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2 CONTENTS

Abstrakt
V tejto dizertačnej práci predstavujeme nový model šı́renia lesných požiarov. Náš prı́stup
je založený na vývoji trojrozmernej krivky na ploche, ktorá predstavuje hranicu požiaru
na topografii. Náš matematický model pre vývoj krivky je postavený na empirických
zákonoch šı́renia požiarov ovplyvnených palivom, vetrom, sklonom terénu a tvarom hra-
nice požiaru s ohl’adom na topografiu (geodetická a normálová krivost’). Táto krivka
na ploche je projektovaná do horizontálnej roviny ako rovinná krivka, ktorej vývoj
je riešený numericky a nová krivka je namapovaný naspät’ na plochu. Pre numerické
riešenie diskretizujeme vznikajúcu intrinsickú parciálnu diferenciálnu rovnicu. Pre kri-
vostný člen použı́vame semi-implicitnú schému a advekčný člen diskretizujeme po-
mocou tzv. inflow-implicit/outflow-explicit metódy a implicitnej upwind schémy, čo
zabezpečı́ riešitel’nost’ lineárneho systému efektı́vnym trojdiagonálnym riešičom bez
časového obmedzenia a robustnost’ vzhl’adom na singularity. Naše rýchle riešenie pre
detekciu topologických zmien (delenie a spájanie kriviek) je nielen popı́sané, ale aj vi-
zualizované na konkrétnej situácii. Prezentujeme aj experimentálny rád konvergencie
numerickej schémy, demonštrujeme vplyv parametrov modelu na šı́renie požiaru na tes-
tovacej a reálnej topografii a rekonštruujeme simulovaný požiar trávnatého porastu.

Kl’účové slová: krivka na ploche, vývoj krivky. modelovanie lesných požiarov, topo-
logcké zmeny
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1 Introduction
Nowadays there exist several mathematical fire propagation models and simulation

softwares. We can divide them according to the way they simulate the fire propaga-
tion proceses to (quasi-) physical, e.g. Wildland Fire Dynamics Simulator, and (quasi-)
empirical, e.g. FARSITE. In general, the simulations based on the physical models are
more time-consuming, comparing to the empirical models. A number of wildland fire
simulation models is builton empirical models, either vector-based (Farsite, Prometheus,
SiroFire) or on raster-based approaches (Vesta, Flire, Ignite, Firestation, Pyrocart) [27].

In the mathematical literature, there exists a number of studies about the evolution of
planar and surface curves with many various applications, see e.g. [1–7, 9, 11, 12, 16–
22, 26]. We distinguish two main approaches to handle the curve evolution problems,
the so-called Lagrangian (direct) approach, see e.g. [1, 9, 17] and the so-called Eulerian
(level-set) approach, see e.g. [22, 26]. In the Eulerian level-set approach, one used to
solve the problem of curve evolution in a 2-D computational domain which is usually
discretized by a uniform grid and the number of discrete unknowns is proportional to
the number of grid points. The evolving curve is obtained implicitly, as the zero isoline
of 2-D + time level set function. In the Lagrangian approach one evolves directly the
curve discretization points, so it is spatially 1-D problem and thus computationally much
more simple and faster than the level-set method. However, the Lagrangian approaches
need the so-called tangential grid point redistribution [3, 11, 12, 16–21] and efficient
algorithm for the detection and treatment of topological changes in curves evolution
[2, 4–7, 20], which are on the other hand automatically handled by the level set method
[22, 26]. When the Lagrangian methods are tangentially stabilized and are able to treat
the topological changes fastly, they represent really efficient approach to 2-D or surface
curve evolution.

This thesis is organized as follows. We define a surface curve as a fire perimeter in
Chapter 2. We design the outer normal velocity and derive the external driving forces for
the surface curve evolution in Chapter 3. We also employ the tangential velocity in order
to obtain asymptotically uniform grid point redistribution. Numerical discretization is
presented in Chapter 4. In the Chapter 5 we discuss the efficient treatment of topological
changes in the fire perimeter, splitting and merging of the curves. In the last Chapter 6,
the results of our model on representative examples are presented.

2 Surface curve
In this thesis we will use the so-called Lagrangian approach to the evolution of a

surface curve, representing a fire perimeter. For numerical computations we will use its
projection into a planar curve, where we follow [17, 19].

Let us have a planar curve Γ, Γ : S1 → R2, parametrized by u ∈ S1, where S1 is a cir-
cle with unit length, thus u ∈ [0,1] and Γ =

{
x(u); u ∈ S1

}
, where x(u) = (x(u) ,y(u))

is the position vector of the curve Γ for parameter u.
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We suppose, that the curve will expand due to an external force. In other words,
we suppose the motion of the curve in the outer normal direction. If the curve Γ

is parametrized in a counterclockwise direction, the unique definition of the unit tan-
gent T and outer unit normal N vectors to the planar curve Γ can be done as follows:
T = xs, N = x⊥s and T∧N = −1, where T∧N denotes the determinant of the ma-
trix with columns T and N, where s is the unit arc-length parametrization of the curve
Γ : ds = gdu, where g = |xu| > 0. If T = (xs,ys) , then N = (ys,−xs) .

Such curve could represent the fire perimeter on a horizontal plane [2]. Unfortu-
nately, in the most cases the wildland fires do not occur on the flat terrain. Therefore we
define a surfaceM, that represents a local Earth topography, given e.g. by a digital ter-
rain model. LetM be the two-dimensional surface in R3,M =

{
(x,y,ϕ (x,y)) ∈ R3,

(x,y) ∈Ω}, represented by a graph of a function ϕ : Ω ⊂ R2 → R defined in a do-
main Ω ⊂ R2. Let the curve G : S1 → R3, parametrized by u ∈ S1, where S1 is
a circle with unit length, thus u ∈ [0,1], be a smooth surface curve on M, that rep-
resents the fire perimeter on the surface M. Let us denote by p the unit arc-length
parametrization of the curve G: d p = Gdu, where G = |Gu| > 0. Furthermore, we
suppose a constraint between the planar curve Γ and the surface curve G as follows
G =

{
(x(u) ,y(u) ,z(u) = ϕ (x(u) ,y(u))) ∈ R3, (x(u) ,y(u)) ∈ Γ

}
, so that the curve Γ

is a vertical projection of the surface curve G.. Now we can define the formula for the
unit tangent T and unit normal vectors N in the tangent plane to surface M. For the
unit tangent vector T we obtain subsequently

T =
(T,∇ϕ ·T)√
1+(∇ϕ ·T)2

. (2.1)

We find N as a cross product of the unit tangent vector T and the upward-pointing
unit normal vector to the surface M. Vector NM is given as a cross product of two
vectors from the tangent plane to the surfaceM, e.g. v1 = (1, 0, ϕx) and v2 = (0, 1, ϕy) ,
which is then normalized and we get

NM =
(−ϕx,−ϕy, 1)√

1+ |∇ϕ|2
=

(−∇ϕ, 1)√
1+ |∇ϕ|2

. (2.2)

Then the outer unit normal vector N is given as follows

N =

((
1+(∇ϕ ·T)2

)
N− (∇ϕ ·T)(∇ϕ ·N)T,∇ϕ ·N

)
√(

1+ |∇ϕ|2
)(

1+(∇ϕ ·T)2
) . (2.3)

For the surface curve G we find its curvature vector K as the second derivative of G with
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respect to p

K =

(
−kN

(
1+(∇ϕ ·T)2

)
−T(∇ϕ ·T)TT H (ϕ)T− k (∇ϕ ·N) , TT H (ϕ)T− k (∇ϕ ·N)

)
(

1+(∇ϕ ·T)2
)2 , (2.4)

where k is the planar curve curvature and H (ϕ) is the Hessian of the terrain function ϕ .
From the Darboux frame, which is the analog of the Frenet-Serret frame, we know

that K = Kg · (−N )+Kn · NM, where Kg is a geodesic curvature and Kn is a normal
curvature. The splitting of the curvature K to Kg and Kn is important for fire spread
simulation. If we know the curvature in the tangent plane, Kg, we know how the fire
perimeter shape influences the local normal velocity. The second part, Kn, expresses
the variable surface (canyons, valleys, ridges) contribution to the local normal velocity.
Since the geodesic curvature is a projection of K to the inner unit normal vector−N we
get

Kg = k

√
1+ |∇ϕ|2(

1+(∇ϕ ·T)2
) 3

2
− (∇ϕ ·N)TT H (ϕ)T√

1+ |∇ϕ|2
(

1+(∇ϕ ·T)2
) 3

2
. (2.5)

The normal curvature is the component ofK in the direction of the unit upward-pointing
normal vector to the surface NM

Kn =
TT H (ϕ)T(

1+(∇ϕ ·T)2
)√

1+ |∇ϕ|2
. (2.6)

3 Wildland surface fire spread mathematical model

In this Chapter we describe the forces influencing a surface curve evolution. We
characterize an outer normal velocity V of the surface curve G, an external force F and
its influencing factors, such as fuel, wind and terrain slope. We also derive the general
form of the planar (projected) curve evolution, where we split the planar velocity into
the normal velocity β and the tangential velocity α . While the normal velocity changes
the curve shape, the tangential velocity is used for the redistribution of curve points.

3.1 Normal velocity of the surface curve

The normal velocity is expressed by an external force F and by the shape of the fire
perimeter. The geodesic curvature on the tangent plane to a surface, Kg, smooths the
curve. Moreover, the shape of a topography influences the normal velocity. The normal
curvature Kn of the curve evolving in a valley (or on a ridge) can increase (or decrease)
the normal velocity V . Such evolution of the curve G can be described by following
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velocity V in the outer normal direction

V = F (δF −δgKg +δnKn) , (3.1)

where F is an external force, δg is a weight of the geodesic curvature and δn is a weight
of the normal curvature influence to the fire spread. Such formula expresses the domi-
nant role of an external force, that can be accelerated or slowed down by the geodesic
and normal curvatures. A design of an external force influencing the fire behavior is
based on the empirical laws of the wildland fire perimeter propagation. Research indi-
cates, that wildland fire propagation is influenced by fuel parameters, weather conditions
and surrounding topography slope. We suggest following formula for the external force

F = f fw(w ·N ) fs(s ·N ), (3.2)

where f is a fuel influence, fw(w ·N ) is a wind influence and fs(s ·N ) is a terrain slope
influence on the rate of spread, with w being a three dimensional wind vector, s being a
three dimensional slope vector and N being the unit normal vector to the surface .

Fuel influence. In our model we shall consider a surface fuel. We assume heteroge-
neous fuel flammability on a topographic surface. Therefore, the ROS map is a scalar
function f (x) given on a topography. According to the literature [13], we suppose, that
the ROS map is given by weighted combination of the most important factors, such as
species, age, bulk density, fuel moisture, fuel loading and compactness. Some of these
factors can be determined by a typological forestry maps, like the species, age or bulk
density, and their combination creates the ROS map.

Wind influence. Wind can dramatically increase (or decrease) the fire spread rate if
the fire spreads in (or against) the wind direction. Wind increases the fuel preheating,
drying and it supplies the oxygen to the fire. We consider that wind has the same speed
and direction on the whole topography given by a two-dimensional vector w2D. While
we retain the length, we construct the third coordinate as the directional derivative of

the terrain function ϕ along a vector w2D, i. e. w =
(
w2D,∇ϕ ·w2D

) |w2D|√
|w2D|2+(∇ϕ·w2D)

2 .

According [25, 28] the wind influences the rate of spread exponentially, so we consider
the scalar product of the wind vector w and the outer normal vector N as an exponent
of a function fw in the form fw (w ·N ) = eλw(w·N ), where λw is a positive parameter.

Topography slope influence. A slope, similarly to wind, can increase (or decrease)
the fire spread or change the spread direction. Slope increases the radiation and convec-
tion heat transfer up the slope. From the digital terrain model (the topography function
ϕ) we can easily obtain the vector function ∇ϕ characterizing a topography slope. Now,
we compute the third coordinate of a slope vector s in the tangent plane to the surfaceM,
while we retain its length. We obtain the third coordinate of a vector s as the directional
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derivative of the terrain function ϕ along ∇ϕ , i.e. s =
(

∇ϕ, |∇ϕ|2
)

|∇ϕ|√
|∇ϕ|2+(|∇ϕ|2)

2 =

(∇ϕ,|∇ϕ|2)√
1+|∇ϕ|2

. According to [8, 28], slope influences the rate of spread exponentially, de-

pending on the projection of s to N , therefore we consider fs (s ·N ) = eλs(s·N ), where
λs is a positive parameter.

3.2 Evolution of the projected planar curve
We suppose that the projected planar curve Γ of the surface curve G, which models

the fire spread, move in time by a general planar velocity vector field v. We can split such
general motion of any point x of the curve Γ into the normal and tangential directions,
so we consider a general form of the planar curve evolution in the following form

xt = v = βN+αT, (3.3)

where β is a velocity in the normal direction N and α is a tangential velocity of the
planar curve Γ. In Section 3.1 we designed the normal velocity V for the surface curve
G. Now we want to relate the normal velocity V in the tangent plane to the projected
curve Γ normal velocity β . Following [17] we get subsequently, that

V = Gt ·N = (xt ,yt ,ϕt (x,y)) ·N = (xt ,xt ·∇ϕ) ·N =

√
1+ |∇ϕ|2

1+(∇ϕ ·T)2 β , (3.4)

from where we obtain

β = V

√
1+(∇ϕ ·T)2

1+ |∇ϕ|2
. (3.5)

Employing the equation for the normal velocity of surface curve (3.1), geodesic (2.5)
and normal curvatures (2.6), taking into account the Frenet equation xss = −kN the
equation for the normal velocity of the planar curve (3.5) can be written in the form
β = (−εk+w). Now, we rewrite (3.3) to the form of the intrinsic PDE for the evolution
of the position vector x of the planar curve Γ

xt = εxss +αxs +wx⊥s , (3.6)

where

ε =
Fδg

1+(∇ϕ ·T)2 , (3.7)

w = F

δF

√
1+
(

∇ϕ·T
)2

1+|∇ϕ|2
+δg

TT H(ϕ)T(∇ϕ·N)

(1+(∇ϕ·T)2)(1+|∇ϕ|2)
+δn

TT H(ϕ)T√
1+(∇ϕ·T)2(1+|∇ϕ|2)

 (3.8)

and a suitable choice of α is discussed in the following Section.
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3.3 The choice of the tangential velocity

Although it is well-known that a tangential motion does not change the shape of
an evolving curve, it is helpful in stabilization of the numerical algorithms based on
Lagrangian approaches [16, 18] in a number of applications [1, 2, 16–21].

In this application, we use the redistrbution for planar curve [2, 18]. Since we rep-
resent fire perimeter with the surface curve we design the tangential velocity for asymp-
totically uniform redistribution of surface curve points similarly to the redistributions
already mentioned above in the form

ψp = KgV −〈KgV〉G +ω

(
L
G
−1
)
, (3.9)

where ψ is a tangential velocity of a surface curve, 〈KgV〉G = 1
L
∫
G KgVd p, ω is a param-

eter determining how fast the redistribution becomes uniform and L is a surface curve
length.

Since we evolve the planar curve, we need to find tangential velocity α for planar
curve. Similarly to formula (3.5) between planar β and surface V normal velocity, we
obtain relation between tangential velocities in the plane and in the surface. Considering
(3.3) we get

ψ = Xt · T = (xt ,yt ,ϕt (x,y)) ·T = (xt ,xt ·∇ϕ) ·T = α

√
1+(∇ϕ ·T)2 +β

(∇ϕ ·N)(∇ϕ ·T)√
1+(∇ϕ ·T)2

, (3.10)

from where we obtain

α =
ψ√

1+(∇ϕ ·T)2
−β

(∇ϕ ·N)(∇ϕ ·T)√
1+(∇ϕ ·T)2

. (3.11)

4 Numerical scheme

In the previous Chapter, we derived the intrinsic PDE for the planar curve Γ position
vector x evolution

xt −αxs = εxss +wx⊥s (4.1)

and here we present its numerical discretization. The discretization is based on the
flowing finite volume method in space [16] and the semi-implicit discretization [2, 16]
in time. To guarantee the solvability of arising cyclic tridiagonal linear systems for any
choice of time step, we use the so-called inflow-implicit/outflow-explicit (IIOE) scheme
[2, 14, 15] in approximation of advection term.

In order to perform the time discretization, let us denote by m the time step number-
ing and by τ the length of discrete time step. Let us approximate the time derivative by

the finite difference (xi)t =
xm+1

i −xm
i

τ
. Taking the inflow part of advection term and the
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curvature term implicitly and the outflow part of the advection term and the force term
explicitly, we obtain the fully discrete scheme in form of cyclic tridiagonal system

xm+1
i−1

−εm
i

hm
i
−

bin
i− 1

2

2

+xm+1
i+1

− εm
i

hm
i+1
−

bin
i+ 1

2

2

+xm+1
i

hm
i+1 +hm

i

2τ
+

εm
i

hm
i
+

εm
i

hm
i+1

+
bin

i− 1
2

2
+

bin
i+ 1

2

2

=

= xm
i

hm
i+1 +hm

i

2τ
−

bout
i+ 1

2

2
(
xm

i −xm
i+1
)
−

bout
i− 1

2

2
(
xm

i −xm
i−1
)
+wm

i

(
xm

i+1−xm
i−1

2

)⊥
, (4.2)

i = 1, ...,n, where n is a number of curve grid points.
In the complex fire simulations, e.g. when curves are merging or splitting, the evolv-

ing fire perimeter can be locally sharp, even with singularities. In such singular points
we use just the first order implicit upwind instead of the second order IIOE method in
the advection term. This upwind scheme is applied when the angle between two con-
secutive curve segments (xi−1,xi) and (xi,xi−1) is less than 120◦. In the upwind scheme
we use only inflow velocities bin

i− 1
2
, bin

i+ 1
2
, and points xi− 1

2
, xi+ 1

2
are approximated by the

neighbouring values xi−1 or xi+1, depending on inflow direction. In such way we get

xm+1
i−1

(
−

εm
i

hm
i
−bin

i− 1
2

)
+xm+1

i+1

(
−

εm
i

hm
i+1
−bin

i+ 1
2

)

+xm+1
i

(
hm

i+1 +hm
i

2τ
+

εm
i

hm
i
+

εm
i

hm
i+1

+bin
i− 1

2
+bin

i+ 1
2

)
= xm

i
hm

i+1 +hm
i

2τ
+wm

i

(
xm

i+1−xm
i−1

2

)⊥
(4.3)

instead of (4.2). This replacement of (4.2) by (4.3) occurs rarely, but in case it arises,
the usage of (4.3) makes the scheme robust with respect to singularities.

The above system is strictly diagonally dominant, thus it is always solvable by the
efficient cyclic tridiagonal solver without any restriction on time step length τ [2].

In the numerical schemes (4.2) and (4.3) there are parameters εm
i and wm

i , given by
(3.7)-(3.8), which are evaluated as follows

ε
m
i =

Fm
i δg

1+(∇ϕm
i .Tm

i )
2 ,

wm
i = Fm

i

δF

√
1+
(

∇ϕm
i .Tm

i

)2

1+|∇ϕm
i |

2 +δg
Tm

i
T H(ϕm

i )Tm
i ∇ϕm

i .Nm
i(

1+(∇ϕm
i .Tm

i )
2
)(

1+|∇ϕm
i |

2
) +δn

Tm
i

T H(ϕm
i )Tm

i√
1+(∇ϕm

i .Tm
i )

2
(

1+|∇ϕm
i |

2
)
 ,

where ϕm
i = ϕ (xm

i ), Tm
i =

xm
i+1−xm

i−1
hm

i+1+hm
i

, Nm
i = Tm⊥

i and Fm
i , ∇ϕm

i and H (ϕm
i ) are discrete

values of the external force, topography slope and the square matrix of second-order
partial derivatives of the topography function ϕ , which we obtain by a bilinear interpo-
lation.

In order to discretize the tangential velocity αi first we set αm
0 = 0, which would

cause that the point x0 will move only along its normal direction. Then we get αm
i for
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i = 1,2, ...,n−1 by

α
m
i = α

m
i−1 +hm

i km
i β

m
i −hm

i 〈kβ 〉m
Γ
+ω

(
Lm

n
−hm

i

)
, (4.4)

where

km
i = sgn

(
hm

i−1∧hm
i+1
) 1

2hm
i

arccos
(

hm
i+1 ·hm

i−1

hm
i+1hm

i−1

)
, (4.5)

β
m
i =−

εm
i−1 + εm

i

2
km

i +
wm

i−1 +wm
i

2
, (4.6)

〈kβ 〉
Γ
=

1
Lm

n

∑
l=1

hm
l km

l β
m
l , (4.7)

Lm =
n

∑
l=1

hm
l , (4.8)

where hm
i = xm

i −xm
i−1, hm

i = |hm
i |.

In case of the point redistribution on a surface we get αm
i by the following formula

α
m
i =

ψm
i√

1+(∇ϕm
i ·Tm

i )
2
−β

m
i
(∇ϕm

i ·Nm
i )(∇ϕm

i ·Tm
i )√

1+(∇ϕm
i ·Tm

i )
2

(4.9)

and ψm
i are obtained similarly to αm

i discretization. We set ψm
0 = 0 and ψm

i for
i = 1,2, ...,n−1 by

ψ
m
i = ψ

m
i−1 +Hm

i Kg
m
i V

m
i −Hm

i
〈
KgV

〉m
G +ω

(
Lm

n
−Hm

i

)
, (4.10)

where

Hm
i =

∣∣(xm
i ,ϕ

m
i )−

(
xm

i−1,ϕ
m
i−1
)∣∣ , (4.11)

Kg
m
i = km

i

√
1+
∣∣∇ϕm

i

∣∣2(
1+(∇ϕm

i ·Tm
i )

2
) 3

2
−

(∇ϕm
i ·Nm

i )Tm
i

T H (ϕm
i )Tm

i√
1+
∣∣∇ϕm

i

∣∣2(1+(∇ϕm
i ·Tm

i )
2
) 3

2
, (4.12)

Vm
i =

√√√√ 1+
∣∣∇ϕm

i

∣∣2
1+(∇ϕm

i ·Tm
i )

2 β
m
i , (4.13)

Lm =
n

∑
l=1
Hm

l , (4.14)
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〈
KgV

〉m
G =

1
Lm

n

∑
l=1
Hm

l Kg
m
l V

m
l . (4.15)

Setting αm
0 = 0 can cause an unnecessary tangential motion in effort to redistribute

the curve points uniformly. To minimize the tangential velocity, we find the average tan-

gential velocity αm
avg =

n
∑

i=0

αm
i
n . It is clear, that αm

avg is the unnecessary tangential velocity

and therefore we find new minimized values as αm
i = αm

i −αm
avg for i = 0,1, ...,n, by

which we redefine αm
i .

5 Topological changes treatment

By a topological change we mean a merging of several fire perimeters and/or a split-
ting of the evolving curve into several separate curves. Such splitting can occur when
the curve velocity is locally slowed down significantly (e.g. nonburnable regions). De-
tecting and solving the topological changes in the Lagrangian approach is usually highly
time consuming [10], because the standard approaches have computational complexity
O
(
n2
)
, where n is the number of curve points. Such complexity is due to a strategy

for the topological changes detection, which consists of computing pairwise distances
between all grid points of the curve [10, 23] and slows down the overall computing
time significantly. We present our O(n) approach for the detection and processing of
the topological changes in the curves evolution which makes our overall computational
method fast and applicable in a complex situation of a fire perimeter evolution. In the
sequel we omit the time step index m, since we detect the topological changes before
every time step. Our overall computing strategy can be described by the Algorithm 1,
where h j is mean segment length of curve Γ j and hd is a desired segment length.

Algorithm 1: Overall computing strategy

1 foreach Time step do
2 Topological changes detection (splitting)
3 Topological changes detection (merging)
4 foreach Curve Γ j do
5 if

∣∣hd−h j
∣∣> εh then

6 Adding and removing grid points

7 Numerical computation by the scheme (4.2), (4.3)

In our method every curve is asymptotically uniformly discretized, i.e. all segment
lengths of curve are close to their mean value h j. However, h j can differ for different
curves, it may increase for expanding curves or decrease for shrinking curves. Such
difference in h j is non-desirable, especially in merging of curves, so we maintain the
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desired segment length hd for all curves by adding or removing points in the longest
or shortest segments to get the appropriate number of points. Then the asymptotically
uniform redistribution is quickly obtained by the tangential velocity included in the nu-
merical method.

Our main idea for the topological changes detection, see also [2], is to create a nar-
row strip of cells along the curves. Let us have an array p[I][J], where I = 0, ..., py,
J = 0, ..., px, covering the whole computational domain Ω. It is crucial to set the cou-
pling between the cell size and the desired curve segment length hd , especially when
treating the curve splitting. To that goal we set the cell size to 2hd×2hd , which ensures
maximally three points (two whole segments) of the smooth curve in one cell, because
the cell diagonal length is less than 3hd . In our approach we will split the curve if two
non-neighboring curve grid points belong to the same cell. We also require that the
difference of indexes of such two non-neighboring grid points should be larger than or
equal to three. This means that the curve should leave the cell and come back to the
cell following the curve trajectory between those two points, because four consecutive
points cannot belong to one cell. In such case we split the curve. Merging detection is
very similar, since we detect whether two points of different curves belongs to the same
cell. If so, we merge those curves.

Splitting the curve Γ j at points x j,s1 and x j,s2 into two closed curves is done as
follows. The first point set x j,1, x j,2, ..., x j,s1−1, x j,s2+1, ..., x j,n will replace the origi-
nal curve with number j. The second point set x j,s1+1, x j,s1+2, ..., x j,s2−2, x j,s2−1 will
be stored as ΓNC+1. Merging curves Γc1 and Γc2 at points xc1,m1 and xc2,m2 is treated
similarly. The newly merged curve will consist of nc1 + nc2 − 2 points, namely xc1,1,
..., xc1,m1−1, xc2,m2+1, xc2,nc2

, xc2,1, ..., xc2,m2−1, xc1,m1+1, xc1,nc1
, and will be stored as

curve Γc1 . The curve Γc2 will be deleted.
We note, that due to the topological changes detection we use time step τ ≤ 2hd/β

which prevents the grid points from skipping through the cell in one time step.

6 Numerical experiments
In this Chapter we describe various numerical experiments showing the properties of

our mathematical model. We show, how the curve evolution is influenced by the external
force (ROS, wind speed and direction and topography slope), the geodesic and normal
curvatures on an artificial topography. We present a reconstruction of the simulated
surface fire and we optimize the model parameters.

Comparison of the curve point redistributions In this experiment, we compare the
tangential redistributions from Section 3.3. We compare those redistributions on a sim-
ple case, where the topography is given by a graph of a function ϕ (x,y) = 0.1x2 + y,
104 time steps with time step length 10−3 and 100 curve grid points. We set ω = 100,
f = 1,δF = 1, δg = 1, δn = 1, λs = 1 and λw = 0. The results at the final time step are
very similar visually as well as the Mean Hausdorff distance is very low (≈ 7×10−3).
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Figure 1: Assymptotically uniform redistribution of the planar curve points (left), surface
curve points (center) and their overlay.

The computation with planar curve redistribution is slightly faster, it took 5.31s.
Compared to 5.79s for surface curve redistribution it is faster by 0.48s, which is 9%
of the overall computational time. The redistribution of planar curve gives visually
unattractive results in variable terrain. On the other hand, the overall computational
time is lower, since the computation is more straightforward. Moreover, we need to
keep the segment lengths in the planar curve near the desired value. Then, the curve
with surface curve redistribution has more points, which leads to longer computations.
Although the asymptotically uniform redistribution of the surface curve points seems to
be more natural, we use it only for visualization purposes in all further experiments.

Influence of model parameters for evolution on an artificial topography These
examples illustrate, how the external force (ROS, wind and terrain slope) influence the
curve expanding on a surface. The surface is given by ϕ (x,y) = 0.1x2 + y. We obtain
the initial discrete curve as x0

i = (4cos(γi) ,5sin(γi)) , where γi =
i

2π
, i = 1, . . . ,n. The

number of grid points was set to n = 100, the time step was chosen τ = 10
n2 = 10−3 min,

number of time steps NT S = 10000 and for the tangential velocity we set ω = 15. In
the examples we set f = 1,δF = 1 and we vary δg, δn, λs and λw.

In the experiment presented in Figure 2a we set f = δF = λs = δg = δn = 1, λw = 0,
i.e. we consider the fuel influence, terrain slope and the geodesic and normal curvatures.
On the other hand, if we employ wind at speed 1 m.min−1, λw = 1, we see that the fire
spread can be changed significantly. The fire spread can change the direction, e.g. in the
case of wind blowing down the valley (Figure 2b) or perpendicular to the valley (Figure
2c) or it can accelerate, if wind blows up the valley (Figure 2d).
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(a) No wind (b) Wind downslope

(c) Wind perpendicular to valley (d) Wind upslope

Figure 2: Curve evolution considering fuel, slope influence, geodesic and normal curva-
ture and various wind directions at constant wind speed 1 m.min−1.
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Real fire reconstruction and model parameters optimization In this experiment,
we present the reconstruction of the real grassland fire. Although the fire is small (max.
fire perimeter is 79.39 m), it is suitable for finding the model parameters λw,λs and δg.
Since the terrain is nearly an inclined plane we do not consider the influence of the
normal curvature, δn = 0.

The inputs to our model were as follows:

• the initial condition given by segmented fire perimeter 55 s after the ignition,
• homogeneous rate of spread 1.18 m.min−1 (measured at place),
• wind velocity and direction (North = 0 deg, East = 90 deg) (measured at place),
• terrain slope given by the digital terrain model.

The video of a fire propagation from a quadcopter was processed using a photogram-
metry software to obtain a vertical projection of the fire spread on real terrain to the
horizontal plane in 5 s time interval. Then the fire perimeters were segmented manually
with the uniform segment length 0.15 m in a CAD software. The desired curve segment
length was kept by hd = 0.15 m, which corresponds to the manual segmentation spatial

step and the time step was chosen as τ =
h2

d
22.5 = 10−3 min, i.e. it is proportional to h2

d .

The Mean Hausdorff distance (MHD) is used as a criterion in inverse modelling, i.e.
we use segmented fire perimeters to infer the model parameters. We assume following
ranges for the model parameters λw ∈ 〈0.005,0.03〉 with step 0.001, λs ∈ 〈0.1,0.5〉 with
step 0.05, δg ∈ 〈0.5,2.0〉 with step 0.05. Although the wind direction was measured at
place as constantly north (0 deg), the quadcopter video shows variable wind direction.
Thus we infer also the wind direction with 0.5 deg step.

We iteratively estimate the parameters values as a constants. From the first iteration
of inverse modelling we get average MHD = 0.289 m and we take the average value
λs = 0.26 as a constant and estimating the other parameters again. In second iteration,
the average MHD = 0.285 m and we take the average value δg = 0.26 as a constant too.
In the last iteration of inverse modelling we get MHD = 0.281 m and the average value
λw = 0.26 is taken as a constant, while we adjust the wind speeds to get the same results
with variable λw.

We measure accuracy of our fire propagation reconstruction by computing the ratio
MHD/L every 5 seconds, where L is the perimeter of the segmented curve. This mea-
sure is in range 0.2 - 0.7% in every time moment. We assume that the slight differences
between segmented and numerically computed curves, see Fig. 3, could be caused by
the fuel heterogeneity (e.g. variable moisture, which is not included in our model, yet)
and more dynamic changes in wind direction than the measured and computed in 5 s
intervals. The fuel heterogeneity can be seen e.g. in interval 130 - 135 s, see Fig. 3 (i),
where the segmented fire perimeter is locally spreading faster. More dynamic changes
in wind direction are obvious e.g. in interval 80 - 85 s, see Fig. 3 (d), where the seg-
mented fire perimeter is wider than the computed one. Also the segmentation error is
non negligible due to low visibility of fire perimeter through the smoke, see Fig. 3 (h),
(i).
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(a) time 55 s (b) time 65 s (c) time 75 s

(d) time 85 s (e) time 95 s (f) time 105 s

(g) time 115 s (h) time 125 s (i) time 135 s

Figure 3: Real fire reconstruction. We compare the manually segmented curve (red) and
the curve computed numerically (blue). The initial contition is given by the segmented
curve in time 55 s. Contour lines of the digital terrain model (green) are thicker with
increasing elevation.
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(a) No wind considered (b) Southeast wind direction (135◦)

(c) South-Southwest wind direction
(202.5◦)

(d) West-Northwest wind direction (292.5◦)

Figure 4: Large scale simulation in the area of Staré hory in the central Slovakia, consid-
ering homogenous fuel, wind speed 8 m.min−1 and various wind directions. The initial
condition is given by 3 circles in the vertical projection. Their merging is signalized by
the color change (e.g. viloet is merged blue and red curve).

Simulation on a real topography with topological changes We demonstrate the flex-
ibility of our surface fire spread model on the real variable topography of Staré hory in
the central Slovakia. The area of 11 km2 is given by the digital terrain model in 10 m
resolution. The wind velocity is set to 8 m.min−1. These simulations, considering the
model parameters in the range of estimated values from the inverse modelling in the
previous experiment, have parameters set as follows δF = 1, λs = 0.25, λw = 0.02,
δg = 1, δn = 1, ω = 20, hd = 2 m and τ = 0.05 min. We present the simulations with
homogeneous ROS, f = 1, and different wind direction, see Fig. 4.

The simulation of 8 hour fire spread took 42.96 s of the computational time for 9600
time steps with 2921.28 curve points per time step at an average.
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7 Conclusions
We introduced a new fast and stable forest fire propagation model based on the La-

grangian approach. We described the surface curve, representing the fire perimeter and
its projection into the planar curve. Next, we prescribed the mathematical model for the
fire perimeter spread over heterogeneous fuel on variable terrain, influenced by wind di-
rection and velocity. Moreover, we considered the influence of the surface fire perimeter
shape itself through the geodesic and normal curvatures. The discrete formulation of our
model was based on the semi-implicit approach for the curvature term, and the inflow-
implicit/outflow-explicit and upwind scheme approaches for the advection term, which
allowed any reasonable computational time step choice. We used the tangential velocity
to redistribute the grid points along the curve asymptotically uniformly. In addition, we
maintained the desired segment length thanks to our strategy for adding and removing
points and used tangential velocity. This is useful for our O(n) approach for topological
changes treatment of splitting and merging curves. The grassland fire experiment was
used to estimate the model parameters. The numerical results revealed the ability of our
model to reconstruct the real fire perimeter with minimal error (< 1%).
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