Computational reconstruction of Zebrafish early embryogenesis by mathematical methods of image processing

Karol Mikula
Department of Mathematics
Slovak University of Technology, Bratislava, Slovakia
http://www.math.sk/mikula
Joint results with
R.Čunderlik, O.Drbliková, M.Remešiková, M.Smišek, R.Špir (Bratislava)
P.Bourgine (Paris), N.Peyrieras (Gif-sur-Yvette), A.Sarti (Bologna)

Motivation from biology and medicine

- cooperation with biologists (CNRS - Department of developmental biology, Institute Pasteur and Institute Curie, Paris), bioengineers (University of Bologna), computer scientists (Ecole Polytechnique, Paris) and CNRS supercomputing center (IN2P3 Lyon) - European projects Embryomics and BioEmergences
- an automated reconstruction of the vertebrate early embryogenesis in space and time - e.g. zebrafish - transparent for laser microscopes
- extraction of the cell trajectories and the cell lineage tree
- reconstruction of morphogenetic fields
- comparison of untreated and treated cell populations development

4-somites

48 hr

From: Kimmel et al. Stages of embryonic development of the zebrafish Dev. Dyn. 203:253-310, 1995

- two-photon laser scanning microscopy - several hundreds (100300) of 2 D image slices (512×512 pixels) of cell nuclei and cell membranes are taken subsequently - 3D image volume is constructed (in 50 seconds)

- several hundreds of 3D volumes are aquized during a time and represent imaged early embryogenesis during first (24) hours of development

Videos of embryogenesis

Steps in our computational embryogenesis reconstruction

- data acquisition - large-scale 3D image data sets of cell nuclei and cell membranes
- image filtering - by nonlinear (geometrical) diffusion equations
- cell nuclei center detection - by convection-diffusion level set equation \rightarrow approximate number of cells (proliferation rate), detected nuclei centers are starting points for the image segmentation
- cell nuclei segmentation - by the generalized subjective surface method (geometrical PDE) \rightarrow 3D nuclei shapes during development, correction of number of cells and positions of the nuclei centers basis for cell tracking and cell trajectories extraction
- whole embryo segmentation \rightarrow cell density evolving in time
- cell membranes segmentation \rightarrow 3D cell shapes during development
- cell tracking and cell trajectories extraction - by finding centered paths in 4D spatio-temporal segmented tree structure by steepest descent of potential built by a proper combination of constrained distance functions computed inside the 4D segmentation

Image filtering

- Geodesic mean curvature flow equation
(Caselles, Kimmel, Sapiro and Chen, Vemuri, Wang)

$$
\begin{equation*}
u_{t}=|\nabla u| \nabla \cdot\left(g\left(\left|\nabla G_{\sigma} * u\right|\right) \frac{\nabla u}{|\nabla u|}\right) \quad u(0, x)=I^{0}(x), \quad \text { h.N.b.c } \tag{1}
\end{equation*}
$$

- $g(s)=1 /\left(1+K s^{2}\right), K>0$ - small values for large gradients (edges)
- advective vector field $-\nabla g\left(\left|\nabla G_{\sigma} * u\right|\right)$ points towards edges

$$
\begin{aligned}
& 6868 \\
& 680
\end{aligned}
$$

Numerical solution of nonlinear PDEs

- Semi-implicit schemes - J.Kačur, K.M. (1995), J.Weickert (1995), A.Handlovičová, K.M., F.Sgallari $(2003,2006)$

Let k and σ be fixed numbers and $u^{0}=I^{0}$. For every $n=1, \ldots N$, we look for a function u^{n}, a solution of the equation

$$
\begin{equation*}
\frac{1}{\left|\nabla u^{n-1}\right|} \frac{u^{n}-u^{n-1}}{k}-\nabla \cdot\left(g\left(\left|\nabla G_{\sigma} * u^{n-1}\right|\right) \frac{\nabla u^{n}}{\left|\nabla u^{n-1}\right|}\right)=0 . \tag{2}
\end{equation*}
$$

- space discretization - finite volume or co-volume methods on uniform (by image given) grids \rightarrow solving linear systems in every filtration or segmentation step - SOR method - naturally parallelizable in 3D (MPI implementation)

- 3D implementation - every cubic voxel is splitted into 6 pyramids. The neighbouring pyramids of neighbouring voxels are joined together to form octahedron (diamond cell for the face) which can be itself used to evaluate gradients of solution on the face or it can be further split into 4 tetrahedras, elements of 3D triangulation on which we can evaluate nonlinearities depending on gradients.
- S.Corsaro, K.M., A.Sarti, F.Sgallari, SIAM J. Sci. Comp., 2006
- unconditional L_{∞} - stability, no spurious oscillations, no restriction on time step
- convergence of the finite volume schemes and error estimates for the Perona-Malik-type equations - K.M., N.Ramarosy, Num. Math., 2001, A.Hadlovičová, Z.Krivá, AMUC, 2005
- convergence of the finite volume schemes and error estimates for Weickert's model of nonlinear tensor-driven anisotropic diffusion - O.Drbliková, K.M., SIAM J. Numer. Anal., 2007, O.Drbliková, A.Hadlovičová, K.M., APNUM, 2009
- consistency of co-volume schemes for regularized curvature level set equation - K.M., A.Handlovičová, Appl. Math., 2008
- convergence of finite volume schemes for regularized curvature level set equation - R.Eymard, K.M., A.Hadlovičová, IMAJNA 2011

- optimal choice of parameters - gold standard + Hausdorff distance - B.Rizzi, Z.Krivá, K.M., N.Peyriéras, A.Sarti

Image segmentation

- subjective surface method due to Sarti, Malladi, Sethian (2000) -ε-regularization of the geodesic mean curvature flow equation

$$
\begin{equation*}
u_{t}=\sqrt{\varepsilon^{2}+|\nabla u|^{2}} \nabla \cdot\left(g \frac{\nabla u}{\sqrt{\varepsilon^{2}+|\nabla u|^{2}}}\right), \quad g=g\left(\left|\nabla G_{\sigma} * I^{0}\right|\right) \tag{3}
\end{equation*}
$$

- generalized version with different weigths to advective and diffusive parts - K.M., N.Peyriéras, M.Remešiková, A.Sarti (2008, FVCA5) and C.Zanella et al.(2010, IEEE TIP)

$$
\begin{equation*}
u_{t}=\mu_{1} g|\nabla u| \nabla \cdot\left(\frac{\nabla u}{|\nabla u|}\right)+\mu_{2} \nabla g \cdot \nabla u \tag{4}
\end{equation*}
$$

- efficient 3D implementations using semi-implicit scheme in curvature part and up-wind schemes in advective part - M.Remešiková, R.Čunderlik, K.M.

Finding the subjective contours in double-Kanizsa-triangle image

Level lines and 3D graphs of segmentation function after 10, 30, 60 time steps, $\varepsilon=10^{-5}$.

Level lines and 3D graphs of segmentation function after 100, 300, 800 time steps, $\varepsilon=10^{-5}$.

Nuclei center detection

- To get starting points for image segmentation we apply to (filtered) nuclei image intensity geometrical advection-diffusion equation which moves every level set in normal direction by a constant speed δ with a slight regularization by the mean curvature term - P.Frolkovič, K.M., N.Peyriéras, A.Sarti (2007)

$$
\begin{equation*}
u_{t}=\delta \frac{\nabla u}{|\nabla u|} \cdot \nabla u+\mu|\nabla u| \nabla \cdot\left(\frac{\nabla u}{|\nabla u|}\right) \quad \text { h.N.b.c } \tag{5}
\end{equation*}
$$

- in advective part - motion in normal direction - flux-based finite volume level set method - in curvature part - semi-implicit scheme P.Frolkovič, K.M., APNUM 2007

- error manually checked by biologists - less than 0.5\%

Nuclei center correction

- in large and very noisy data sets we stop the center detection process a bit earlier - better is to detect more centers than lose some of the nuclei - then, if the nuclei segmentation process starting from two centers finishes by the same shape we can relialably remove the superfluous center

- error manually checked by biologists - less than 0.5\%
- anticancer drug testing using cell density curves $=$ (number of cells) / (segmented volume of the imaged part of embryo) evolved in time

- blue - untreated embryos, red - after drug application

Mitosis detection

- if we start segmentation from two close nuclei centers and we get the similar result of cell membranes segmentation we detect candidates for mitosis

Cell tracking

- the basis is a 4D space-time segmentation in the form of 4D tree like structures inside 4D image
- 4D distance function from the "root" cells is computed ($|\nabla u|=1$) inside 4D segmentation \rightarrow first estimate of cell trajectories
- 4D distance function from the boundaries of 4D segmentation \rightarrow centering of cell trajectories
- building a potential - difference of distance functions
- steepest descent travers of potential \rightarrow extraction of cell trajectories going backward in time - merging trajectories indicate mitosis
- general approach - we compute the distance functions from cell identifiers at every time step looking forward and perform steepest descent from every time step going backward \rightarrow extraction all possible, also partial trajectories

Space-time segmentations (one branch, "trousers",, tree, "forest")

Cell tracking

- the basis is a 4D space-time segmentation in the form of 4D tree like structures inside 4D image
- 4D distance function from the "root" cells is computed inside 4D segmentation \rightarrow first estimate of cell trajectories
- 4D distance function from the boundaries of 4D segmentation \rightarrow centering of cell trajectories
- building a potential - difference of distance functions
- steepest descent travers of potential \rightarrow extraction of cell trajectories going backward in time - merging trajectories indicate mitosis
- general approach - we compute the distance functions from cell identifiers at every time step looking forward and perform steepest descent from every time step going backward \rightarrow extraction all possible, also partial trajectories

Cell tracking

left - first distance function, right - second distance function

first distance minus second distance \rightarrow centering the trajectory

only distance from initial cell identifiers and steepest descent

using both distances from initial cells and from boundaries

Cell tracking

- the basis is a 4D space-time segmentation in the form of 4D tree like structures inside 4D image
- 4D distance function from the "root" cells is computed inside 4D segmentation \rightarrow first estimate of cell trajectories
- 4D distance function from the boundaries of 4D segmentation \rightarrow centering of cell trajectories
- building a potential - difference of distance functions
- steepest descent travers of potential \rightarrow extraction of cell trajectories going backward in time - merging trajectories indicate mitosis
- general approach - we compute the distance functions from cell identifiers at every time step looking forward and perform steepest descent from every time step going backward \rightarrow extraction all possible, also partial trajectories

mean velocity of cell populations in $\mu \mathrm{m} / \mathrm{sec}$

Videos of embryogenesis reconstruction

Thanks for your attention

