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We present mathematical models, computational meth-
ods and software solution [6] for computing the plane
curve evolution with applications to biological and med-
ical image segmentation. Our solution is based on La-
grangian approach [3, 4, 5]. The plane curve Γt, t ≥ 0 is
driven by a suitable velocity vector field [1, 2] projected
to the normal of the curve. Furthermore, the motion is
regularized by the local curvature of the evolving curve
and optimized with respect to discrete curve represen-
tation by the asymptotically uniform tangential redistribu-
tion [4, 5].

Velocity vector field
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v(x, y) = −∇g(|∇u(x, y)|) (1)

Curve in velocity vector field
The position vector r of evolving curve Γt is driven by differential
equation

∂tr = v r
m+1
i = r

m
i + τv (2)

which is discretized in time and space using gridpoints r
m
i , i =

1, ..., N , m denotes time step number and τ time step size.
The motion starts interactively by user defined uniformly divided line

segment which is moved automatically towards the edge.

There can be a problem with distribution of curve representing
gridpoints due to a discrete character of the vector field.

Modifications of vector field

∂tr = vN N vN = v · N (3)

The nonlinear term vN represents projection of v to the normal N of
the moving curve. Removing non-controlled tangential part of veloc-
ity is reasonable for uniformly discretized initial curve [6].

Regularization by curvature

∂tr = µ vN N + ǫkN . (4)

By the influence of local curvature the motion of grid points is more
regular, they are tied together in the numerical scheme, µ and ǫ are
parameters weighting advection by vector field and regularization by
curvature. Due to Frenet’s formula

kN = ∂sT = ∂ssr ∂tr = µ vN N + ǫ∂ssr . (5)

where ∂s denotes derivative with respect to arclength parametrisa-
tion s, we obtain intrinsic diffusion equation (5), which is discretized
by the explicit flowing finite volume method [3, 5]
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Controlled nontrivial tangential velocity
If we consider general curve evolution in normal and tangential di-

rections
∂tr = βN + αT . (8)

with

β = µ vN + ǫk ∂sα = kβ− < kβ >Γ +

(

L

g
− 1

)

ω , (9)

where L is global and g local length of the moving curve, < kβ >Γ
is an average of kβ along the curve and ω is a relaxation parame-
ter, the gridpoints representing numerically the curve are distributed
asymtotically uniformly as time evolves [4]. For this model we get
intrinsic advection-diffusion equation

∂tr = µ vNN + ǫ ∂ssr + α∂sr. (10)

which is discretized either by explicit (in curve building steps) or
semi-implicit (in curve post-processing step) flowing finite volume
method [3, 5].

Distribution of grid point distances in the final segmentation curve
by the various models. The starting uniform discretization of line

segment is given by 2 pixels.
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Min Max Variance
model (2) 0.61681 3.59267 0.12216
model (3) 0.89949 3.17837 0.04209
model (4) 1.32320 3.21941 0.03333
model (8) 1.83412 2.19442 0.00092

Stopping criterion
The curve is stopped at the m-th time step, if

|(vN)mi | < 0.01 or (vN)mi (vN)m−1
i < 0 , ∀i. (11)

Medical image segmentation

Zebrafish embryogenesis image segmentation

View of Evo application with segmented cells

Segmented structures in zebrafish embryogenesis

Segmented evolving structure in embryogenesis
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