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Abstract

The thesis deals with filtering of geodetic data on closed surfaces by using the linear, nonlinear and geomet-
rical diffusion equations. The linear diffusion filtering is given by the Laplace-Beltrami operator representing
linear diffusion along the surface. For the nonlinear diffusion filtering, we use Perona-Malik type nonlinear
diffusion equations with diffusion coefficient depending on surface gradient and introduce a new model where
diffusion coefficient depends on surface Laplacian of solution. This allows adaptive filtering respecting edges
and local extrema in the data. Adaptive filtering is also performed by using the nonlinear geometrical diffusion
driven by mean curvature of contour lines of data. For numerical discretization of all mentioned models, we
develop a surface finite-volume method to approximate the partial differential equations on the closed surface.
The surfaces are approximated by a polyhedral mesh created by planar triangles representing a subdivision of
an initial icosahedron or octahedron grids. Numerical experiments illustrate the behaviour of each proposed
filter on artificial data and on real measurements, namely the GOCE satellite observations, which represent
second derivatives of gravity potential, and the satellite-only mean dynamic topography data, which represent
changes of the water mass in Earth’s oceans.

Keywords: data filtering, nonlinear diffusion equation, mean curvature flow, geodetics mean curvature flow,
surface finite volume method, GOCE data, satellite-only mean dynamic topography

Abstrakt

Dizertačná práca pojednáva o filtračných metódach určených na spracovanie geodetických dát na uzavre-
tých plochách. Tieto metódy sú založené na lineárnych, nelineárnych a geometrických difúznych rovniciach.
Lineárna difúzia na ploche je definovaná pomocou Laplace-Beltramiho operátora, ktorý predstavuje zovšeobec-
nenie Laplaceovho operátora na plochách. V práci je použitá metóda založená na Perona-Malikovom modeli,
v ktorej je difúzny koeficient závislý od povrchových gradientov dát a predstavuje sa nový model nelineárnej
difúzii, ktorý je závislý od povrchového Laplaceovho operátora aplikovaného na filtrované dáta. Tieto modely
umožňujú adaptívnu filtráciu, teda filtráciu, ktorá zachováva dôležité štruktúry v dátach, ako napríklad hranice
štruktúr či lokálne extrémy dát. Adaptívnu filtráciu je možné dosiahnut’ použitím rovníc založených na neli-
neárnej geometrickej difúzii. Takáto difúzia je riadená vývojom izočiar pomocou strednej krivosti. Na nume-
rickú aproximáciu uvedených parciálnych diferenciálnych rovníc bola použitá povrchová metóda konečných
objemov. Samotná výpočtová oblast’ je aproximovaná trianguláciou, ktorá vznikla delením pôvodnej icosa-
hedronovej a octahedronovej siete. V práci sa vyskytuje niekol’ko numerických experimentov, ktoré skúmajú
vlastnosti jednotlivých metód, ale aj experimenty, v ktorých sú spracovávané reálne geodetické údaje. Kon-
krétne sú v práci filtrované satelitné dáta z družice GOCE, ktorá meria druhé derivácie gravitačného potenciálu
a satelitné dáta strednej dynamiky topografie oceánov (ang. mean dynamic topography), ktoré popisujú zmenu
hmôt vo svetových oceánoch.

Kl’účové slová: filtrácia dát, nelineárne diffúzne rovnice, vývoj podl’a strednej krivosti, geodetická stredná
krivost’, povrchová metoda konečných prvkov, GOCE dáta
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Chapter 1

Introduction

In many applications, it is necessary to analyse data, e.g. classical images given on 2D or 3D regular grid
structure or geoscience data given on 2D surfaces like the Earth topography or satellite orbits, which are often
contaminated by noise, and their quality can be rather poor. Nonlinear partial differential equations (PDEs)
can be used to automatically produce an output of higher quality, enhance the sharpness, filter out the noise,
extract shapes, etc. From the mathematical point of view, the input processed data can be modelled by a
real function u0(x), u0 : Ω→ R, where Ω ⊂ Rd represents a spatial domain. In image analysis, Ω is typically
rectangular and d = 2 or 3, in surface data analysis Ω is a closed or open surface in R3. In the presented approach
we are strongly inspired by ideas from classical image processing which we transfer to geodesy surface data
analysis. Image processing operations based on PDEs involve such important tasks as image filtering, edge
detection, deblurring and image enhancement, restoration, image inpainting, shape extraction and analysis,
image segmentation, motion analysis, motion based filtering etc.[1, 2, 3, 4, 5, 6, 7, 8, 9].

The first step to use PDEs for image processing was done in the beginning of eighties [10, 11]. By the
simple observation that the Gauss function

Gσ (x) =
1

(4πσ)d/2 e−|x|
2/4σ (1.1)

is the fundamental solution of the linear heat (diffusion) equation, it has been possible to replace the classical
image processing operation – convolution of an image with the Gauss kernel (normal probability distribution
function) with variance v =

√
2σ (Gaussian smoothing) – by solving the linear heat (diffusion) equation

ut = ∆u (1.2)

for time t = σ with initial condition given by the processed image u0. Here ∆ denotes the classical Laplace
operator in cartesian coordinates and ut denotes the time derivative of the unknown function u(t,x), u : [0,T ]×
Ω→ R.

It is well known that Gaussian smoothing (linear diffusion) blurs edges and moves their positions in images
as well as smooths out local extrema of data. Although such phenomena can cause no problems in some
examples of data analysis, in applications where, e.g., a visual impression is crucial and a precise localization
of edges and values at extrema are necessary, the linear (Gaussian) smoothing is generally not the best choice.
A way has been found to overcome these shortcomings, namely to switch to nonlinear diffusion models.

Due to the evolutionary character of the process which controls the processing using diffusion equations,
application of any PDE to an initially given image is understood as its embedding in the so-called scale space.
The Gaussian smoothing represents linear scale space. In the case of nonlinear PDEs, one speaks about non-
linear scale space. The axioms and fundamental properties of such embeddings have been summarized and
studied by Alvarez, Guichard, P.L. Lions and Morel in [1, 2, 12], where the notion of image multiscale analysis
has been introduced. The image multiscale analysis associates with a given image u0(x) a family u(t,x) of
smoothed-simplified images depending on an abstract parameter t ∈ [0,T ], the scale. As has been proved in
[1], if such a family fulfills certain basic assumptions – pyramidal structure, regularity and local comparison
principle – then u(t,x), u : [0,T ]×Ω→ R, can be represented as the unique viscosity solution (in the sense of
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4 CHAPTER 1. INTRODUCTION

[13]) of a general second order (degenerate) parabolic partial differential equation.

Since the end of the 80s, the nonlinear diffusion equations have been used for processing of 2D and 3D
images. After the pioneering work of Perona and Malik [14] who modified the linear heat equation (1.2) to
nonlinear diffusion preserving edge positions, there has been a great deal of interest in the application and
analysis of such equations. At present, the following nonlinear PDE suggested by Catté, P.L.Lions, Morel and
Coll [15], often called regularized Perona-Malik model, is widely used in various practical image processing
applications:

ut −∇.(g(|∇Gσ ∗u|)∇u) = 0, (1.3)

where u(t,x) is an unknown function. The equation is accompanied by the zero Neumann boundary condi-
tions, the initial condition is given by the processed image u0 ∈ L∞(Ω), the following assumptions on diffusion
coefficient function g and smoothing kernel Gσ are prescribed

g : R+
0 → R+ is a nonincreasing function,g(0) = 1,g(s)→ 0 for s→ ∞, (1.4)

Gσ ∈C∞(Rd) is a smoothing kernel,
∫

Rd
Gσ (x)dx = 1,

∫
Rd
|∇Gσ |dx≤Cσ , (1.5)

Gσ (x)→ δx for σ → 0, where δx is Dirac function localized at point x, (1.6)

and

∇Gσ ∗u(x) =
∫
Rd

∇Gσ (x−ξ )ũ(ξ )dξ , (1.7)

where ũ is an extension of u to Rd . One can consider the extension of u by 0 outside Ω or the reflective periodic
extension of the image [15].

The equation (1.3) represents a modification of the original Perona-Malik model [14, 16, 17]

ut −∇.(g(|∇u|)∇u) = 0, (1.8)

called also anisotropic diffusion in the computer vision community. Perona and Malik introduced (1.8) in the
context of edge enhancement. The equation selectively diffuses the image in the regions where the signal
has small variance in intensity in contrast with those regions where the signal changes its tendency. Such a
diffusion process is governed by the shape of the diffusion coefficient given by the function g in (1.8) and by its
dependence on ∇u, which is understood as an edge indicator [14]. Since g→ 0 for large gradients, the diffusion
is strongly slowed down on edges, while outside them it provides averaging of pixel intensities as in the linear
case. From a mathematical point of view, for practical choices of g (e.g. g(s) = 1/(1+ s2), g(s) = e−s2

), the
original Perona-Malik equation (1.8) can behave locally like the backward heat equation. It is, in general, an
ill-posed problem which suffers from non-uniqueness and whose solvability is a difficult problem [17]. One
way to overcome this disadvantage was proposed in [15], where the convolution with the Gaussian kernel Gσ

was introduced into the decision process for the value of the diffusion coefficient, cf. (1.3). Since convolution
with the Gaussian is equivalent to linear diffusion, their model combines ideas of linear and nonlinear scale
space equations. Such a slight modification made it possible to prove the existence and uniqueness of solutions
for the modified equation, and to keep the practical advantages of the original formulation [15]. Moreover,
usage of the Gaussian gradient ∇Gσ ∗ u combines the theoretical and implementation aspects of the model.
The convolution (with prescribed σ ) gives a unique way to compute gradients of a piecewise constant image. It
also bounds (depending on σ ) the gradient of the solution as an input of the function g in the continuous model
– which corresponds to the situation in numerical implementations where gradients evaluated on a discrete grid
are finite. Also, the local edge enhancement is more understandable in the presence of noise.

In the thesis we present linear and nonlinear diffusion filtering methods for geodesy data given on closed
surfaces. For readers interested in image processing numerical algorithms on regular grids we refer, e.g., to
[18, 19] and further references therein. In order to process surface data by PDEs like (1.2) and (1.3), instead
of standard gradient and Laplacian, we have to consider the surface gradient and surface Laplacian – so called
Laplace-Beltrami operator. For any scalar function u defined on an open subset G of Rd containing surface Ω
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the surface (tangential) gradient is defined by

∇su = ∇u− (∇u ·ν)ν , (1.9)

where ν is outer unit normal to the closed surface Ω and ∇u denotes the usual gradient and · denotes the usual
scalar product on Rd . The tangential gradient ∇su only depends on the values of u restricted to surface Ω and
∇su · ν = 0. The Laplace-Beltrami operator on surface Ω is then defined as the tangential divergence of the
tangential gradient, i.e.

∆su = ∇s ·∇su. (1.10)

We also recall the Green (integration by parts) formula for scalar functions on surfaces and its consequences
[20, 21, 22], which will be used in derivation of numerical schemes later in the thesis. Let Γ be a subset of Ω

having a boundary ∂Γ whose unit outer normal, tangential to Γ, is denoted by η . Then∫
Γ

∇su dA =
∫

∂Γ

uη da−
∫

Γ

HuνdA, (1.11)

where H denotes the (scalar) mean curvature of Γ, and dA denotes 2D surface element measure and da denotes
1D curve element measure, for the proof see [22], Theorem 2.10. Let q be a tangential vector field to the surface
Γ, i.e. q ·ν = 0, a typical example used later is the so called surface diffusion flux given by q = g∇su, where g
is a scalar function defined on the surface. Then from (1.11) we obtain divergence theorem on the surface∫

Γ

∇s ·q dA =
∫

∂Γ

q ·η da−
∫

Γ

Hq ·νdA =
∫

∂Γ

q ·η da. (1.12)

and choosing g = 1 in surface diffusion flux we get∫
Γ

∆su dA =
∫

∂Γ

∇su ·η da. (1.13)

The content of the thesis is organized into four main chapters. The chapter 2 is dedicated to the linear
diffusion filter on a closed surface and it is divided into two sections. The section 2.1 presents numerical dis-
cretization of linear diffusion on a closed surface, while the section 2.2 study a uniform filtering behaviour of
the model on the testing experiment. The chapter 3 presents different filters, which are based on the nonlinear
diffusion on a closed surface. Namely, the section 3.1 is dedicated to the numerical discretization of the reg-
ularized surface Perona-Malik model and the section 3.2 represents adaptive filtering behaviour of the model.
A new approach in filtering methods represents the nonlinear diffusion influenced by the surface Laplacian.
The idea of this approach is based on the drawback of the regularized Perona-Malik model in the area of local
extrema of data. A numerical approximation of the model is the main topic of sections 3.3. Consequently, the
section 3.4 presents testing experiment, where we compare the efficiency of the new method with linear and
nonlinear regularized Perona-Malik model. The chapter 4 introduces the nonlinear geometrical diffusion filter
on a surface. The section 4.1 deals with a numerical approximation of the mean curvature flow equation on the
closed surface and in the section 4.2 we describe the approximation of surface geodesic mean curvature flow
on the same domain. The behaviour of both models is illustrated in the section 4.3. This section presents two
testing numerical experiments, which study a behaviour of the model with different input parameters and we
compare the filtering effect with the other nonlinear diffusion models. The next chapter deals with numerical
experiments on filtering of real geodetic data. Namely, the chapter 5 presents filtering of the components of the
GOCE gravity gradients tensor in two different referential systems, the satellite-only mean dynamic topography
data, which represent dynamic of mass in the Earth’s ocean. The last chapter presents short conclusions of the
thesis and possibilities of the further research.



Chapter 2

The linear diffusion filter on a surface

The linear diffusion of a scalar function u on a closed surface Ω is given by the equation

∂tu = ∆su, (2.1)

which is a direct generalization of equation (1.2) and serves for a uniform smoothing of data on surfaces. Since
the surface is closed, no boundary conditions have to be prescribed. Processed data u0(x) defined on Ω gives
initial condition for (2.1).

2.1 Numerical discretization of linear diffusion on a surface

The differential equation (2.1) is numerically solved by the surface finite volume method [23, 24, 25].
In this approach, the surface Ω is approximated by an appropriate triangulation defined by N representative
nodes Xi, Xi ⊂Ω, i = 1, . . . ,N. These nodes represent vertices of the triangular grid defined by planar triangles
Tiq, q = 1, ...,Qi, i = 1, ...,N, where Qi is the number of triangles with the vertex Xi. Other two vertices of the
triangle Tiq will be denoted by Xq1

i and Xq2
i . A value of function u in the node Xi is denoted by ui. For the

given triangulation we construct a finite volume grid. At each node Xi we create a co-volume (finite volume) Vi

bounded by straight lines that connect midpoints between Xi and its neighbours Xq1
i , Xq2

i with centers of mass
of all triangles joined in the node Xi. By integrating equation (2.1) over the finite volume Vi , by applying (1.13)
to its right hand side and taking into account geometry of the boundary of co-volume we obtain∫

Vi

∂tudA =
Qi

∑
q=1

∫
∂Viq

∇su ·~ηiqda, (2.2)

where ∇su represents the surface gradient of the function u and ∂Viq are parts of the co-volume boundary that
belong to Tiq having outer normal vectors ~ηiq.

Eq. (2.1) is solved in a time interval [0,T ]. This interval is divided into M time steps t j, j = 1, . . . , M and
the time derivative ∂tu is approximated by the backward difference. Then we get

m(Vi)
u j

i −u j−1
i

τ
=

Qi

∑
q=1

∫
∂Viq

∇su j ·~ηiqda. (2.3)

where m(Vi) denotes the area of co-volume Vi and τ = t j − t j−1 denotes the time step and the value of u j

represents a solution in the jth time step.
For the right hand side of Eq. (2.3) let us consider a linear representation of u j on each triangle. Then the

surface gradient ∇su j is a constant vector over each triangle Tiq and we can replace it by the mean value

∇su j =
1

m(Tiq)

∫
Tiq

∇su jda, (2.4)

where m(Tiq) denotes the area of the triangle Tiq. Applying (1.11) to the right hand side of Eq. (2.4), since any

6



2.1. NUMERICAL DISCRETIZATION OF LINEAR DIFFUSION ON A SURFACE 7

triangle has the zero mean curvature, we obtain

∇su j =
1

m(Tiq)

∫
∂Tiq

u j ·~niqda, (2.5)

where ~niq is the unit outer normal vector, tangential to the boundary of the triangle Tiq. For the linear repre-
sentation of u j, the integral over the triangle boundary can be expressed as a sum of average values from each
triangle side, and denoting by ~P j

Tiq
the constant approximation of the surface gradient on the triangle Tiq, we get

~P j
Tiq

=
1

m(Tiq)

(
u j

i +u j
q1

2
diq1~niq1 +

u j
i +u j

q2

2
diq2~niq2 +

u j
q1 +u j

q2

2
dq1q2~nq1q2

)
(2.6)

where u j
i ,u

j
q1,u

j
q2 denotes the nodal values of the solution in triangle nodes Xi,X

q1
i ,Xq2

i . Consequently, the
approximation of Eq. (2.3) can be written in the form

m(Vi)
u j

i −u j−1
i

τ
=

Qi

∑
q=1

∫
∂Viq

~P j
Tiq
·~ηiqda. (2.7)

Since ~P j
Tiq

is a constant vector and ∫
∂Viq

~ηiq = m(e1
iq)~η

1
iq +m(e2

iq)~η
2
iq, (2.8)

where m(e1
iq) and m(e2

iq) are lengths of the parts of the co-volume boundaries inside the triangle Tiq, we get

m(Vi)
u j

i −u j−1
i

τ
=

Qi

∑
q=1

[
m(e1

iq)~η
1
iq ·~P

j
Tiq

+m(e2
iq)~η

2,
iq ·~P

j
Tiq

]
(2.9)

which can be, for every i = 1, ...,N, written in the form

u j
i −

τ

m(Vi)

Qi

∑
q=1

[
m(e1

iq)~η
1
iq ·~P

j
Tiq

+m(e2
iq)~η

2,
iq ·~P

j
Tiq

]
= u j−1

i (2.10)

and represents the implicit numerical scheme for solving linear diffusion equation (2.1) on the closed surface
Ω.

Eqs. (2.10) represent a linear system of equations which can be written in the form

~A~u j =~u j−1 (2.11)

where ~A represents the system matrix and ~u j = [u j
1, ...,u

j
N ]

T is a vector of nodal values of the solution in the
jth time step. The system matrix ~A is a sparse non-symmetric matrix and its properties depend on the time
step τ and geometry of the triangulation. Let us define a local numbering of nodal values in co-volume and its
neighbourhood: the nodal value in the co-volume centre will be denoted by u j

i0 and its neighbouring unknown
values are denoted by u j

i1, ...,u
j
iQi

. Then the equation corresponding to co-volume Vi contains Qi +1 unknowns
u j

i0,u
j
i1, ...,u

j
iQi

and ith row of the linear system (2.11) is given by

Qi

∑
q=0

a j
iqu j

iq = u j−1
i0 , (2.12)

where a j
i0,a

j
i1, ...,a

j
iQi

represent non-zero coefficients in the ith row of the matrix ~A (let us note that for the
linear diffusion approximation the upper (time) index j is dummy, but it will play a role in nonlinear diffusion
approximation later). The exact column locations of these non-zero coefficients depends on a global indexing
of the corresponding nodal value.
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2.2 Behaviour of the linear diffusion on a closed surface

In this section, we present a simple numerical experiment showing how an additive noise is filtered from
an artificial function defined on a computational domain. To approximate a sphere with the chosen radius
r = 1000 we use the 9th subdivision of the initial icosahedral grid. In this experiment we use the triangulation
with 655 362 nodes and 1 310 720 triangles. On this triangulated sphere we defined an artificial piecewise
constant function w in such a way that wi = 1 for all nodes located on lands and wi = 0 for all nodes at oceans.
Onto this function w we put an additive noise at 130 697 nodes which represent approximately 20% of all
nodes randomly distributed over the sphere. The generated uniform non-Gaussian additive noise is from the
interval (−0.3,0.4) and after adding the noise we get our initial condition u0 for which u0

i ∈ (0.7,1.4) on
lands and u0

i ∈ (−0.3,0.4) at oceans (Fig. 2.1 left). The system of linear equations (2.11) has to be solved in
every filtering (time) step. To that goal, in numerical experiments, we use the SOR (successive-over-relaxation)
method [26] or BiCGSTAB (biconjugate gradient stabilized) method [27]. In order to get convergence of SOR,
we make the system matrix diagonally dominant choosing the time step τ proportional to an average area of
the co-volumes [23, 24]

τ =
1
N

N

∑
i=1

m(Vi) . (2.13)

The choice of the time step is essential for the whole filtering process and implies how many filtering (time)
steps (we call it also iterations) will be necessary to get reasonable results. For the better description of the
behaviour of the linear model, we use in this experiment smaller time step 1

10 τ . Such a selection of smaller time
step can describe the evolution of the solution more specifically. In this experiment, the function which has to
be reconstructed is known, therefore we are able to demonstrate the behaviour of the linear diffusion model. In
each time step, we compute the root mean square (RMS) of residuals according to the formula

RMS =
1
N

√
N

∑
i=1

(wi−ui)2. (2.14)

The minimal RMS is obtained from the solution in the second time step and reaches a value 0.0673 and then
the RMS grows. Fig. 2.1 (right) shows profiles from solutions obtained after 2, 5 and 10 iterations of the linear
diffusion filtering (τ = 1.921) along the equator across South America. From the result, it is evident that this
approach reduces the additive noise but it has a uniform smoothing effect comparable to other linear filters. This
can produce serious inaccuracies in the interpretation of processed data. A way how to avoid such inaccuracies
is to use nonlinear filtering methods.

Figure 2.1: The initial condition u0 (left), profiles across South America from the solution of filtering of noise
using the surface linear diffusion after 2, 5 and 10 time steps (right)



Chapter 3

The nonlinear diffusion filter on a surface

To perform a nonuniform smoothing of data on surfaces we need to choose an appropriate diffusion coeffi-
cient in diffusion PDEs. The main idea is that the diffusion coefficient should not be a constant but a nonlinear
function of differential characteristics of data. The important feature of linear and the nonlinear diffusion is
that they both have a property that they conserve an average value of data during the filtering. In following
sections, we present numerical approximations of different nonlinear models with their corresponding nonlin-
ear diffusion functions, namely the regularized surface Perona-Malik model and the nonlinear diffusion model
influenced by the surface Laplacian.

3.1 The regularized surface Perona-Malik model

In this approach, originally developed in [23], we use an analogy with the regularized Perona-Malik model
(1.3) from the classical image processing and we suggest following PDE

∂tu = ∇s · (g(|∇suσ |)∇su) (3.1)

for filtering the data on surfaces. The nonlinear diffusivity function g depends on the term ∇suσ , the surface
gradient of solution u smoothed by the surface linear diffusion for a short time interval σ , and represents an
edge detector for surface data. We consider g in the form

g(|∇suσ |) = 1
1+H|∇suσ |2

, H ≥ 0, (3.2)

where constant H represents an edge sensitivity parameter. By this definition, g fulfils assumption (1.4) and
returns values from the range 0 < g(|∇suσ |)≤ 1.

The parameter H determines how sensitive will be the edge detector to high values of a smoothed surface
gradient of u and gives us a decision capability which gradients to preserve. Large gradients which represent
edges in processed data yield a small value of edge detector and vice versa. If the values of edge detector
are close to zero, the diffusion process is strongly slowed down, on the other hand, if the values are close
to 1, the process is similar to the linear diffusion. This allows the adaptive smoothing according to surface
gradients of the solution. The parameter σ affects the solution uσ of the surface linear diffusion from which the
surface gradient is computed. This pre-smoothing of surface gradients causes that only un-noisy edges will be
preserved in the nonlinear adaptive smoothing process. An appropriate choice of the parameters H and σ plays
an important role in the filtering process and needs to be tuned experimentally.

To approximate the Eq. (3.1) we use analogous steps as described in section 2.1 we obtain the numerical
scheme

u j
i −

τ

m(Vi)

Qi

∑
q=1

[
m(e1

iq)~η
1
iq ·~P

j
Tiq

g(|~Pσ , j−1
Tiq

|)+m(e2
iq)~η

2,
iq ·~P

j
Tiq

g(|~Pσ , j−1
Tiq

|)

]
= u j−1

i , (3.3)

i = 1, ...N, which represents a semi-implicit numerical scheme for solving the regularized Perona-Malik model
on the closed surface Ω. The diffusivity function g inside the scheme (3.3) depends on Pσ , j−1

Tiq
that represents

9
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numerical approximation of the surface gradient on triangle Tiq of the solution u at the previous time step j−1
smoothed by one step σ of the surface linear diffusion. In such a way the nonlinearity in the equation (3.1)
is treated by using the smoothed gradients from the previous time step, thus leading to the system of linear
equations. Comparing the semi-implicit scheme (3.3) with the implicit scheme (2.10) for the surface linear
diffusion, the difference is that now the surface gradients P j

Tiq
are multiplied by the edge detector function g

which allows the adaptive smoothing according to the smoothed surface gradients evaluated at the previous
time step. Consequently, the edge detector is step by step evolving in time giving an opportunity to preserve
main structures in the data and effectively reduce the noise.

Our experience shows that the regularized surface Perona-Malik model (3.1) successfully reduces noise
while preserves edges, but we have also observed that it slightly smooths out local extrema of filtered data
[23, 24]. It is due to the fact that the smoothed surface gradients are not high enough in areas of local extrema,
but opposite, they are close to zero.

3.2 The behaviour of the regularized surface Perona-Malik model

To show behaviour and advantages of the nonlinear diffusion model (3.1) we use the same experiment as we
used in section 2.2. This experiment aims to demonstrate how diffusion filtering controlled by the edge detector
can successfully remove an additive noise. We use the same space discretization of the unit sphere and the same
initial condition (Fig. 2.1 left). In case of the nonlinear surface diffusion, the linear system of equations is given
by the semi-implicit scheme (3.3). To get this system, first, we have to apply the linear diffusion filtering to
the solution from the previous time step. Then we evaluate the corresponding surface gradients that indicate
values of the edge detector. After that, we are able to compute coefficients of the system matrix. This process
is repeated in every filtering step. Therefore, the nonlinear surface diffusion filtering is more time consuming
and usually requires more iterations than the linear one.

A significant part of data filtering is finding the optimal values for the edge detector function parameters H
and σ and the time step τ and the number of iterative (filtering) time steps. Since in this experiment the true (un-
noisy) solution is known, we are able to tune the parameters considering the RMS of residuals between the true
and filtered solutions (2.14). In general, the parameters for the edge detector depend on gradients of processed
data. To describe the influence of the sensitivity parameter to the model, we use several different values of this
parameter and we compute the RMS of residual for each selection. The minimal RMS of residuals is decreasing
along with increasing value of H, but also along with increasing numbers of time steps. The difference between
the minimal RMS of residuals obtained using H = 35 000 and H = 65 000 is smaller than 0.001, while the
number of time steps required to obtain the minimal RMS in the case of H = 65 000 is almost 81% higher.
see Fig. 3.1 (right). Fig. 3.1 (left) depicts profiles from the solution of filtering after 15, 52 and 100 iterations
of the nonlinear diffusion along the equator across South America using H = 35 000. From the result, it is
evident that the signal corresponding to the additive noise is step by step vanishing while high gradients and
their positions remain preserved. Here we remind that the edge detector always depends on surface gradients
computed from the solution in the previous iterative step, thus it is adapted to the filtered solution evolving in
time. Such an adaptive smoothing effect is a main advantage of the nonlinear filtering.

Figure 3.1: Profiles across South America from the solution of filtering of the additive noise using the surface
Perona-Malik diffusion after 15, 52 and 100 time steps (left), the minimal RMS of residuals (with corresponding
number of time step) for different selections of the parameter H (right)
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3.3 The nonlinear diffusion influenced by the surface Laplacian

In this section, we present an extension of the edge detector function of the Perona-Malik model by another
argument which will slow down diffusion process in areas of local extrema, i.e. in regions with large values
of surface Laplacian – the Laplace-Beltrami operator [24]. The diffusion coefficient which represents the edge
and local extrema detector is defined by

g(|∇suσ1 |,∆suσ2) =
1

1+H1|∇suσ1 |2 +H2(∆suσ2)2 , H1,H2 ≥ 0. (3.4)

The function g depends on the surface gradient of the solution u smoothed by the linear diffusion equation for
a time interval σ1 as well as on the Laplace-Beltrami operator applied to solution u smoothed by the linear
diffusion equation for a time interval σ2. The parameter H1 has the same meaning as in the edge detector in the
regularized Perona-Malik model and the parameter H2 affects sensitivity to high values of the surface Laplacian
of the function u. Alternatively, we can use diffusivity coefficient g in the form

g(∆suσ ) = 1− 1
1+H(∆suσ )2 , H ≥ 0. (3.5)

In this case, the function (3.5) speeds up the diffusion in extremal values and we found that this choice of the
diffusivity function is useful in the case of extremal noise. Experimentally we have found that by applying
few steps of diffusion filtering based on this function and afterwards to use a different nonlinear model, we can
better preserve structures of processed data.

To obtain the numerical schemes of the nonlinear diffusion models influenced by the surface Laplacian in
forms

∂tu = ∇s · (g(|∇suσ1 |,∆suσ2)∇su), (3.6)

∂tu = ∇s · (g(∆suσ2)∇su), (3.7)

we need to approximate the value of the Laplace-Beltrami operator on the triangle of co-volume.
To approximate the Laplace-Beltrami operator we use numerical approximation of the surface linear dif-

fusion. Then we can denote the approximated mean value on the co-volume Vi in time step j by C j
i and we

obtain

C j
i =

1
m(Vi)

Qi

∑
q=1

[
m(e1

iq)~η
1
iq ·~P

j
Tiq

+m(e2
iq)~η

2,
iq ·~P

j
Tiq

]
, (3.8)

which can be also understood as an approximation of the Laplace-Beltrami operator in the vertex X j
i . Since we

need a value of diffusion coefficient on the edges of co-volume, i.e. on the triangles meeting in the center of
co-volume, we compute the average value of the Laplace-Beltrami operator on the triangle Tiq by

C j
Tiq

=
1
3
(|C j

i |+ |C
j
q1
|+ |C j

q2
|), (3.9)

where C j
i , C j

q1 and C j
q2 represent the values in triangle vertices.

Using the same approach as we have used in the section 2.1, we obtain a semi-implicit numerical scheme
for the nonlinear diffusion filtering method influenced by the surface Laplacian on the closed surface Ω

u j
i −

τ

m(Vi)

Qi

∑
q=1

[
m(e1

iq)~η
1
iq ·~P

j
Tiq

g(|~Pσ1, j−1
Tiq

|, |Cσ2, j−1
Tiq

|)

+m(e2
iq)~η

2,
iq ·~P

j
Tiq

g(|~Pσ1, j−1
Tiq

|, |Cσ2, j−1
Tiq

|)

]
= u j−1

i , (3.10)

i = 1, ...,N, where ~Pσ1, j−1
Tiq

is an approximation of the smoothed gradient of the solution from the previous time

step j−1, and analogously, Cσ2, j−1
Tiq

is an approximation of the smoothed surface Laplacian of the solution from
the previous time step j−1.
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3.4 The behaviour of the nonlinear diffusion influenced by the surface Lapla-
cian

In this section we use the nonlinear diffusion model influenced by the surface Laplacian with edge and
extrema detector function (3.4). To get the linear system of the equations given by the semi-implicit scheme
(3.10), we need to apply the linear diffusion filtering more than once. At first, we need to apply the linear
diffusion with σ1 to the solution from the previous time step, and then we evaluate the corresponding surface
gradients. Secondly, we need to apply again the linear diffusion to the solution from the previous time step, but
in this case, we need to use σ2. Subsequently, we evaluate the surface Laplacian and then, we get the values of
the edge and extrema detector function.

To compare this new approach with surface Perona-Malik model, we use the same sensitivity coefficient
H1 = 35 000 for the edge detection as we use in section 3.2. Consequently, we use several sensitivity coefficients
H2 and we compute the RMS of residuals (2.14) for each selection. Fig. 3.2 (left) shows the minimal RMS
for each selection of H2. In this experiment we use σ1 = τ and σ2 =

1
10 τ . The parameter σ2 is notably smaller

since we need to preserve high values of surface Laplacian in local extrema. As we can see in the figures, the
minimal RMS of residual is decreasing along with increasing H2. The difference between the minimal RMS
of residuals obtained by this approach and the one obtained by the surface Perona-Malik model is higher than
0.29 ·10−2 (using H2 = 15 000). However, it should be noted that we need 28 more time steps to achieve this
minimal RMS. Fig. 3.2 (right) depicts differences between the solutions obtained by the surface Perona-Malik
model and by the extended model after 80. Both solutions are from the same time step using H = H1 = 35 000
and H2 = 15 000. In the figure, we can see that the extremal differences are in the nodes which represent
island structures (local extrema). From the behaviour of these differences, we can conclude that the nonlinear
diffusion influenced by the surface Laplacian preserves these structures better.

In the second part of the experiment, we focus on the behaviour of the nonlinear extrema reduction model
with extrema detector function (3.5). At first, we need to modify an artificial noise of the experiment. To each
node affected by the noise, we add a random number from the range of (−1,1). Such an adjustment extends
the interval of u0 to (−1.3,2.4). This modification is important for a correct interpretation of the behaviour
of the model since it is suitable only for a reduction of an extremal noise, which must be significantly higher
than the original piecewise constant function w. If we want to use the surface Perona-Malik model for this
modified experiment, we must use higher σ for the linear pre-filtration. This can result in the movement of
the initial border structures in the surface gradient computation. We can avoid such a disadvantage using the
nonlinear extrema reduction model. As the model parameters we use H = 10 and σ = 0.01. Results shows that
the initial interval of data shrinks to (−0.52,1.54) while the RMS of residuals decreases from the initial value
0.35 to 0.143. So it is evident that the model successfully reduces the extremal noise to smaller amplitudes.
After this reduction, we can use a different nonlinear diffusion model to get the precise solution (e.q. surface
Perona-Malik model).

Figure 3.2: The minimal RMS of residuals (with the corresponding number of time step) for different selections
of the parameter H2 (left), differences from the solution of surface Perona-Malik model (right)



Chapter 4

The nonlinear geometrical diffusion filter on
a surface

A different type of surface filters represents the nonlinear filters based on the geometrical diffusion. In
general, a scalar function u which represents processed data can be represented by a set of specific contour
lines. A properly designed evolution of these contour lines corresponds to the smoothing of processed data.
This type of equations is known as nonlinear PDEs of a mean curvature flow type [28, 29, 9, 3]. The evolution
in the normal direction, which depends on curvature is given by PDE in the level set formulation in the form

∂tu = |∇u|∇ ·
(

g
∇u
|∇u|

)
. (4.1)

In the case of g = 1, this equation represents the mean curvature flow (MCF) which is also known as a
curvature filter. Such level set model performs uniform intrinsic smoothing of all contour lines at ones. And it
is fast if the curvature of contour lines is high – contour lines of noise – while the evolution of the other contour
lines is slower. For the edge-preserving geometrical diffusion filtering, a generalization of the curvature filter
(4.1) called geodesic mean curvature flow (GMCF) is useful [29]. There the diffusivity coefficient g is given
by the edge detector function (3.2). In this case, a speed of evolution of contour lines depends on gradients of
smoothed data. On the contrary to previous linear and nonlinear diffusion models, the surface MCF and the
surface GMCF doesn’t conserve the average value of data during the filtering. In the following sections, we
present a numerical discretization of these models on the closed surface, and we describe their behaviour on
experiments of filtering artificial data.

4.1 The surface mean curvature flow

The level set equation (4.1) is regularized by the Evans-Spruck ε-regularization [30]

|∇u| ≈ |∇u|ε =
√

ε2 + |∇u|2. (4.2)

The ε-regularized Eq. (4.1) with g = 1 represents the regularized surface MCF model in the form

∂tu = |∇su|ε∇s ·
(

∇su
|∇su|ε

)
. (4.3)

To get the numerical approximation of the equation (4.3), we use the same space discretization and time deriva-
tive approximation as we use in the section 2.1. After applying backward difference we get an approximation
of the equation (4.3) in the form

1
|∇su j−1|ε

u j−u j−1

τ
= ∇s ·

(
1

|∇su j−1|ε
∇su j

)
. (4.4)
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Note that term |∇su|ε is taken from the previous time step. Then, integrating (4.4) over the finite volume Vi,
applying (1.13) and taking into account geometry of the boundary ∂Vi we get the form∫

Vi

1
|∇su j−1|ε

u j−u j−1

τ
dx =

Qi

∑
q=1

∫
∂Viq

1
|∇su j−1|ε

∇su j ·~ηiqdS. (4.5)

Subsequently, we use equations (2.4), (2.5) and (2.6) to approximate surface gradients. The regularization of
the approximation of surface gradient on the triangle is denoted as |~PTiq |ε and defined according to (4.2) in the
form

|~PTiq |ε =
√

ε2 + |~PTiq |2. (4.6)

Then we can approximate integral of |∇su j−1|ε over the finite volume in the left-hand side as an average value
of the surface gradient on the co-volume in the form

|~P j−1
Viq
|=

∑
Qi
q=1 |~P

j−1
Tiq
|ε [m(e1

iq)+m(e2
iq)]

∑
Qi
q=1[m(e1

iq)+m(e2
iq)]

. (4.7)

After analogous steps as described in the section 2.1 we obtain the numerical scheme

m(Vi)

|~P j−1
Viq
|ε

u j
i −u j−1

i
τ

=
Qi

∑
q=1

[
m(e1

iq)~η
1
iq ·

1

|~P j−1
Tiq
|ε
~P j

Tiq
+m(e2

iq)~η
2,
iq ·

1

|~P j−1
Tiq
|ε
~P j

Tiq

]
, (4.8)

i = 1, ...,N, which represents a semi-implicit numerical scheme for solving mean curvature flow on the closed
surface.

4.2 The surface geodesic mean curvature flow

In the case of the geodesic mean curvature flow on the closed surface, the diffusivity function g in (4.1) is
given by the edge detector function (3.2). After ε-regularization the model is defined in the form

∂tu = |∇su|ε∇s ·
(

g(|∇suσ |) ∇su
|∇su|ε

)
. (4.9)

To approximate (4.9) we apply the similar approach as we use in the case of the surface MCF. The final semi-
implicit scheme in the form

m(Vi)

|~P j−1
Viq
|ε

u j
i −u j−1

i
τ

=
Qi

∑
q=1

[
m(e1

iq)~η
1
iq ·

g(|~Pσ , j−1
Tiq

|)

|~P j−1
Tiq
|ε

~P j
Tiq

+m(e2
iq)~η

2,
iq ·

g(|~Pσ , j−1
Tiq

|)

|~P j−1
Tiq
|ε

~P j
Tiq

]
, (4.10)

i = 1, ...,N, represents the approximation of the GMCF on the closed surface. The evolution of contour lines
in the GMCF model is affected by the edge detector function. This extension causes a slow down of such
evolution if the contour line yields high values of surface gradients. The difference between MCF and GMCF
is very similar to the difference between linear model and surface Perona-Malik nonlinear model. Similarly,
as in the case of surface Perona-Malik model, the edge detector is step by step evolving in time and give us
an opportunity to preserve main structures in the data and effectively reduce the noise. In both model, the
parameter ε , 0 < ε ≤ 1 shifts the model from the mean curvature flow of graph (ε = 1) to the mean curvature
flow of level sets (ε = 0).
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4.3 The behaviour of the surface MCF and the surface GMCF

In the experiment, we use the artificial data from the section 2.2, see Fig. 2.1 (left). We use the surface MCF
and surface GMCF, and we compare filtered solutions with the previous solutions of each nonlinear diffusion
filter. For both curvature driven filters, we use ε = 10−5. Fig. 4.1 depicts the RMS of residuals (left) and the
minimal RMS for each model (right).

From the Fig. 4.1, we can see, that using the surface MCF we get better RMS of residuals as we get using
linear diffusion. However, the overall behaviour of the MCF is similar to linear diffusion. From the results it is
obvious that the MCF successfully remove noise very quickly, but then the filter starts to shrink contour lines
of structures. Nevertheless, using surface MCF seems to be a better choice than linear diffusion, in the case, if
we do not need to preserve the mean value of data. The best solutions from all testing experiments of designed
filters on the closed surface we get using surface GMCF. As the sensitivity parameter in the edge detector, we
use the same value as we use in the case of Perona-Malik model (H = 35 000). Fig. 4.2 (left) depicts solution
of the GMCF after 46 time steps. We can see that in this case structures are successfully preserved. If we look
on the differences between u46 (the solution with the minimal RMS of the residuals) and original piecewise
constant function w, we can see that the most of noise is successfully removed. The largest differences are only
along the boundaries of structures since noise located on these structures is partially preserved, see Fig. 4.2
(right). Note that differences are approximately from the range (−0.1,0.1).

Figure 4.1: The RMS of residuals from 100 time steps left), the minimal RMS of residuals (right)

Figure 4.2: The solution of the surface GMCF after 10 timesteps (left), differences between u46 and w in the global
and detailed area
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Numerical experiments on geodetic data

In this section, we present three numerical experiments where we use all developed types of diffusion filters.
The first experiment aims to demonstrate filtering of noise from one component of the GOCE gravity gradients.
The second experiment presents filtering of a satellite-only mean dynamic topography (MDT), where we try to
reduce a typical stripping noise due to omission errors of the spherical harmonic approach. In this case, we use
the modified nonlinear diffusion influenced by the surface Laplacian to pre-filter local extrema of initial data
and then we use the linear diffusion and nonlinear Perona-Malik diffusion to obtain improved MDT model.
The third experiment is dedicated to processing all measured components of GOCE gravity gradients using the
surface MCF and surface GMCF.

5.1 Filtering of the GOCE gravity gradients in LNOF.

In this experiment, we use our developed filters to reduce the noise from measurements of the GOCE
satellite mission, namely from the radial components Trr of the gravity disturbing tensor available from the
EGG_TRF_2 product in the local north oriented frame (LNOF). Our processed dataset represent data observed
during June-July 2013. In this experiment, our computational domain represents a closed surface given by the
constant altitude 245 km above a reference ellipsoid. For its discretization, we use a very refined triangulation in
order to capture a dense coverage of the processed GOCE data. Namely, an octahedral grid with the resolution
of 0.05 deg is constructed to generate 3D positions of 12 960 002 nodes of the regular triangulation. In these
nodes, the values of the radial components Trr reduced to the reference altitude are interpolated. The missing
values in polar gaps (0.54% of all nodes) are generated from the GOCO03S satellite-only model up to degree
250 [31]. Such input data are then subsequently filtered by the linear and nonlinear diffusion filters. The best
results we get using the nonlinear diffusion influenced by the surface Laplacian. As input parameters we use
σ1 = 2τ ,σ1 = τ , H = 1012 and H2 = 1022. Fig. 5.1 (left) depicts the initial condition and the solution after 30
time steps using the nonlinear diffusion influenced by the surface Laplacian, in the detailed area and Fig. 5.1
(right) show differences between initial data and the solution.

Figure 5.1: The initial condition and the solution in the detailed area (left), differences between initial data and the
solution (right)
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5.2 Filtering of the satellite-only MDT.

In this experiment, we present filtering of the GOCE-based satellite-only MDT. The satellite-only MDT as
our initial data are given as a combination of the DTU13 mean sea surface model [32] and the geoid model
evaluated from up to degree 300 [33]. Such an MDT model is significantly affected by the stripping noise due
to omission errors of the spherical harmonics approach used for the geoid modelling, see Fig. 5.2 (left). Our
aim is to reduce this stripping noise while to preserve important gradients that correspond to the main ocean
geostrophic surface currents. In this experiment, we use the same octahedral grid with the resolution of 0.05
deg, but in this case, generated 3D positions of 12 960 002 nodes of the regular triangulation are on the surface
of the reference ellipsoid.

Taking into account the nature of noise, at first, we have reduced the highest peaks of this noise. To achieve
this we have used the nonlinear extrema reduction model (3.7). The detector function in the model speeds up
diffusion process in nodes with the highest surface Laplacian. Those nodes represent highest values of striping
noise. In the pre-filtering process we use the model parameters σ = τ = 4 ·107 and H = 1019. Fig. 5.2 (right)
depicts the pre-filtered data after 50 time steps. This data have been used for a final filtering. To remove the
remaining noise we have used the linear diffusion and the surface Perona-Malik diffusion. In case of the linear
diffusion, we use a similar time step τ = 4 · 107 as we have used in pre-filtering. This time step is also used
for the nonlinear Perona-Malik diffusion. The estimated sensitivity coefficient H = 1010 for the edge detector
function is in relation to the surface gradients of processed data.

To compare the linear diffusion and the nonlinear diffusion, we have derived the ocean geostrophic surface
currents, namely their zonal velocity components as well as their sea water speed. Fig. 5.3 depict sea water
speed in details in regions of the main currents like the Gulf Stream, Kuroshio or Aghulas current. We can
see that currents generated from data filtered by the linear diffusion represent a weaker signal, on the contrary,
those generated from the nonlinear diffusion capture signal better. Stronger signal indicates that the nonlinear
diffusion preserve gradient from the initial data. Consequently, the nonlinear diffusion filtering on a closed
surface using the regularized surface Perona-Malik model, prefiltered by nonlinear diffusion influenced by the
surface Laplacian, seems to be an efficient tool for filtering the satellite-only MDT. The pre-filtering by the
modification of the nonlinear diffusion influenced by the surface Laplacian have reduced the highest values
of the noise. Then the opportunity for adaptive smoothing according to the main gradients in the filtered data
allows us to reduce the stripping noise efficiently while preserving important gradients that correspond to the
main ocean geostrophic surface currents. Derived velocities of the ocean geostrophic surface currents have
clearly shown that preserving the important gradients by the nonlinear filtering have resulted in much stronger
signal than in case of the linear filtering whose uniform smoothing effect also smoothes these structures.

Figure 5.2: Intitial satellite-only MDT model (left), pre-filtered satellite-only MDT model (right)
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(a) (b)

(c) (d)

(e) (f)

Figure 5.3: Sea water speed from filtered data obtained by the linear diffusion and filtered data obtained by the
nonlinear diffusion in regions of a) b) Kuroshio, c) d) Gulf Stream, e) f) Aghulas
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5.3 Filtering of the GOCE gravity gradients in GRF

In this experiment we process GOCE gravity gradients (GGs) in the gradiometer reference frame (GRF)
for the period from 2013-05-28 to 2013-07-31. This data corresponds to the EGG_NOM_2 product while the
GOCE GGs are corrected from the perturbations caused by the geomagnetic field [34].

In order to see better noise in the signal, we evaluate residuals between the GOCE GGs in GRF and GGs
generated from the official spherical harmonics based model provided by European Space Agency (ESA),
namely from the GO_CONS_GCF_2_TIM_R5 model in the LNOF transformed into the GRF. We process
such residual data for ascending and descending tracks of satellite trajectory. So we consider residuals for 4
components o GOCE GGs, namely Vxx, Vyy, Vzz and Vxz for each ascending and descending track. Two others
components Vxy and Vyz of GOCE GGs tensor are not considered since they are less accurately observed [35].

For a discretization of the computational domain, we use a very refined triangulation. Namely, an icosa-
hedral grid with the resolution of 0.056 deg is constructed to generate 3D positions of 10 485 762 nodes of
the regular triangulation. In these nodes, the values of each component of GOCE GGs are interpolated. The
missing values in polar gaps are set to the zero. Surprisingly, the residuals include some background structures
which look different for ascending and descending tracks, and have also a different location for every GGs
component, see Fig. 5.4 (top-left). To overcome this problem we have decided to identify these background
structure by filtering and remove them from the GOCE GGs. We use the surface MCF model for that purpose.
By the MCF smaller contour lines extinct, while the smoothing of the contour lines with bigger perimeter is
significantly slower. Moreover, since the MCF model does not preserve mean value, removing such data do
not affect the remaining background structures. Fig. 5.4 (top-right) shows filtering by the surface MCF after
300 time steps with ε = 10−5 for Vxx component of GOCE GGs both for ascending track. The filtering results
represent the background structures that should be removed from the GOCE GGs. Fig. 5.4 (bottom-left) shows
residuals of GOCE GGs from which we removed the background structures. It is evident that new residuals
contain mainly a noise. To reduce this noise, we use the surface GMCF model. Each component is filtered by
30 time steps with parameter H = 106 and ε = 10−5. Fig. 5.4 (bottom-right) depicts the solution of Vxx com-
ponent on the ascending track. We can see that most of the noise is successfully removed, and the remaining
filtered data will be added to spherical harmonic model and it will be used for high resolution Earth gravity
field modelling in the further research steps of GOCEnumeric project.

Figure 5.4: Residuals between the GOCE GGs in the GRF and GGs generated from the
GO_CONS_GCF_2_TIM_R5 (top-left), filtered residuals using surface MCF (top-right), residuals with
removed background structures (bottom-left), filtered residuals using surface GMCF (top-right)
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