SEGMENTATION OF MEDICAL DATA USING EVOLVING PLANE CURVES

We present mathematical models, computational meth-
ods and software solution [6] for computing the plane
curve evolution with applications to biological and med-
ical Image segmentation. Our solution Is based on La-
grangian approach [3, 4, 5]. The plane curve I';,t > 0 Is
driven by a suitable velocity vector field [1, 2] projected
to the normal of the curve. Furthermore, the motion is
regularized by the local curvature of the evolving curve
and optimized with respect to discrete curve represen-
tation by the asymptotically uniform tangential redistribu-
tion [4, 5].

Velocity vector field

Curve In velocity vector field

The position vector r of evolving curve Iy Is driven by differential
equation
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S =rl v (2)

oir = v r

which is discretized in time and space using gridpoints r}"*, i =
1,..., N, m denotes time step number and 7 time step size.

The motion starts interactively by user defined uniformly divided line

segment which is moved automatically towards the edge.

There can be a problem with distribution of curve representing
gridpoints due to a discrete character of the vector field.

- 3

Modifications of vector field

oir = v N vN =V N (3)

The nonlinear term vy represents projection of v to the normal N of
the moving curve. Removing non-controlled tangential part of veloc-
ity Is reasonable for uniformly discretized initial curve [6].
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Regularization by curvature

oir = Ny N+ ekN . (4)

By the influence of local curvature the motion of grid points is more
regular, they are tied together in the numerical scheme, 1 and ¢ are
parameters weighting advection by vector field and regularization by
curvature. Due to Frenet’s formula
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where 05 denotes derivative with respect to arclength parametrisa-
tion s, we obtain intrinsic diffusion equation (5), which is discretized
by the explicit flowing finite volume method [3, 5]
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Controlled nontrivial tangential velocity
If we consider general curve evolution in normal and tangential di-
rections
oir = BN 4+ aT. (8)

with
L
B =uoN + €k 83&—kﬁ—<kﬁ>p+<g—1>w, (9)

where L Is global and ¢ local length of the moving curve, < k3 >
IS an average of k£ along the curve and w Is a relaxation parame-
ter, the gridpoints representing numerically the curve are distributed
asymtotically uniformly as time evolves [4]. For this model we get
Intrinsic advection-diffusion equation

Oir = (L UNN + € Ogsr + Q0. (10)

which Is discretized either by explicit (in curve building steps) or
semi-implicit (in curve post-processing step) flowing finite volume
method [3, 5].

Distribution of grid point distances in the final segmentation curve
by the various models. The starting uniform discretization of line
segment Is given by 2 pixels.
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Min Max |Variance
model (2)0.61681|3.59267| 0.12216
model (3)0.89949|3.17837| 0.04209
model (4)1.32320|3.21941 | 0.03333
model (8)1.83412|2.19442 0.00092

Stopping criterion
The curve Is stopped at the m-th time step, if

(on)™ < 0.01 or  (un)™ (o)™ <0, Vi. (11)
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Medical image segmentation

Zebrafish embryogenesis image segmentation

View of Evo application with segmented cells

o 070418a_t300_ch00_65_detailz.bmp - Evo
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Segmented structures in zebrafish embryogenesis
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