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Motivation from biology and medicine

e cooperation with biologists (CNRS - Department of developmental
biology, Institute Pasteur and Institute Curie, Paris), bioengineers
(University of Bologna), computer scientists (Ecole Polytechnique,
Paris) and CNRS supercomputing center (IN2P3 Lyon) - European
projects Embryomics and BioEmergences

e an automated reconstruction of the vertebrate early embryogenesis
in space and time - e.g. zebrafish - transparent for laser microscopes

e extraction of the cell trajectories and the cell lineage tree
e reconstruction of morphogenetic fields

e comparison of untreated and treated cell populations development
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e two-photon laser scanning microscopy - several hundreds (100-
300) of 2D image slices (512 x 512 pixels) of cell nuclei and cell

membranes are taken subsequently - 3D image volume is constructed
(in 50 seconds)

sphere p—

e sSeveral hundreds of 3D volumes are aquized during a time and

represent imaged early embryogenesis during first (24) hours of de-
velopment
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Videos of embryogenesis
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Steps in our computational embryogenesis reconstruction

e data acquisition - large-scale 3D image data sets of cell nuclei
and cell membranes

e image filtering - by nonlinear (geometrical) diffusion equations

e cell nuclei center detection - by convection-diffusion level set
equation — approximate number of cells (proliferation rate), detected
nuclei centers are starting points for the image segmentation

e cell nuclei segmentation - by the generalized subjective surface
method (geometrical PDE) — 3D nuclei shapes during development,
correction of number of cells and positions of the nuclei centers -
basis for cell tracking and cell trajectories extraction
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e Wwhole embryo segmentation — cell density evolving in time

e cell membranes segmentation — 3D cell shapes during develop-
ment

e cell tracking and cell trajectories extraction - by finding centered
paths in 4D spatio-temporal segmented tree structure by steepest
descent of potential built by a proper combination of constrained
distance functions computed inside the 4D segmentation
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Image filtering

e Geodesic mean curvature flow equation
(Caselles, Kimmel, Sapiro and Chen, Vemuri, Wang)

Vu

ur = |Vu|V. <g(|VGJ * u|)|Vu|

) w(0,z) = I9(x), h.N.b.c (1)

e g(s) =1/(14+Ks2),K >0 - small values for large gradients (edges)

e advective vector field —Vg(|VGs x u|) points towards edges
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Numerical solution of nonlinear PDEs

e Semi-implicit schemes - J.Kacur, K.M. (1995), J.Weickert
(1995), A.Handlovicova, K.M., F.Sgallari (2003, 2006)

Let k and o be fixed numbers and u° = I°9. For every n =1,... N, we
look for a function ", a solution of the equation

1 u —u

|Vur—1] k

n—1 n
u
1 v o
— V. (g(|VGa * u' |)| un_1|> = 0. (2)
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space discretization - finite volume or co-volume methods on

uniform (by image given) grids — solving linear systems in every fil-

tration or segmentation step - SOR method - naturally parallelizable

in 3D (MPI implementation)
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e 3D implementation - every cubic voxel is splitted into 6 pyramids.
The neighbouring pyramids of neighbouring voxels are joined together
to form octahedron (diamond cell for the face) which can be itself
used to evaluate gradients of solution on the face or it can be further
split into 4 tetrahedras, elements of 3D triangulation on which we
can evaluate nonlinearities depending on gradients.

e S.Corsaro, K.M., A.Sarti, F.Sgallari, SIAM J. Sci. Comp., 2006
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e unconditional L - stability, no spurious oscillations, no restriction
on time step

e convergence of the finite volume schemes and error estimates for
the Perona-Malik-type equations - K.M., N.Ramarosy, Num. Math.,
2001, A.Hadlovicova, Z.Kriva, AMUC, 2005

e convergence of the finite volume schemes and error estimates
for Weickert’'s model of nonlinear tensor-driven anisotropic diffusion
- O.Drblikova, K.M., SIAM J. Numer. Anal., 2007, O.Drblikova,
A.Hadlovicova, K.M., APNUM, 2009

e consistency of co-volume schemes for regularized curvature level
set equation - K.M., A.HandloviCova, Appl. Math., 2008

e convergence of finite volume schemes for regularized curvature
level set equation - R.Eymard, K.M., A.HadloviCova, IMAJNA 2011
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e optimal choice of parameters - gold standard + Hausdorff distance
- B.Rizzi, Z.Kriva, K.M., N.Peyriéras, A.Sarti
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Image segmentation

e subjective surface method due to Sarti, Malladi, Sethian (2000) -
e-regularization of the geodesic mean curvature flow equation

Vu
\/82 + |Vu|?

ur = \e2 + |Vul?V. | g . 9g=g([VGs*I°))  (3)

e generalized version with different weigths to advective and diffusive
parts - K.M., N.Peyriéras, M.Remesikova, A.Sarti (2008, FVCAS5) and
C.Zanella et al.(2010, IEEE TIP)

Vu

ur = p1 g|VulV. [ = | + p2 Vg.Vu (4)
[Vul

o cfficient 3D implementations using semi-implicit scheme in cur-

vature part and up-wind schemes in advective part - M.RemeSikova,
R.Cunderlik, K.M.
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Finding the subjective contours in double-Kanizsa-triangle image
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Level lines and 3D graphs of segmentation function after 10, 30, 60
time steps, ¢ = 10 °.
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Level lines and 3D graphs of segmentation function after 100, 300,
800 time steps, e = 10~°.
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Nuclei center detection

e To get starting points for image segmentation we apply to (filtered)
nuclei image intensity geometrical advection-diffusion equation which
moves every level set in normal direction by a constant speed § with a
slight regularization by the mean curvature term - P.FrolkoviC, K.M.,
N.Peyriéras, A.Sarti (2007)

v
wp = 6 VA | V|V -
V|

VU Nb.C (5)
[Vl

e (N advective part - motion in normal direction - flux-based finite
volume level set method - in curvature part - semi-implicit scheme -
P.FrolkoviC, K.M., APNUM 2007
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e ecrror manually checked by biologists - less than 0.5%
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Nuclei center correction

e in large and very noisy data sets we stop the center detection
process a bit earlier - better is to detect more centers than lose some
of the nuclei - then, if the nuclei segmentation process starting from
two centers finishes by the same shape we can relialably remove the
superfluous center

e ecrror manually checked by biologists - less than 0.5%
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e anticancer drug testing using cell density curves = (number of
cells) / (segmented volume of the imaged part of embryo) evolved in

time
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e Dblue - untreated embryos, red - after drug application
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Mitosis detection

e if we start segmentation from two close nuclei centers and we get
the similar result of cell membranes segmentation we detect candi-
dates for mitosis

2
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Cell tracking

e the basis is a 4D space-time segmentation in the form of 4D tree
like structures inside 4D image

e 4D distance function from the "root” cells is computed (|Vu| = 1)
inside 4D segmentation — first estimate of cell trajectories

e 4D distance function from the boundaries of 4D segmentation —
centering of cell trajectories

e building a potential - difference of distance functions

e Steepest descent travers of potential — extraction of cell trajectories
going backward in time - merging trajectories indicate mitosis

e dgeneral approach - we compute the distance functions from cell
identifiers at every time step looking forward and perform steepest de-
scent from every time step going backward — extraction all possible,
also partial trajectories
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Space-time segmentations (one branch, "trousers”, ...., tree, " forest")
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Cell tracking

e the basis is a 4D space-time segmentation in the form of 4D tree
like structures inside 4D image

e 4D distance function from the "root” cells is computed inside 4D
segmentation — first estimate of cell trajectories

e 4D distance function from the boundaries of 4D segmentation —
centering of cell trajectories

e building a potential - difference of distance functions

e Steepest descent travers of potential — extraction of cell trajectories
going backward in time - merging trajectories indicate mitosis

e dgeneral approach - we compute the distance functions from cell
identifiers at every time step looking forward and perform steepest de-
scent from every time step going backward — extraction all possible,
also partial trajectories
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Cell tracking

left - first distance function, right - second distance function

first distance minus second distance — centering the trajectory
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Cell tracking

only distance from initial cell identifiers and steepest descent

using both distances from initial cells and from boundaries
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Cell tracking

e the basis is a 4D space-time segmentation in the form of 4D tree
like structures inside 4D image

e 4D distance function from the "root” cells is computed inside 4D
segmentation — first estimate of cell trajectories

e 4D distance function from the boundaries of 4D segmentation —
centering of cell trajectories

e building a potential - difference of distance functions

e Steepest descent travers of potential — extraction of cell trajectories
going backward in time - merging trajectories indicate mitosis

e dgeneral approach - we compute the distance functions from cell
identifiers at every time step looking forward and perform steepest de-
scent from every time step going backward — extraction all possible,
also partial trajectories
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Videos of embryogenesis reconstruction
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Thanks for your attention
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