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Abstract
We develop new stable method, based on 3D
evolving curves, for finding the optimal trajec-
tory of the camera in the virtual colonoscopy.
The initial curve is driven by the velocity field
in the plane normal to the evolving curve, the
evolution is regularized by curvature and ac-
companied by the suitable choice of tangential
velocity. Thanks to the asymtotically uniform
tangential redistribution of grid points, orig-
inally introduced in this work for 3D evolv-
ing curves, and to the fast and stable semi-
implicit scheme for solving our proposed in-
trinsic advection-diffusion PDE, we end up
in fast and robust way with the smooth uni-
formly discretized 3D curve representing the
ideal path of the camera in virtual colonoscopy.

The colon segmentation
Thresholding - detect all subvolumes filled by
the gas
Region growing - find all simply connected
parts filled with gas
Removing small subvolumes - subvolume size
is counted during region growing
Removing thin subvolumes - compute the dis-
tance function of all inner voxels to the border
of the segmented subvolume[3] , and check its
global maximum

Segmentated test data, large and small intestine

The initial curve
The initial trajectory guess in any colon subvo-
lume is constructed by computing a distance
from a point source by the Dijkstra algorithm
(in which the graph edges connecting neigh-
bouring voxels have value 1) followed by the
backtracking. The voxel coordinates of such
path represent the parametric 3D curve, the ini-
tial guess of the trajectory inside the subvo-
lume.

The graph of the distances and the initial trajectory guess.

Initial 3D curve in segmented test and colon data.

The curve in vector field
The vector field we compute as v = ∇d (d - dis-
tance from subvolume boundary). We obtain
distance function as numerical solution of the
time relaxed eikonal equation dt + |∇d| = 1.

Detailed graph of distance function to the boundary of 2D
testing shape and computed vector field

The simplest model for the motion of the curve
in the vector field

∂tr = v(r).

The results obtained using the velocity field given as
v = ∇d on segmented object in 2D and 3D test data.
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The optimal path - determining of suitable tangential velocity
We introduce the local orthogonal basis smoothly varying along the 3D curve, cf. [1]. It will consist
of T and N1 = Nv

|Nv| and N2 = N1×T (orthogonal vectors in the normal plane). Let us define k1 =

kN.N1 and k2 = kN.N2. The evolution equation can be written as ∂tr = UN1 + VN2 + αT, with
normal components given by U = k1 + µ|Nv| and V = k2. The tangential velocity α guarateeing
the asymptotically uniform redistribution of 3D curve grid points [2] we obtain as solution of
equation

∂sα = Uk1 + V k2− < Uk1 + V k2 >Γ +

(
L

g
− 1

)
ωr, (1)

where ωr is a speed of redistribution process, L resp. g denotes global, resp. local curve length.
Since T = ∂sr and kN = ∂ssr we get our final 3D curve evolution model in the form of the following
intrinsic advection-diffusion PDE with driving force

∂tr = µNv + ε ∂ssr+ α∂sr (2)
with the Dirichlet boundary conditions.

The results for thetest end real data obtained using the final model (1)-(2).

Comparison of the grid point distances: the first (red), the second (blue)and the third (violet) model.

Motion in the normal plane
The motion of the curve can be decomposed
∂tr = βN + αT, where N resp. T is the unit
normal resp. tangent vector to the curve.
Overall shape of the evolving curve is deter-
mined only by the normal velocity component
(α can be zero).
The projection of vector field v to the curve
normal plane is defined by Nv = v − (T.v)T,
kN denotes curvature vector and the regular-
ized curve motion in the normal plane is given
by

∂tr = µNv + εkN.

The results obtained using the projection of the original
vector field into the normal plane to the evolving 3D curve

accompanied by the curvature regularization.


