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Abstract

We present a method for reconstruction of a single 3D object’s surface from representative
point cloud. Given the set of points, we construct a triangular mesh approximation of a
surface they represent. The process of reconstruction is based on appropriately designed
evolution of initial condition which is a simple triangulated surface containing the set of
points in its inside. We establish a parabolic PDE describing the Lagrangian surface evolu-
tion and explain numerical approximation of our model. In order to control the quality of
the mesh during the Lagrangian evolution and to obtain an appropriate representation of
the desired surface, we perform tangential redistribution of mesh points during the surface
evolution. We applied the proposed method to the biological data representing an early
developmental stage of a zebrafish embryo. The obtained results can help in quantitative
analysis of the embryogenesis.

Keywords: surface reconstruction, point cloud, surface evolution, tangential redistribu-
tion, finite volume method

Abstrakt

V tejto práci navrhujeme metódu na rekonštrukciu 3D objektu z mračna bodov. Pre zadané
mračno bodov konštruujeme triangulovanú aproximáciu povrchu, ktorý dané mračno bo-
dov reprezentuje. Algoritmus rekonštrukcie je založený na vhodne navrhnutom vývoji po-
čiatočnej podmienky, ktorou je jednoduchý triangulovaný povrch obsahujúci dané mračno
bodov vo svojom vnútri. Navrhujeme parabolickú parciálnu diferenciálnu rovnicu popi-
sujúcu Lagrangeovský vývoj plochy a následne popisujeme numerickú aproximáciu také-
hoto modelu. Za účelom riadenia kvality diskretizaćnej mriežky počas Lagrangeovského
vývoja a dosiahnutia primerane kvalitnej reprezentácie vykonávame počas celého vývoja
tengenciálnu redistribúciu bodov priestorovej diskretizačnej mriežky. Navrhovanú metódu
sme aplikovali na biologické dáta predstavujúce skoré vývojové štádium embrya rybky
zebrafish. Dosiahnuté výsledky môžu pomôct’ v kvantitat́ıvnej analýze embryogenézy.

Kl’účové slová: rekonštrukcia povrchu, mračno bodov, vývoj povrchu, tangenciálna re-
distribúcia, metóda konečných objemov
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1 Introduction

It is one of the main tasks in the field of computer graphics and computer vision to obtain
a proper digital representation of real world objects. A common way of representing a 3D
object is to capture a set of points lying on the object’s surface – point cloud representation
of an object. A point cloud is basically a set of points in some coordinate system, usually
the three-dimensional Cartesian coordinate system. Each point of the 3D point cloud
defined by its x, y and z coordinate can also contain some other information e.g. colour
or normal. This data structure is often used to represent not only the external surface of
single 3D objects but also more general scenes. Point cloud data can be acquired by 3D
laser scanners, RGB-D cameras (Microsoft Kinect), stereo cameras or can be artificially
created by a software.

Figure 1: Point cloud representations of simple objects.

However, such a basic representation is not directly usable in most applications. There-
fore a substantial amount of effort has been dedicated to the problem of obtaining a differ-
ent surface representation of an object from point cloud data [1]. The process of converting
a point cloud into more convenient representation is commonly referred to as surface re-
construction. The need for the new surface reconstruction techniques increases even more
with the development of 3D scanning and 3D printing.

In this paper we present a method for constructing triangular mesh representation of a
single static object’s surface given a representative point cloud. As an input we need a set
of points representing the object and an initial approximation of the desired surface. The
initial approximation is a closed triangulated surface containing the given set of points
in its inside. The process of surface reconstruction is based on appropriately designed
evolution of this initial condition.

In general, two approaches are used for solving surface evolution problems. While the
Eulerian approach considers a surface to be an isosurface (level-set) of a function whose
domain is a subset of R3, the Lagrangian approach solves a surface evolution problem by
evolving the surface directly.

We establish a parabolic PDE describing the Lagrangian surface evolution and explain
numerical approximation of our model. In numerical approximation of any Lagrangian
evolution model it is important to control the quality of the mesh during the process of
evolution. Regarding this hardship of this kind of methods we explain the technique for
required tangential redistribution of the discrete points as the surface evolves.

In this work we explain the surface evolution problem in a general intrinsic setting based
on ideas from the general case of an m-dimensional manifold evolving in an n-dimensional
manifold [2]. The Riemannian manifolds can be viewed simply as topological spaces with
an extra structure defined on it. The basic knowledge about topology, topological spaces
and Riemannian geometry is expected.
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2 Surface evolution

We will call the general case of manifold evolution [2] any time dependant embedding
F : M × [0, Tf ]→ N of m-dimensional Riemannian manifold (M, gM ) in an n-dimensional
Riemannian manifold (N, gN ).

In this paper we are concerned with the particular case of manifold evolution – surface
evolution. We define a surface evolution as any smooth map F : X × [0, Tf ] → Y ,
where (X, gX) is a 2D Riemmanian manifold and (Y, gY ) is R3, or an open subset of R3,
accompanied with the standard Euclidean metric, here denoted by gY . We will assume
that each time slice F t is a smooth embedding of X in Y ⊆ R3. For our purposes it is
sufficient to consider X to be a manifold without boundary.

We always assume the map F : X × [0, Tf ]→ Y to be smooth, hence it can be defined
as a solution of the evolution equation

∂tF = v. (2.1)

The vector field v(·, t) serves as the velocity field of the evolution.
It proved to be useful to see the velocity v as a composition of two parts – the tangential

and the normal component of the velocity vector

v = vN + vT . (2.2)

Consequently the evolution equation (2.1) can be rewritten as

∂tF = vN + vT . (2.3)

Notice that while the movement in the normal direction directly determines the shape
of the evolving manifold, the motion in the tangential direction has no effect on it. How-
ever, the tangential movement of discrete grid points plays an important role in numerical
realizations of problem (2.3). Inappropriate choice of tangential velocity vT may lead to
unacceptable numerical errors or even crash of computation process.

In many applications the uniform or asymptotically uniform redistribution of grid
points is required. This type of redistribution can significantly stabilize and speed up the
numerical computation. Furthermore, besides this type of redistribution, it makes sense
to sample the grid points in regions with higher curvature more densely than in nearly
flat ones. This type of curvature based redistribution can lead to better representation of
a particular object.

2.1 Tangential redistribution of points on an evolving surface

We can assume without any loss of generality the surface evolution equation (2.3) to be
in the following form

∂tF = vN . (2.4)

We will enrich equation (2.4) with tangential term vT purely in order to control the mesh
quality. Our aim is to prescribe a condition which will allow us to determine the tangential
velocity field.

Given the Riemannian manifold (X, gX), the metric gX induces the measure on Borel
sets of X, denoted by µX . We can induce another metric on X as the pull-back of the
metric gY along the map F t. This new metric gF t = (F t)∗(gY ) also induces a measure on
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Borel sets of X. We will denote this induced measure by µF t . The measure of an arbitrary
measurable set U ⊆ X with respect to the measure µF t can be expressed as

µF t(U) =

∫
U

dµF t . (2.5)

Notice that while the measure µX remains the same during the whole evolution, the
induced measure µF t evolves according to the changes of shape of evolving embedding of
the manifold {Im

(
F t
)
}t∈(0,Tf ).

We are particularly interested in the relation between the measures µX and µF t . For
this purpose we again express the measure of an arbitrary measurable set U ⊆ X with
respect to the measure µF t

µF t(U) =

∫
U

dµF t =

∫
U
Gt dµX . (2.6)

The quantity Gt in (2.6) is the Radon-Nikodým derivative of measure µF t with respect to
measure µX . We will call it area density. We can observe from (2.6) that this quantity
expresses how the mapping F locally shrinks or expands areas of evolving surface.

From work [3] we know that G evolves in a manner described by following evolution
equation

∂tG = (−vN · h+ divgFwT )G. (2.7)

where ht is the mean curvature vector of F t. The operator divgF stands for divergence on
manifold X with respect to metric gF t and wtT is the pull-back of vtN along the map F t.

Combining the formula (2.7) and relation (2.6) we get the evolution equation for the
global area of X measured by the induced measure µF t denoted by At. After applying the
divergence theorem and assuming ∂X = ∅ or gF t(wT , ν)|∂X = 0, where ν is the outward
unit normal to ∂X with respect to gF t , we obtain

∂tA =

∫
X

(−vN · h) dµF t . (2.8)

2.2 Area-oriented asymptotically uniform tangential redistribution

The area-oriented redistribution means that we want to control the area density G of the
evolution F : X × [0, Tf ] → Y . In the discrete setting it will allow us to control the area
of our mesh elements.

We will call an embedding F t area uniform with respect to gX if the area density Gt

is constant on its domain. In practical applications, it is reasonable to start the evolu-
tion with a particular embedding {Im

(
F t
)
}t=0 (the initial condition) with corresponding

varying G and as the evolution process proceeds, we let the embedding approach the area
uniform embedding with constant G.

We can compute the global area of X measured with respect to the measure µX

AX = µX(X) =

∫
X

dµX (2.9)

and using (2.6) the global area of X measured according to µF t

A = µF t(X) =

∫
X
GdµX . (2.10)
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With constant G we can rewrite (2.10) as A = GAX . Hence, for a constant G we get
G = A

AX
and the corresponding dimensionless condition is

G

A
=

1

AX
. (2.11)

An asymptotically area-uniform evolution F : X × [0, Tf ]→ Y satisfies the condition

G

A
−−−→
t→∞

1

AX
. (2.12)

For instance, (2.12) is satisfied if G
A is a solution of the following differential equation

∂t

(
G

A

)
= ω

(
1

AX
− G

A

)
, (2.13)

where parameter ω : [0, Tf ]→ R+ acts as a speeding factor.
We can use the product rule on the left hand side of (2.13) and combine it with (2.7)

and (2.8). We obtain the following criterion for the vector field wT on X defined as the
pull-back of vT alongside F

divgFwT = vN · h−
1

A

∫
X
vN · hdµF + ω

(
A

GAX
− 1

)
. (2.14)

2.3 Tangential redistribution of points on evolving surface based on the
curvature

In some applications, the uniform redistribution of points might not always meet the
requirements on the surface’s representation. Our aim is to find a tangential velocity field
which will lead to higher density of discrete points in regions with higher curvature and
lower density in nearly flat ones.

Considering G constant over a domain U ⊆ X we have

µF (U) = GµX(U). (2.15)

It can be inferred from (2.15), that higher value of G causes the local expansion of the area
of U and lower value leads to the local shrinking. In the discrete setting the density of
grid points will be higher in regions with lower value of G. On the contrary, in the regions
with higher value of G the areas are expanded and as a result the density of grid points
is lower. We want to redistribute the points according to the value of the mean curvature
H. One possible way to do this is requiring

G(x) f(H(x)) = const ∀x ∈ X, (2.16)

where f is a positive increasing function of mean curvature H at point x. Since Gf(H)
is constant over X, the value of G lowers with rising value of f(H). Possible choices of
function f : R→ R are for example [4]

f(H) = H1/3

f(H) = H2/3

f(H) = exp(αH), α ∈ R+.
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Similarly like in the case of the asymptotically uniform redistribution, we can obtain
the criterion for the vector field wT on X defined as the pull-back of vT alongside F

divgFwT = vN · h−
1

A

∫
X
vN · hdµF + ω

(
A

G

1
f(H)∫

X
1

f(H)dµX
− 1

)
, (2.17)

where parameter ω : [0, Tf ]→ R+ acts as a speeding factor.
Unfortunately neither (2.14) nor (2.17) do not determine the vector field wT uniquely.

There is infinite number of solutions for equations (2.14) and (2.17). In order to uniquely
determine a single solution, we will assume wT to be a gradient field

wtT = ∇gFtψ
t , (2.18)

where ψ is a scalar function defined on X, ψ : X × [0, Tf ]→ R.
Using assumption (2.18), we obtain the following equation for the Laplace-Beltrami

operator of ψt for the asymptotically area-uniform redistribution

∆gFtψ
t = divgFt (∇gFtψ

t) = vN · h−
1

A

∫
X
vN · hdµF + ω

(
A

GAX
− 1

)
. (2.19)

and in case of redistribution of points based on curvature

∆gFψ
t = vN · h−

1

A

∫
X
vN · hdµF + ω

(
A

G

1
f(H)∫

X
1

f(H)dµX
− 1

)
. (2.20)

After adding an appropriate boundary condition to equation (2.19) or (2.20) we are able to
uniquely determine ψt. Given an evolving surface without boundary, we have to prescribe
the value of ψt in one selected point.

3 Mathematical model of surface reconstruction from point
clouds

3.1 Distance function

Let Ω ⊆ Rn, given the set of points P ⊂ Ω with its elements pi, i = 1 . . . nP , the distance
function d : Ω→ R for the points in P is defined at a point x ∈ Ω as the smallest Euclidean
distance of x to the points in P

d(x) = min
p∈P
||x− p||.

It can also be defined as the solution of Eikonal equation, i.e. the distance function d to
the set of points P (Figure 2) satisfies

|∇d(x)| = 1 , x ∈ Ω, (3.1)

with boundary condition d(x) = 0, x ∈ P ⊂ Ω.
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Figure 2: Examples of distance functions to the given point clouds. The 2D graph and
contours of the distance function to the points of the heart curve on the left and the slice
of the graph and two contours of the distance function to the 3D point cloud representing
the vase.

3.2 Mathematical model

Our aim is to construct a triangular mesh representation of an object’s surface Σ ⊂ R3

given only a finite sampling of it. As an input we need the corresponding point cloud
without any additional information, such as normals or scanner information, and a closed
triangulated surface S0 containing the given set in its inside – an approximation of the
desired surface, which will serve as an initial condition for our model. The evolution of
the initial approximation is appropriately designed in order to obtain the desired repre-
sentation of point cloud P .

The suggested model consists of an advection term with the velocity proportional to
∇d and a diffusion term with the velocity proportional to d. These two terms represent
the normal component of velocity v in general evolution equation (2.1). Moreover, we
enrich the model with the appropriate tangential movement term which will allow us to
control the mesh quality during the whole process of the evolution.

Let Ω be a subset of R3 and P = {p1, . . . , pnP } ⊂ Ω be a set of points sampling the
surface Σ. Furthermore, let d0 : Ω → R be the distance function to the point cloud P ,
which is the solution of hyperbolic partial differential equation (3.1). The existence and
uniqueness of the solution d0 are shown in [5]. Even though the solution is continuous,
it may not be everywhere differentiable. Therefore, we will consider regularized distance
function d defined as the convolution Gσ ∗d0, where Gσ is a Gauss kernel. From any point
x ∈ Ω we can approach P moving towards the steepest distance descent, e.g. following
the direction of −∇d. Given a smooth closed initial condition surrounding P , the basic
idea is to let each point of it move in the direction of −∇d and consequently approach the
point cloud P .

Next, let (X, gX) be a two-dimensional Riemannian manifold without boundary (e.g.
2D Riemannian sphere) and F : X × [0, Tf ]→ Ω be an evolution of X in Ω. The metric
gX again induces the Borel measure on X denoted by µX . In addition, let gF and µF
represent respectively the metric and the Borel measure induced by F . Recalling the
definition of surface evolution from the previous chapter, each time slice F t is a smooth
embedding of X in Ω. We will denote the image of F t = F (·, t) by St. The map F is a
solution of the evolution equation

∂tF = vN + vT = wa (−∇d ·N)N + wd d∆gFF + vT , F (·, 0) = S0, (3.2)

where N is the outward unit normal to S and ∆gF stands for the Laplace-Beltrami operator
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with respect to the metric gF . The parameters wa : [0, Tf ] → R+ and wd : [0, Tf ] → R+

act as speeding factors for the advection and the diffusion respectively.
Let us take a closer look at the three terms on the right hand side of equation (3.2).

The advection term wa (−∇d · N)N is the main driving force of the evolution process
and it makes the image S approach the point cloud P . The projection of −∇d onto the
surface outward normal N eliminates the tangential movement which does not affect the
actual shape of surface S and it also makes the movement of a point dependent on its
neighbourhood – the surface is moving as a whole rather than a set of independent points.
If −∇d is perpendicular to the normal N , the advective evolution stops and thus a surface
patch is formed in the empty space between the points of P . Since ∆gFF = HN , where
H is mean curvature of surface S, the diffusion term wd d∆gFF represents the evolution
driven by mean curvature and in the model it guarantees the sufficient smoothness of the
evolving surface S. In addition, it enables our method to effectively handle substantial
imperfections of the point cloud data like non-uniform sampling density, noise or outlying
points (Figure 3). Moreover, it also speeds up the evolution process proportionally to the
distance to the point cloud P .

Hence, only these two terms affect the actual shape of the evolving surface S. The
third term is added in order to control the area density G, which in the discrete setting
will allow us to control the area of mesh elements and therefore the redistribution of grid
points on the evolving surface.

(a) Original surface (b) Uniform sam-
pling.

(c) Nonuniform sam-
pling.

(d) Noisy data (e) Data with out-
liers

(f) Missing data

Figure 3: Different forms of point cloud imperfections.

We introduced two techniques for tangential redistribution of points on the evolving
surface in case of general surface evolution. Now we can apply the general results for our
model.

In order to determine the tangential term vT leading to asymptotically uniform re-
distribution we have to solve (2.19). In case we require the points to be asymptotically
redistributed according to the mean curvature of the evolving surface S, we have the equa-
tion (2.20). In both equations (2.19) and (2.20) we use the normal velocity term from our
model (3.2)

vN = wa (−∇d ·N)N + wc d∆gFF. (3.3)
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Since we deal with a Riemannian manifold without boundary, we have to prescribe the
value of ψ just in one selected point.

4 Discretization of surface reconstruction model

Computation of the distance function is essential for our model. Thus, we need a fast and
accurate algorithm for approximating the distance function to the point cloud P . From the
variety of available methods for solving problem (3.1) we chose the fast sweeping method
introduced by Zhao [6].

The first step of the discretization of our model is the discretization of the computa-
tional domain Ω which is considered to be a box. It is discretized into a finite number of
non-intersecting volume elements – voxels. Each voxel vi,j,k, i, j, k = 1 . . . N , of the grid
is a cube of side length h. Let xi,j,k denote the centre of voxel vi,j,k. We approximate the
solution of problem (3.1) in each voxel with the value of numerical solution di,j,k given by
the fast sweeping method in xi,j,k.

4.1 Discretization of the initial condition

The initial condition for the evolution process is usually a simple surface, e.g. a sphere
or an ellipsoid. The advantage of using these simple surfaces is that they can be eas-
ily triangulated in many different ways. We employ the method based on subdividing
an icosahedron (Figure 4). In this method, in order to get finer approximation of the
unit sphere, each triangle is subdivided into four smaller triangles, whose points are then
projected on the sphere.

Figure 4: Various triangulations of unit sphere obtained by subdividing the icosahedron.
Number of points used in triangulation from left to right: 12, 42, 162, 642, 2562.

After obtaining the triangulation of the unit sphere, we can simply use standard geo-
metric transformations to obtain desired triangulated surface containing the given point
cloud in its inside. We assume the topological equivalence between the initial condition
and the desired surface. Hence, the topology of the initial condition is preserved during
the whole process of evolution.

4.2 The time discretization

We now discuss the discretization of (3.2) in time. We consider a uniform partition of the
time interval [0, Tf ] with the time step τ , tn = nτ . For the sake of clarity, we will use the
notation Fn = F (·, tn). After applying the semi-implicit approach, we obtain

Fn − Fn−1

τ
= wa (−∇d ·Nn−1)Nn−1 + wd d∆gFn−1F

n + vn−1T . (4.1)
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4.3 The space discretization

The space discretization is performed by the finite volume approach. We suppose to have
the triangular representation of the abstract two-dimensional manifold X consisting of
vertices Xi, i = 1 . . . nv, edges ej , j = 1 . . . ne and triangles Tk, k = 1 . . . nt.

Now we present a detailed description of the technique for constructing the co-volume
mesh by barycentric subdivision of triangles Tk. For the sake of clarity we describe the
procedure for one particular co-volume Vi constructed around the vertex Xi. We suppose
it is the common vertex for m triangles T1 . . . Tm, thus it is also the common vertex for m
edges e1 . . . em, where ep connects Xi with Xip . Moreover, let us denote the barycentre of
Tp by Bp and the center of the edge ep by Cp for p = 1 . . .m. The polygonal co-volume Vi
with boundary edges σp,1 = CpBp and σp,2 = BpCp+1 is constructed as the union of the
triangles Vp,1 = XiCpBp and Vp,2 = XiBpCp+1 for p = 1 . . .m, where we set Cm+1 = C1.
The mesh constructed in this manner is a simplicial partition of the manifold X.

Xi

Xip

Xip+1

Cp

Cp+1
Bp

e
p

e p
+
1

ep,p+
1

σ p
,1σp,2

νp,1

νp,2

Tp
θp,1

θp,2

Fn
i

Fn
ip

Fn
ip+1

Nn
i

Figure 5: The space discretization mesh. The triangulation of the abstract manifold X on
the left and the approximation of its embedding in R3 on the right.

We construct a piecewise linear approximation of embedding Fn denoted by F̄n. This
approximation satisfies F̄n(Xi) = Fn(Xi). The points Fni will be the unknowns in the
fully discretized model. The embedding F̄n induces a metric gFn on X which induces a
measure µFn on Borel sets of X. In the numerical scheme we will use the angles θnp,1,
θp,2 of F̄n(Tp) adjacent to F (Xi) and F (Xip+1) respectively. In addition, we will use the
outward unit normals νp,1 and νp,2 to the embedded co-volume boundary edges F̄n(σp,1),
F̄n(σp,2).

The basic idea of the finite volume method is that we integrate the differential equa-
tion over each co-volume and then approximate the integrals using different interpolation
techniques from the discrete data in the grid points. Integrating (3.2) over a co-volume Vi
yields ∫

Vi

Fn − Fn−1

τ
dµFn−1 =

∫
Vi

wa (−∇d ·Nn−1)Nn−1 dµFn−1

+

∫
Vi

wd d∆gFn−1F
n dµFn−1 +

∫
Vi

vn−1T dµFn−1 . (4.2)

The approximation of the left hand side of (4.2) reads∫
Vi

Fn − Fn−1

τ
dµFn−1 ≈ µFn−1(Vi)

Fn − Fn−1

τ
. (4.3)
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4.3.1 Discretization of the advection term

First, we compute the unit outward normal Nn
i at Fni simply as the average of the outward

unit normals to all triangles F̄ (Tp), p = 1 . . .m, containing the vertex Fni . Secondly ∇di
in the corresponding voxel is computed by central differences

∇di = ∇di,j,k =

(
di+1,j,k − di−1,j,k

2h
,
di,j+1,k − di,j−1,k

2h
,
di,j,k+1 − di,j,k−1

2h

)
, (4.4)

where the triplet (i, j, k) represents indices of voxel containing the point Fn−1i of the
evolving surface. Finally we are able to approximate the advection term∫

Vi

wa (−∇d ·Nn−1)Nn−1 dµFn−1 ≈ wa (−∇di ·Nn−1
i )Nn−1

i µFn−1(Vi), (4.5)

where µFn−1(Vi) is the measure of the co-volume Vi with respect to the measure µFn−1 .

4.3.2 Discretization of the Laplace-Beltrami operator term

For approximating the Laplace-Beltrami operator term in (4.2) we use the cotangent
scheme [7]∫

Vi

wd d∆gFn−1F
n dµFn−1 ≈ wd di

1

2

m∑
p=1

(
cot
(
θn−1i,p−1,1

)
+ cot

(
θn−1i,p,2

)) (
Fni − Fnip

)
,

(4.6)
where di is the value of the distance function in voxel containing the point Fn−1i and
θi,0,1 = θi,m,1.

4.3.3 Discretization of the tangential term

Using the assumption that wT is a gradient field and applying the special version of Stokes
theorem [8] we obtain∫

Vi

vn−1T dµFn−1 =

∫
∂Vi

ψn−1 νn−1i dHµFn−1 −
∫
Vi

ψn−1hn−1 dµFn−1 . (4.7)

The approximation of (4.7) reads∫
Vi

vn−1T dµFn−1 ≈
m∑
p=1

(
||σi,p,1||n−1 ψn−1i,p,1 ν

n−1
i,p,1 + ||σi,p,2||n−1 ψn−1i,p,2 ν

n−1
i,p,2

)
− µFn−1(Vi)ψ

n−1
i hn−1i , (4.8)

where || · ||n−1 stands for length measured with respect to the metric induced by Fn−1

and ψi,p,1, ψi,p,2 are the values of function ψn−1 in the midpoints of the co-volume boundary
edges σi,p,1 and σi,p,1 respectively. These midpoint values of ψn−1 can be approximated
by linear interpolation from the known values of ψn−1 in the vertices Xi

ψi,p,1 =
5ψn−1i + 5ψn−1ip

+ 2ψn−1ip+1

12
, ψi,p,2 =

5ψn−1i + 2ψn−1ip
+ 5ψn−1ip+1

12
. (4.9)

In the following text we will examine the computation of function ψ more closely. In order
to solve equation (2.19) or (2.20) we need to approximate the area density G. We can
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approximate the area of 2-manifold X measured with respect to the measure µFn−1 in two
ways

An−1 =

∫
X
Gn−1 dµX ≈

nv∑
i=1

Gn−1i µX(Vi) . (4.10)

An−1 ≈
nv∑
i=1

µFn−1(Vi) (4.11)

The choice of measure µX is up to us, since we do not have any conditions imposed on it.
Assuming µX(X) = AX we can set µX(Vi) = AX/nv for i = 1 . . . nv. When we use the
following approximation of area density G

Gn−1i =
nv
AX

µFn−1(Vi), (4.12)

the equality between right hand sides of (4.10) and (4.11) holds true.
We can again make use of the finite volume approach. We integrate (2.19) and (2.20)

over each co-volume Vi and then approximate the obtained integrals. For approximation of
the integral from Laplace-Beltrami operator of the unknown function ψn−1 we can employ
the cotangent scheme presented earlier∫

Vi

∆gFn−1ψ
n−1 dµFn−1 ≈

1

2

m∑
p=1

(
cot
(
θn−1i,p−1,1

)
+ cot

(
θn−1i,p,2

)) (
ψn−1i − ψn−1ip

)
. (4.13)

In the approximation of
∫
Vi
vN · hdµF we will use the equality

∆gFF = h = HN, (4.14)

where h is the mean curvature normal of F , H is the the mean curvature of F and N is
the outward unit normal to the embedding of X. For the approximation of h we can once
again make use of the cotangent scheme (4.6). We can just divide the approximation of
the integral (4.6) by wd di µFn−1(Vi) to approximate hn−1i

hn−1i ≈ 1

2µFn−1(Vi)

m∑
p=1

(
cot
(
θn−1i,p−1,1

)
+ cot

(
θn−1i,p,2

)) (
Fn−1i − Fn−1ip

)
. (4.15)

The approximation of mean curvature H in the vertex Xi is then computed as the Eu-
clidean norm ||hn−1i ||. Now we are able to discretize the integrals of all terms on the right
hand side of (2.19) or (2.20). For approximation of the first term we use∫

Vi

vn−1N · hn−1 dµFn−1 ≈ µFn−1(Vi) (vN
n−1
i · hn−1i )

= µFn−1(Vi)(wa(−∇di ·Nn−1
i )Nn−1

i + wd di h
n−1
i ) · hn−1i

= µFn−1(Vi)(wa(−∇di ·Nn−1
i ) + wd diH

n−1
i )Hn−1

i . (4.16)

Similarly, for the second term we have

−
∫
Vi

1

A

∫
X
vN

n−1 · hn−1 dµFn−1 dµFn−1 ≈ −µFn−1(Vi)
1

A

nv∑
i=1

µFn−1(Vi)(vN
n−1
i · hn−1i )

= −µFn−1(Vi)
1

A

nv∑
i=1

µFn−1(Vi)(wa(−∇di ·Nn−1
i ) + wd diH

n−1
i )Hn−1

i

(4.17)
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For asymptotically uniform redistribution the last term reads∫
Vi

ω

(
A

GAX
− 1

)
dµFn−1 ≈ µFn−1(Vi) ω

(
A

nv µFn−1(Vi)
− 1

)
(4.18)

and for the curvature based redistribution we have∫
Vi

ω

(
A

G

1
f(H)∫

X
1

f(H)dµX
− 1

)
dµFn−1

≈ µFn−1(Vi) ω

 A
nv
AX

µFn−1(Vi)

1
f(Hn−1

i )∑nv
i=1

(
µX(Vi)

1
f(Hn−1

i )

) − 1

 , (4.19)

where we define AX = µX(A) = 1 and µX(Vi) = 1/nv.
Combining (4.13) with (4.16), (4.17) and (4.18) or (4.19), depending on the type of

required redistribution, we obtain the linear system for the values of ψn−1i . We have to
prescribe the value of ψn−1 in one particular vertex, e.g. ψn−11 = 0.

After solving the linear system for ψn−1i ,i = 1 . . . nv, the appropriate combination of
(4.3), (4.5), (4.6) and (4.8) leads to the fully discretized surface reconstruction model. For
solving linear systems of equations we use the iterative Bi-CGStab (BiConjugate Gradient
Stabilized) method [9].

5 Numerical experiments

We implemented the proposed method in C++. Some computations were parallelized
using OpenMP (Open Multi-Processing) API [10]. In order to demonstrate the robustness
of the proposed method we performed the following numerical experiments on testing data
shown in Figure 3.

For the first set of testing data, the distance function was computed in a voxel grid
with 200 × 200 × 200 voxels. The initial condition is an ellipsoid containing the point
cloud. We used the triangular mesh of the ellipsoid consisting of 2562 vertices and 5120
triangles. In the first experiment, shown in Figure 6, we show the use of proposed method
for reconstruction of the surface given the uniformly sampled point cloud. The parameters
of the model were set to wa = 300, wd = 100, τ = 0.001. We used asymptotically uniform
redistribution of points with ω = 100. The result of the evolution process can be easily
smoothed by mean curvature flow (MCF), we just set wa = 0 and the value of distance
function in each voxel to 1. We performed 95 time steps of the evolution and afterwards
we smoothed the obtained result with 25 additional steps of MCF with τ = 0.0005 and
wd = 450.

(a) Initial surface together
with the point cloud

(b) Evolved surface after
95 steps of evolution

(c) Reconstructed surface
after smoothing.

Figure 6: Reconstruction of the testing surface from a uniform point cloud.
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(a) Evolved surface after
95 steps of evolution

(b) Evolved surface after
95 steps of evolution dis-
played without its triangu-
lation

Figure 7: Reconstruction of the testing surface from a non-uniform point cloud.

(a) Evolved surface after
100 steps of evolution

(b) Evolved surface af-
ter additional 30 steps of
mean curvature flow

Figure 8: Reconstruction of the testing surface from a noisy point cloud.

In the second experiment we used the same setting of parameters, but the point cloud
was non uniformly sampled in this test case. We can observe from Figure 7 that the
suggested method is robust enough to non uniform sampling.

Next test case (Figure 8) represents the very common imperfection occurring in the
point cloud data – noise. We performed 100 steps of evolution with the same setting of
parameters as in the previous two test cases. In order to suppress the level of remaining
noise we smoothed the resulting surface with 30 additional MCF steps with magnitude
wd = 500.

Furthermore, Figure 9 shows how our method can handle the outlying points. Due to
the use of the regularized distance function the diffusion term does not vanish and hence
the evolving surface overcomes the outlying points. The parameters were set to wa = 300,
wd = 120, τ = 0.001, ω = 100. We again performed additional 25 steps of MCF with
wd = 450. The diffusion term also incorporates a minimal surface area regularization to
ensure the smoothness in regions of missing data as demonstrated in Figure 10. In this
test case the parameters were set to the same values as in the test case with outlying
points.

We performed all experiments on Intel®Core� i7-4702MQ 2.20 GHz processor. The
amount of needed CPU time was very similar for each test case from the first set of testing
data. For instance, the whole process of surface reconstruction (130 time steps) from the
noisy point cloud took 7.38 seconds of CPU time.
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(a) Evolved surface after
80 steps of evolution

(b) Evolved surface after
95 steps of evolution

(c) Evolved surface after
105 steps of evolution

(d) Reconstructed sur-
face after additional 25
steps of mean curvature
flow.

Figure 9: Reconstruction of the testing surface from a point cloud with outlying points.

(a) Evolved surface after
105 steps of evolution dis-
played with its triangula-
tion

(b) Evolved surface af-
ter additional 25 steps of
smoothing

Figure 10: Reconstruction of the testing surface from a point cloud with a missing part.

In the next phase of testing we applied our model to a more complicated test object
representing a bust. The used distance function was computed on voxel grid of 300×300×
300 voxels. In this experiment we also used the additional mesh refinement of the evolving
surface. We started the evolution precess with the coarse triangulation of an ellipsoid with
only 162 vertices and parameters set to wa = 300, wd = 30, τ = 0.01 and ω = 100. During
the evolution we refined the mesh four times using the subdivision of each triangle into
four smaller triangles. The time step τ is set to be four times smaller after each mesh
refinement due to the coupling τ ∼ h2, where h characterizes the length of the triangle
sides. Here, we again used the asymptotically uniform redistribution of points.

We tested the redistribution of points driven by the curvature on the point cloud
sampling of a bumpy spherical surface (Figure 12). During the first 90 steps of evolution
with the parameters set to wa = 20, wd = 2, τ = 0.001 we used the asymptotically uniform
redistribution in order to optimally capture the velocity field of the evolution. Then we
performed the mesh refinement and smoothed the obtained surface with 5 steps of MCF.
Afterwards, we continued the smoothing process with much lower magnitude to avoid
undesired shrinking. At this stage we used the curvature based redistribution of points.
We used function f(H̃) = exp(1.5 H̃) in (2.20), where H̃ is the regularized curvature. In
order to obtain the value of regularized curvature, we always perform 3 steps of MCF
of the current surface, then we use the curvature of this smoothed surface as regularized
curvature H̃ in the process of the tangential redistribution of points of the current surface.
We use this regularization of curvature in order to stabilize the computation process.
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(a) Coarse initial condition
with the point cloud

(b) Evolved surface after
10 steps of evolution and
first mesh refinement

(c) Evolved sur-
face after 45 steps
of evolution and
second mesh re-
finement

(d) Evolved surface
after 220 steps of evo-
lution and third mesh
refinement

(e) Evolved surface
after 240 steps of
evolution and final
mesh refinement

(f) Evolved surface
after 245 steps of
evolution

(g) Reconstruction ob-
tained after additional 3
steps of MCF smoothing.

Figure 11: Reconstruction of a more complicated testing surface. We started the recon-
struction process with coarse triangular mesh of initial ellipsoid consisting of 162 vertices.
After performing 248 time steps of surface evolution with four mesh refinements we ended
with the triangular approximation of desired surface consisting of 40962 vertices.
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(a) Evolved surface after 90 steps
of evolution displayed with the
point cloud

(b) Reconstructed surface after 5
additional teps of smoothing

(c) Detail of surface after performing 10 steps of
curvature based redistribution of points.

Figure 12: Reconstruction of a bumpy spherical surface with the use of curvature based
redistribution of points.

6 Application to biological data

Nowadays, the advanced microscope technology allows us to obtain good quality 3D im-
age data of early stages of embryogenesis of the model developmental organisms. Hence,
various image processing algorithms are now frequently used by developmental biologists
in order to explore and understand the mechanisms and dynamics of fundamental de-
velopmental events. Current challenges in biological image processing include algorithms
for cell membrane shape identification, multidimensional image registration, cell nucleus
tracking or segmentation.

An essential question in developmental biology is the mechanism of cell differentiation
by which the cells with distinct fates are specified. We applied the proposed surface
reconstruction method to the biological data representing an early developmental stage of
a zebrafish (danio rerio) embryo. Using our method, we are able to reconstruct surfaces
from the point clouds representing forming otic vesicle (vesicula otica) of the embryo during
the process of cell differentiation. The point clouds were constructed based on the 3D image
data obtained by a laser microscope (Figure 13). The reconstructed surfaces can help in
quantitative analysis of the embryo, e.g. determining the volume of formed structures and
measuring the differences between individuals developing in different conditions.
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Figure 13: A slice of the 3D image data of zebrafish embryo obtained by a laser microscope
on the left. On the right, displayed in 3D view together with the point cloud data used as
an input for our method.

Using our method, we were able to construct a watertight approximation of the desired
surfaces (Figure 14 and 15), even though the sampling density of the point cloud data
was rather low and the data set contained several outlying points. After obtaining the
triangulations of the surfaces we can compute the volume V of their interiors using the
divergence theorem

V =

∫∫∫
V

1 dV =

∫∫∫
V

div v dV =

∫∫
S

v · n dS, (6.1)

where n = (nx, ny, nz) is the outward unit normal to surface S and v is a vector field
with divergence equal to 1, we can use for example v = (x, 0, 0). Since the obtained
triangulation of surface S is piecewise linear and also the vector field we chose is linear,
the surface integral in (6.1) can be evaluated exactly using following formula

V =

nt∑
i=1

∫
Ti
xnx dS =

nt∑
i=1

nx
ATi
3

(x1 + x2 + x3) , (6.2)

where ATi is the area of triangle Ti and x1, x2, x3 are the x–coordinates of its vertices.

Figure 14: A slice of the reconstructed surfaces displayed together with the slice of the 3D
image data on the left. 3D view of both surfaces together with corresponding point clouds
on the right.



19

Figure 15: Slices of the reconstructed surfaces for different embryo displayed together with
the slices of the 3D image data on the left. 3D view of reconstructed surfaces together
with corresponding point clouds on the right.

7 Conclusion

In this paper, we have presented a method for surface reconstruction of 3D objects from
representative point clouds based on Lagrangian surface evolution. After establishing the
mathematical model we performed various numerical experiments in order to demonstrate
the potential of using the proposed method for reconstruction of surfaces from challenging
point clouds containing various types of imperfections.

However, there are still some issues left for improvement. It would be interesting to
conduct further investigation on the tangential redistribution of points concerning the
magnitude of the angles in individual triangles. Meshes containing triangles having an
angle less than 30◦ or more than 120◦ should not be present in actual practice. We also
did not consider the issue of self-intersections and topological changes during the process
of evolution, but this hardship can be overcome using the ideas presented in [11].
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