4

(
−3x0

j + 3x1
j − x3

j + x2
j

)
−
a1j
2

(
−x0

j − x1
j + x3

j + x2
j

)]

+
m(e3j )

|N3
j |

[
1

4

(
−3x0

j − x1
j + 3x3

j + x2
j

)
−
a3j
2

(
−x0

j + x1
j − x3

j + x2
j

)]
. (11)

The numerical experiments performed on the meshes generated by this method are presented in

the part of the thesis that deals with a GBVP.

3 Remeshing a triangulated mesh into the quad mesh

(a) M4 (b)
⋃
i
Mi (c)

⋃
i
Si (d)M�

Figure 3: The fundamental steps of the proposed method: (a) Input mesh M4; (b) Patch layout; (c)
Topology-Skeleton S; (d) Resulting pure quadrilateral mesh M�

Another application for construction of a quad mesh is remeshing an object represented by a

triangulated mesh into the quad mesh. Quad mesh is a mesh made of quadrilaterals. We introduce

a method that takes as an input an object and its patch layout and output a quadrilateral mesh. A
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patch layout is defined as partition of the surface into non-overlapping patches. The main principle of

our method is in the evolution of quad mesh (initial condition) in the gradient of the distance function

of the triangulated mesh. Such an evolution drives the quadrilateral mesh to the triangulated mesh.

In this thesis we introduce a new approach to automatically generate a quadrilateral mesh on a

surface M preserving its patch layout structure. In particular, given a 3D shape M represented by

an unstructured closed triangle mesh M4, we construct a pure quad mesh M�. We utilize a similar

principles that are used for a level set reconstruction of the surface from the point cloud [7].

The overall process consists of three main phases summarized in Algorithm Surface-Patch Quad-

rangulation and illustrated in Figure 3.

algorithm: Surface-Patch Quadrangulation

Input: Triangular Mesh M4 , quad edge length h
Output: Pure Quadrilateral Mesh M�

1 {Mi}Ki=1 ←− Mesh Partitioning(M4)
2 {Si}Ki=1 ←− Topology Skeleton({Mi}Ki=1, h)
3 M� ←− Skeleton Evolution({Si}Ki=1, {Mi}Ki=1)

Given an input surface, which is represented by an unstructured triangular mesh M4, see Figure

3 (a), first, in Phase 1, its patch layout is extracted by partitioning M4 into K patches Mi of 0-genus

with one boundary, see Figure 3 (b). Then, in Phase 2, from the obtained partitioning (chartification)

a topology-skeleton structure S is generated which consists of the joining of K surfaces Si, each

discretized by a quad grid, according to a given desired edge length h, see Figure 3 (c). In Phase 3 the

topology-skeleton S is finally evolved towards the input triangulation M4 to create a pure quadrilateral

mesh M� which accurately approximates the given 3D shape, see Figure 3 (d). In particular, in Phase

3 one of the following two evolution strategies can be applied: either evolve each skeleton part Si

separately as a surface with fixed boundary, or evolve the whole skeleton S as a single closed surface.

Specific application contexts dictate which is the most convenient strategy to apply. This part of the

thesis is based on the paper [1].

3.1 Evolution of the surface

Our aim is to prescribe the normal-direction evolution V N in (1) in such way that the evolving surface

will be moving towards the given shape by a velocity field and the movement is smoothed by a mean

curvature term. In order to control the trade-off between the advection and diffusion terms in , we

introduce two functions ε(d(x)) and η(d(x)) depending on the signed distance function d(·) at point

x, and define V N as

V N = ε(d(x))∆xx + η(d(x))N , (12)

where d(x) represents the sign distance function to the given shape [?]. The sign distance function is

defined to be positive inside the overall skeleton S and negative outside. The role of the coefficient

ε(d(x)) in the diffusion term is to obtain stronger smoothing of the evolving surface in case x(·) is far
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from M4; therefore ε(d(x)) is defined by

ε(d(x)) = c1

(
1− e−

d(x)2

c2

)
(13)

where c1 and c2 are parameters controlling the shape of ε(·); in particular c2 controls the transition

width of the function, and c1 controls its amplitude.

The function η(d(x)) in (12) is given by

η(d(x)) = d(x)
(
| − ∇d(x) ·N |+

√
1− (∇d(x) ·N)2

)
. (14)

The sign distance function d(x) in (14) that multiplies the brackets, has two purposes. It accelerates

the movement if the surface is far away from the triangulation and it flips the movement direction if

it is outside of the triangulation. The first term in brackets represents the modification of (??). This

term can be insufficient in case the normal vector N and ∇d(x) are perpendicular. The second term

in the brackets deals with this problem. It is the length of projection of −∇d(x) onto the tangential

plane. As a consequence it diminishes when −∇d(x) is parallel to the normal vector of the surface N

and if −∇d(x)⊥N , then η(d(x)) is proportional to the distance d(x).

We utilize similar principles for discretization of the evolution equation as in previous chapter.

Mi

N

−∇dSi = x(0, ·)

x(1, ·)

x(2, ·)

x(3, ·)

Mj

Figure 4: Illustrative example of (14) acting on x(t, ·) (green coloured lines) evolving towards a patch
Mi, coloured in solid red. From bottom to top the different configurations of the vectors N and −∇d
are shown at a point of the evolving surface x(t, ·) for t = {0, 1, 2, 3}.

3.2 Numerical experiments

We tested our approach on several input meshes. In general, we propose two approaches to the

Skeleton Evolution Phase:

• ALG 1 evolves each patch Si of to the surface skeleton S separately, imposing Dirichlet boundary

conditions at the common boundaries.

• ALG 2 allows during the evolution to move jointly also the boundaries of each Si, thus, allowing

for better quad quality over the whole mesh as well as better vertex distribution around each Si

boundary.

The strategy ALG 1 turns out to be useful when specific parts of the shape are aimed to be modified

while maintaining the prescribed Phase 1 partitioning boundaries.
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3.2.1 Example 2: Different resolutions

In this experiment, we produced the topology-skeletons Sh for teddy mesh using four different reso-

lutions controlled by decreasing mesh size h in the range {0.05, 0.04, 0.025, 0.01} and we evolved the

associated skeletons. Then we have decreased the input M4 mesh resolution density down to 10%.

The corresponding resultsare reported in Figure 5 in the first and last row while in the first column

we plot the input triangulation.

teddy

teddy 2 (sparse)

Figure 5: Example 2: Different resolution results for teddy mesh (top left) and its 90% down-sample
(bottom left). From left to right the results for chosen parameter h = {0.05, 0.04, 0.025, 0.1} respec-
tively, together with zoom to the reconstructed mesh with original triangulation over-imposed in blue
(second and third row).

From the reported results we can state that our algorithm is robust to the input-output mesh

resolution, while its smoothness can be controlled by the parameters in ε function, relative to the

diffusion term in the evolution model.

The corresponding Hausdorff distances in between results of Figure 5 are reported in Table 1.
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Table 1: Example 2: Hausdorff distances between the results reported in Figure 5.
dH(M4,M

h
�) h=0.040 h=0.025 h=0.010

teddy 22.600 12.783 3.014

teddy 2 22.680 13.577 5.796

Figure 6: A graph of errort for the experiments. Top: the evolving cylinder. Bottom left: the evolving
hyperbolic paraboloid. Bottom right: the evolving dumbbell like surface.

4 Gaussian curvature based tangential redistribution

In this part we utilize the equation (6) to redistribute the point on the surface in depend to the

Gaussian curvature. We present three numerical experiments. The first experiment has the initial

condition in the shape of a cylinder. A decreasing errort for this evolution can be seen on Figure 6, top.

The second experiment has an initial condition in the shape of a hyperbolic paraboloid z = x2−y2. A

decreasing errort for this evolution can be seen on Figure 6, left. Special case of an evolving surface is

presented in the last experiment. The surface is closed, therefore there are is no boundary condition.

The initial condition is a dumbbell like surface. A decreasing errort for this evolution can be seen on

Figure 6, right.

5 Geodetic boundary value problem

The Earth’s gravity field modelling is usually formulated in terms of the geodetic boundary value

problems (GBVP) [2]. From the mathematical point of view, it represents an exterior oblique derivative

BVP for the Laplace equation

−∆T (x) = 0, x ∈ Ω ⊂ R3, (15)

v(x) · ∇T (x) = g(x), x ∈ Ψ ⊂ ∂Ω, (16)

T (x) = TDir(x), x ∈ ∂Ω−Ψ, (17)

where T (x) is the disturbing potential, the vector v(x) = ∇U/|∇U | is an unit vector of the normal

gravity, the region Ψ ⊂ ∂Ω represents the Earth topography. This part of the thesis is based on the

paper [4].
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Figure 7: An evolving surfaces.

5.1 Discretization of oblique derivative BVP for Laplace equation

5.1.1 Approximation of the Laplace equation

We discretize the domain Ω by the regular hexahedron grid using the approach described in the first

part of the thesis. Vertices of hexahedron are the representative points of finite volumes constructed

later. Representative points are denoted by xi,j,k. Hexahedron finite volumes are constructed around

inner (those that do not lie on the boundary ∂Ω) representative points. We utilize a vertex centered

finite volume method, i.e. the vertices of the finite volume lies in the average of the neighboring

representative points.

Utilizing a Green’s theorem we convert the Laplace equation to the integral of the normal derivative

on the boundary of the finite volume. We reconstruct derivative in the normal direction npqr
ijk by a

derivatives in the directions spqrijk , tpqrijk and fpqr
ijk .

∇T · npqr
ijk =

1

βpqrijk

(∇T · spqrijk − α
pqr
ijk∇T · t

pqr
ijk − γ

pqr
ijk∇T · f

pqr
ijk ), (18)

where spqrijk is point connecting representative point and tpqrijk and fpqr
ijk are diagonal tangent vectors to

the boundary, see Figure 8.
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1,0,0
i,j,k
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1,0,0
i,j,k

n
1,0,0
i,j,k

Figure 8: Finite volume

The equation resulting equation has a form

−
∑

(p,q,r)∈N1

m(epqrijk )

(
1

βpqrijk

Tijk − Ti+p,j+q,k+r

dpqrijk

−
αpqr
ijk

βpqrijk

T
⊕(p,q,r)
i,j,k − T	(p,q,r)i,j,k

|x⊕(p,q,r)i,j,k − x
	(p,q,r)
i,j,k |

−
γpqrijk

βpqrijk

T
�(p,q,r)
i,j,k − T�(p,q,r)

i,j,k

|x�(p,q,r)
i,j,k − x

�(p,q,r)
i,j,k |

)
=0, (19)

where m(epqrijk ) is the area of the face epqrijk . Values T
⊕(p,q,r)
i,j,k , T

	(p,q,r)
i,j,k , T

�(p,q,r)
i,j,k and T

�(p,q,r)
i,j,k are values

of unknown solution in the vertices of the finite volume. They are approximated as an average of

values in the representative points.

5.1.2 Approximation of the oblique derivative boundary condition

We understand the equation (16) as advection equation, see [3], and we integrate it over the finite

volume and utilizing a Green’s theorem and constant approximation of solution on the finite volume

an its boundary we obtain

∑
(p,q,r)∈N1

T p,q,r
i,j,k

∫
ep,q,ri,j,k

v · n ds− Ti,j,k
∑

(p,q,r)∈N1

∫
ep,q,ri,j,k

v · n ds = m(Vi,j,k)g, (20)

where T p,q,r
i,j,k is the value on the boundary ep,q,ri,j,k and m(Vi,j,k) is the volume of the finite volume Vi,j,k.

The up-wind principle [3] is used in the sequel. Let us define the integrated flux over ep,q,ri,j,k by

vp,q,ri,j,k =

∫
ep,q,ri,j,k

v · n ds. (21)

If vp,q,ri,j,k > 0, ep,q,ri,j,k is an outflow face. Thus T p,q,r
i,j,k should be computed by using the information from

inside of the finite volume, T p,q,r
i,j,k := Ti,j,k +∇Ti,j,k · (xp,q,ri,j,k − xi,j,k), where ∇Ti,j,k is an approximation

of the gradient in the finite volume Vi,j,k. If vp,q,ri,j,k < 0, ep,q,ri,j,k represents an inflow face, thus T p,q,r
i,j,k

is computed using information from the neighbouring finite volume. Hence T p,q,r
i,j,k := Ti+p,j+q,k+r +

∇Ti+p,j+q,k+r · (xp,q,r
i,j,k − xi+p,j+q,k+r).

Let us split the set N1 for (i, j, k) into N in
1 (i, j, k) and Nout

1 (i, j, k), where N in
1 (i, j, k) are indexes of

neighbours for which vp,q,ri,j,k < 0 and Nout
1 (i, j, k) are indexes of neighbours for which vp,q,ri,j,k > 0. Then

the equation (20) becomes
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Table 2: Statistics of residuals between our FVM solution and the EGM2008 in the domian above
the Himalayas [m2s−2]

Resolution 0.1◦ × 0.1◦ × 10km 0.05◦ × 0.05◦ × 5km 0.025◦ × 0.025◦ × 2.5km
Grid density 501× 301× 25 1001× 601× 49 2001× 1201× 97

Min. value -5.07 -1.68 -0.44

Mean value 1.79 0.87 0.33

Max. value 23.05 11.98 3.90

St. deviation 2.3 1.09 0.37

∑
(p,q,r)∈N1

[
(Ti+p,j+q,k+r +∇Ti+p,j+q,k+r · (xp,q,r

i,j,k − xi+p,j+q,k+r)) min(0, vp,q,ri,j,k )

+ (Ti,j,k +∇Ti,j,k · (xp,q,r
i,j,k − xi,j,k)) max(0, vp,q,ri,j,k )− Ti,j,kvp,q,ri,j,k

]
= m(Vi,j,k)g. (22)

The gradient on the finite volume Vi,j,k can be expressed using derivatives in three linear indepen-

dent directions. Let us denote these directions p, q, r. We reconstruct the gradient utilizing

∇Ti,j,k =
p× q∂T

∂r + q× r ∂T
∂p + r × p∂T

∂q

det(p,q, r)
. (23)

5.2 Numerical experiments

In this section we present numerical experiments for the geodetic BVP (15)-(17). An experimental

order of convergence is studied in the first two experiments. Next experiments present a reconstruction

of a harmonic function on and above the complicated Earth’s topography, namely over the Himalayas

and in the area of Slovakia. The statistics of the Himalaya experiment compered with EGM2008

model can be seen in Table2

6 Advection equation

In this part we utilize the method from solving a GBVP and the input-implicit/output-explicit method

[5] to solve a non-stationary advection equation. We propose an improved method that approximate

the boundary of the finite volume more accurate, see Figure 10. For a smooth solutions we present a

numerical experiment showing an improvement of the order of convergence from 1.6 to second order.
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(a) (d)

(b) (e)

(c) (f)

Figure 9: (a) The Earth’s surface topography over the Himalayas (the bottom boundary) [m], (b) the
disturbing potential from EGM2008 on the Earth’s surface [m2s−2], (c) the disturbing potential from
our FVM solution [m2s−2], (d, e, f) residuals between the EGM2008 and our FVM solution, where
grid density is: (d) 501× 301× 25, (e) 1001× 601× 49, (f) 2001× 1201× 97 points [m2s−2].
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Figure 10: Illustration of a finite volume with boundaries split to the triangle boundaries

7 Conclusions

In the thesis we presented finite volume methods on non-uniform meshes for different applications.

We presented methods for making quadrilateral and hexahedral meshes. Both methods use a surface

evolution with a redistribution of points as primary tool. The chapter 2 deals with a construction of

a 3D mesh over the Earths topography by evolving a quadrilateral surface through the 3D domain.

It involves a tangential redistribution of the evolving surface discretization points leading to a con-

struction of a more regular non-uniform 3D hexahedron grid. We present a generation of pure quad

semi-regular meshes built on a consistent object patch-layout. The resulting quad mesh respects the

patch original layout. We shown that our method is robust for a different quality of input triangulated

mesh. We also presented a method to redistribute points according to Gaussian curvature.

We presented a finite volume method for solving a geodetic boundary value problem and the advec-

tion equation in 3D domains. We have presented an original numerical method for solving the oblique

derivative boundary value problem. The oblique derivative boundary condition has been treated as

a stationary advection equation. We have introduced a discretization of the Laplace equation and

oblique derivative boundary condition on grids constructed in the chapter 2. It consists of a recon-

struction of the normal derivative to the finite volume using derivatives in the tangential directions.

To treat numerically the oblique derivative BC as an advection equation, a new higher order up-wind

method has been introduced for non-uniform grids. The presented numerical experiments have aimed

to demonstrate efficiency of our proposed numerical method.

In the last chapter we introduced a finite volume method for the advection equation. We used ideas

of the method from chapter 5 and IIOE strategy. Furthermore we propose a more accurate discretiza-

tion method by splitting boundaries of the finite volumes to triangles. The numerical experiments

show that this improved method is the second order of convergence for a solution without singularities.

This method could be also incorporated in the solution GBVP to improve order of convergence.
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[6] K. Mikula, M. Remešiková, P. Sarkóci, D. Ševčovič, Manifold evolution with tangential redistri-

bution of points, SIAM J. Scientific Computing, Vol. 36, No.4, pp. A1384-A1414 (2014)

[7] H. Zhao, S. Osher, B. Merriman, M. Kang, Implicit and nonparametric shape reconstruction from

unorganized data using a variational level set method, Computer Vision and Image Understanding

80 (2000) 295–319. doi:10.1006/cviu.2000.0875.



19

Zoznam publikačnej činnosti
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