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• the cancer of colon - the third most spread cancer disease in WHO

countries - one of the most dengerous cancers in Central Europe
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Classical (optical) colonoscopy

• classical (optical) colonoscopy - device with camera introduced

inside a body and moving inside colon in order to detect polyps -

tumors

• patient preparation is very complicated and the procedure itself is

very painful

• problems in going through narrow (hardly passable) parts of the

colon
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Virtual colonoscopy

• new technology for the colon diagnosis - the results are comparable

with the classical one

• CT (computer tomography) scan of 3D subvolume of a body

containg colon followed by analysis of the colon interior borders using

computer systems

• simple (and not painful) procedure for patient - diet, application

of a contrast substance and inflation of the colon followed by 3D CT

scan

• allows diagnosis of any (also hardly passable) colon shapes difficult

for the classical colonoscopy

• it needs fast and relialable computer algoritms which mimic the clas-

sical optical colonoscopy - virtual camera path allowing the physician

to check the colon - polyps, tumors - by 3D visualization methods
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Virtual colonoscopy

• cooperation with company TatraMed Bratislava in development

of medical image analysis software

• to be competitive with other systems (Siemens, Philips) they

needed to incorporate virtual colonoscopy in their system TomoCon

- the core has been to find an optimal camera trajectory - smooth,

uniformly discretized 3D curve going approximately in the mid-

dle of colon - in fully automatic way

• we developed new original and highly competitive concept, based

on evolving 3D curves and numerical solution of nonlinear PDEs

- implemented into the software and must be clinically tested - very

fast (8 seconds of CPU) and precise when working with real large 3D

CT data sets
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Our concept has three basic steps

• segmentation of the colon from 3D CT data - scan-line seed

filling algorithm

• finding an initial guess for the ideal path - computing a distance

function from a camera starting point inside the segmented object by

solving the restricted Eikonal equation and backtracking the result

in its steepest descent direction

• finding an optimal 3D curve representing an ideal path -

computing a distance function from the boundary of segmented

object gives vector field for moving 3D curve - regularization by

curvature gives smoothness and suitable tangential velocity gives

centered uniformly distributed curve
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Segmentation by seed filling
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Artificial 2D and 3D testing data
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Initial curve for the optimal path search

• distance function from the starting point in 2D testing data and

the initial curve found by backtracking in steepest descent direction

(Dechamps, 2001)
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• initial 3D curve found using distance function and backtracking
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Computing the distance function

• time relaxed Eikonal equation for d(x, t) restricted to the interior

of segmented object setting d(xinit, t) = 0 in initialization point xinit

dt + |∇d| = 1.

• discretization by the Rouy-Tourin scheme with fixing - dn
ijk - ap-

proximate values of distance function at time step n in voxel center

(i, j, k), hD - voxel size, τD - time step size

M
pqr
ijk = (min(dn

i+p,j+q,k+r−dn
ijk,0))2, p, q, r ∈ {−1,0,1}, |p|+|q|+|r| = 1

dn+1
ijk = dn

ijk + τD − τD
hD

√

max(M
−1,0,0
ijk , M

1,0,0
ijk ) + max(M

0,−1,0
ijk , M

0,1,0
ijk ) + max(M

0,0,−1
ijk , M

0,0,1
ijk )

• speed-up by omitting computations in voxels where values are not

changed in subsequent time steps
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Construction of a vector field driving curve to optimal position

• distance function to the boundary of segmented 2D testing data
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• vector field given by the gradient of computed distance function
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v(x, y, z) = ∇d(x, y, z) =

(

∂d

∂x
,
∂d

∂y
,
∂d

∂z

)T

.

vijk =

(

di+1jk − di−1jk

2hD

,
dij+1k − dij−1k

2hD

,
dijk+1 − dijk−1

2hD

)

• the evolving curve is represented by its position vector r, vector

field v gives the velocity of motion

∂tr = v

r
n+1
i = r

n
i + τv(rn

i )

• τ is time step, rn
i - position of the i-th point at time step n,

i = 0, ..., m, endpoints are fixed
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• motion of initial 2D curve in such vector field
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• motion of initial 3D curve in such vector field
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Adjustments of the vector field

• removing the unwanted tangential part of the motion by projection

of the vector field v to the normal plane to the curve

∂tr = µ Nv + ǫkN

Tv = (T.v)T, Nv = v − Tv

• regularization of the motion in normal plane by curvature adding

the curvature vector kN
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Numerical discretization

∂tr = µ Nv + ǫkN

r
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i
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• motion of 2D curve using projection of the vector field to the

normal plane and the regularization by curvature
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• motion of 3D curve using projection of the vector field to the

normal plane and the regularization by curvature
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Asymptotically uniform tangential redistribution for 3D curves

• we consider an orthogonal basis T, N1 = Nv

|Nv|
, N2 = N1 × T

k1 = kN.N1, k2 = kN.N2, kN = k1N1 + k2N2

∂tr = µ Nv + ǫkN, U = ǫk1 + µ|Nv|, V = ǫk2

∂tr = UN1 + V N2 + αT

• for the local length g = |∂r

∂u
| ≈

ri−ri−1
h

, h = 1
m

we have

∂tg = g∂sα − g(Uk1 + V k2)
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• from the local length equation

∂tg = g∂sα − g(Uk1 + V k2)

• we get the total length equation

dL

dt
= − < Uk1 + V k2 >Γ L

• asymptotically uniform redistribution

g

L
≈

|ri − ri−1|

Lh
=

|ri − ri−1|
(

L
m

) =
hi
(

L
m

) → 1

θ = ln

(

g

L

)

→ 0, ∂tθ = ∂t

[

ln

(

g

L

)]

=
L

g

∂tgL − g∂tL

L2

∂tθ = ∂sα − (Uk1 + V k2)+ < Uk1 + V k2 >Γ

∂tθ = (e−θ − 1)ωr, ∂sα = Uk1 + V k2− < Uk1 + V k2 >Γ +

(

L

g
− 1

)

ωr
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• our redistribution strategy is based on equation

∂sα = Uk1 + V k2− < Uk1 + V k2 >Γ +

(

L

g
− 1

)

ωr

• which is discretized together with our general equation of motion

including normal and suitable tangential velocity components

∂tr = µNv + ǫ ∂ssr + α∂sr

and solved by the semi-implicit scheme in a fast and stable way.

• analogy with asymptotically uniform redistribution for 2D curves

evolution - Mikula and Ševčovič, M2AS, 2004

∂sα = βk− < βk >Γ +

(

L

g
− 1

)

ωr

• Hou, Klapper, Si, JCP 1998 (k1 − k2 − ω − L 3D curve evolution

formulation with redistribution conserving relative local length)
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• motion of 2D curve using projection of the vector field to the

normal plane, regularization by curvature and asymptotically uniform

tangential redistribution

Karol Mikula www.math.sk/mikula



• motion of 3D curve using projection of the vector field to the

normal plane, regularization by curvature and asymptotically uniform

tangential redistribution
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• Comparison of the grid point distances: the basic vector field (red),

the projected vector field plus curvature regularization (blue), the final

model (violet)
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few videos
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Thanks for your attention
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