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Anotácia: 
 
V tomto článku popisujeme nový algoritmus na rekonštrukciu vývoja buniek vinnej 
mušky (drosophila) v procese morfogenézy z mikroskopického videa. Rekonštrukciou 
vývoja buniek v obrazových postupnostiach rozumieme identifikáciu jednotlivých 
buniek v obraze a nájdenie ich korešpondencií medzi jednotlivými obrazmi. Hlavnou 
ideou nášho prístupu je uvažovanie 2D videa ako 3D statického obrazu, ktorý 
vznikne „naskladaním“ jednotlivých snímok videa na seba. Následne s využitím 
časopriestorovej metódy subjektívnych povrchov získame informáciu 
o časopriestorových 3D útvaroch pripomínajúcich trubice, ktoré reprezentujú evolúcie 
buniek. Nakoniec, s využitím dvoch vypočítaných funkcií vzdialenosti, jednej ako 
vzdialenosti od kmeňových buniek a druhej ako vzdialenosti od okrajov 
časopriestorových útvarov, získame trajektórie bunkových evolúcií. Tento prístup 
možno zovšeobecniť aj na analýzu 3D videa, kde časopriestorové útvary bunkových 
evolúcií sú 4D objekty. 
 
 
 
 

Annotation:  
 
In this article, we present a novel algorithm for tracking of cells in a fruit 
fly (drosophila) morphogenesis microscopy video. Tracking, in the context of video 
processing, means identifying logical objects in the frames of the video and finding 
their correspondences in frame sequences. The main idea of this approach is to 
consider a 2D + time video as a 3D static image, where frames are stacked atop 
each other. Using the spatio-temporal generalized subjective surface algorithm we 
obtain the information about spatio-temporal 3D tubes representing evolutions of 
cells. Using the two distances, first one as a distance from the root cells and the 
second one as a distance from the tube boundaries, we obtain the cell trajectories. 
This approach can be generalized to 3D + time video analysis, where spatio-temporal 
tubes are 4D objects. 



1 INTRODUCTION

Cell tracking means extracting spatio-temporal trajectories of cells in a de-
veloping organism and detecting moments of cell divisions. It is one of the
most interesting topics in the modern biology - a reliable backward tracking
method could answer some of the fundamental questions of developmental
biology: global and local movement of cells, origin and formation of tissues
and organs, cell division rate and localization, etc.

In this paper, we present a new method for tracking cells in 2D + time
image sequences. The basic idea behind this method is seeing a time sequence
of 2D images as a 3D image, where separate frames are stacked atop each
other.

First, we need to identify cell evolutions as a set of spatio-temporal tubes.
We achieve this via spatio-temporal segmentation. Having these tubes seg-
mented, tracking means, from a given point in tube interior, to find a trajec-
tory - within this tube - to the cell identifier in the first video frame. In later
sections, we will refer to these first-frame cell identifiers as to the ”roots of
tubes”. Finding a correct trajectory is achieved via computation and use of
two constrained distance functions.

2 ALGORITHM STEPS

We have at disposal a video of cellular structure of drosophila in morphogen-
esis stage. Video displays cell membranes. Data is saved in .TIF file format.
Video consists of 199 frames and has resolution 569 x 500 pixels. File uses
8 bit encoding per pixel, so pixel intensity can take on 256 different values,
ranging from 0 to 255. Video was obtained using a confocal laser microscope.
In fig. 1 one can see the visualization of image data.

Our algorithm consists of these steps:

• Image filtering

• Cell identification

• Spatio-temporal segmentation

• Computing the distance from root cells

• Computing the distance from the borders of spatio-temporal tubes

• Extraction of cell trajectories



Figure 1: Data example. In the upper row the 40th frame, in the lower row
the 140th frame. Left - whole frame, right - selected 100x100 pixel part of
the frame under magnification. White box denotes the selected part.

2.1 Image filtering

Depending on the signal-to-noise ratio of the image, one should consider
filtering of the data, to remove the image noise. For this purpose, we use the
Geodesic Mean Curvature Flow (GMCF) smoothing algorithm[7]. GMCF is
capable of filtering the image noise while preserving edges of the image[3, 6,
10, 7]. In GMCF, one solves the following equation:

ut − |∇u|∇ ·
(
g
∇u
|∇u|

)
= 0 (1)

where u is the solution of the problem, ut is the time derivative and g =
g (|∇Gσ ∗ u|) is an edge detector function. The initial condition is the input
image and we consider zero Neumann boundary condition.

It is worth noting that the two further steps of our approach, cell iden-
tification and segmentation, both use a curvature regularization. They im-



plicitly contain smoothing, so the filtering step is not always necessary in our
data processing. On the other hand, we use the filtered images for correcting
the cell identification results - see subsection 2.2 for more details.

2.2 Cell identification

Cells in an image are objects with area larger than a certain threshold and
smaller than some other threshold. Considering isophotes of the image in-
tensity function, we see that if we approximate the contours of cells with a
circle of radius r, this radius lies between some bounds d1, d2, d1 < r < d2.
On the other hand, spurious noisy structures are represented by contours of
radii significantly less than d1, 0 < r � d1. A Level-Set Center Detection
(LSCD) algorithm is designed with this property in mind, and we use it to
identify cells in an image[5, 1]. In LSCD, we look for a numerical solution to
the following equation:

ut + δ|∇u|+ µ|∇u|∇ ·
(
∇u
|∇u|

)
= 0 (2)

where the initial condition is an input image and boundary condition is zero
Neumann. δ and µ are the coefficients of advection in the inward normal
direction and the curvature regularization, respectively. The result of the
algorithm is the set of maxima of u at the end of the evolution. The LSCD
algorithm sometimes introduces spurious cell identifiers on the edges of cells
- these can be removed by detecting large differences in filtered image, in
small areas around the identifiers.

The LSCD method is used separately for every 2D frame of the video.
One can see the results of cell identification algorithm in fig. 2.

2.3 Spatio-temporal segmentation

For segmentation, we use the spatio-temporal Generalized Subjective Sur-
face (GSUBSURF) algorithm[9, 4, 8, 1]. For this algorithm we need first to
construct an initial condition. This initial condition should approximate the
spatio-temporal tubes according to the information we already have - the
better it does, the less time steps of the algorithm we need to perform. We
call this initial condition ”initial segmentation”. In each frame, we create
a disc of small radius around each cell identifier and we set pixels inside
this disc to value 1, otherwise value stays at 0. GSUBSURF is a numerical
solution to this equation:



Figure 2: Cell identification visualization. In the upper row: local maxima
of the original image (left) and of LSCD-evolved image (right) are visualized,
viewed together with the original image as background. In the lower row:
the intensity level functions of the original image (left) and the image after
the LSCD evolution (right) are displayed.

ut − wa∇g · ∇u− wcg|∇u|∇ ·
(
∇u
|∇u|

)
= 0 (3)

where g is an edge detector function, wa and wc are advection and curvature
parameters of the model. It takes an initial segmentation profile and lets its
isosurfaces evolve.

At the end of the evolution, we use a selected isosurface as a border
between a set of spatio-temporal 3D tubes and the rest of the image.

An important property of our spatio-temporal segmentation is that even if
a cell identifier in a 2D frame is missing, we can still recover the shape of this
cell by segmentation function evolution in the time direction. Furthermore,
the spatio-temporal borders of cells are respected in GSUBSURF evolution,
so we get separated 3D tubes. Of course, in real data, this separation may
not be perfect, but this is solved in later steps of our approach. Both initial



and final segmentation can be seen in fig. 3.

Figure 3: Segmentation result visualization in one frame. Left, initial seg-
mentation - small discs created around the cell identifiers. Right, the seg-
mentation result. It is a set of pixels for which the segmentation function
has values greater than or equal to the prescribed value.

2.4 Distance from the root cells

To compute the distance from the root cells, we use the time relaxed eikonal
equation, which looks as follows:

dt + |∇d| = 1, d(x, t) = 0, x ∈ Ω0 (4)

where d, as time increases, approximates the distance from the points
where zero Dirichlet condition is prescribed. In this step of the algorithm,
Ω0 is given by the root cell identifiers. We will refer to this distance function
as d1. Technically, this equation is solved as in [2].

If we pick a point in our segmented set of spatio-temporal tubes, we want
it to follow a path ”down”, i. e. in the direction of decrease of this distance
function, until it reaches a root cell identifier - see fig. 4. This path is our
first naive approach to the trajectory extraction. If the spatio-temporal tubes
were perfectly isolated from each other, just following d1 would be sufficient
to get the approximate trajectories.



2.5 Distance from the borders of the spatio-temporal
tubes

Following just d1 often forces paths to follow borders of the spatio-temporal
tubes, rather than their centers - this can be seen in fig. 4, especially in the
top left image. This is not the most accurate path. Furthermore, if tubes
are not perfectly isolated, paths can slip through holes in borders and give
wrong tracking results - see fig. 4, top right image in the figure. The main
idea of this step is to force the paths to follow the approximate centers of
cells, while following d1 distance down. Let us define a cell center as a point
in cell with maximal distance from border of its spatio-temporal tube. To
find this point, we again need to find a distance function.

The distance from the borders of the spatio-temporal tubes is also com-
puted by the eikonal equation. This time, the points with zero Dirichlet
condition are the border points of the spatio-temporal tubes. We denote this
distance function as d2.

An important property of this path modification is that if the spatio-
temporal tubes meet, no slipping through this meeting point occurs - see fig.
4, in the lower row.

Figure 4: An illustration of the distance function properties. Image repre-
sents simulated evolution of the three artificial cells, where the cental one
divides at about the half time of the evolution - the time axis goes down.
There is an artificial ”missing-boundary flaw” between the two cells in the
lower right part of image. Upper row - trajectories calculated using only dis-
tance to the root cells. Tendency to follow the edges rather than the centers
(left) and non-robustness against missing boundaries (right) is visible. Lower
row - trajectories constructed using both distance function to the root cells
and to the borders of tubes. Trajectories tend to follow centers of cells (left)
and are robust against missing boudary flaws (right).



2.6 Extraction of cell trajectories

For a given point in a 3D spatio-temporal tube, we extract its cell trajectory
by minimizing d1 in a steepest-descent manner while maintaining d2 maxi-
mized. In other words, trajectories go through the spatio-temporal 3D tube,
backwards in time, to the root cell identifier, while staying in the cell center
in each time frame.

Logically, a cell evolution can be represented as a binary tree. It is rooted
at the root cell identifier and it branches out into two children each time the
cell divides. As the video starts with many root cells existing already, we
should rather talk about a binary forest - forest simply means a set of trees.
Tree is constructed in such a way that if we choose a particular node as a
representation of a cell, just by following line of its ancestors down to the
root, we obtain a trajectory of this cell.

From the data structure point of view, the whole forest consists of nodes.
These nodes, besides carrying their temporal and two spatial coordinates,
also carry a reference to the parental node, left child node and right child
node. As in most of the frames a cell doesn’t divide, we use a standard of
always following a left branch of a tree - a right child can be different from
NULL if and only if a cell division occured at a given frame. A tree is created
in such a way that for a given node we search for a list of predecessors, thus
the tracking is computed backwards and the tree is constructed in a top-down
manner.

In fig. 5 one can see a visualization of spatio-temporal 3D tubes, which
were obtained using tracking results.

In order to visualize the tracking results themselves, we assign a color
to each cell identified in the beginning of the video. This color is used to
identify the cells corresponding to the evolution of the original cells. In fig.
6 and 7 one can see visualization of few frames of tracking results.

3 Discretization and implementation

Equations of GMCF, LSCD and GSUBSURF are discretized and solved us-
ing the finite volume method, with pixel/voxel serving as a natural choice
of control volume. A detailed discretization procedure is described in [1].
The time-relaxed eikonal equation, used for calculating distance functions, is
solved in a way introduced in [2].



Figure 5: Visualization of the spatio-temporal 3D tubes. We use tracking
results in order to obtain a specific tube from a set of tubes.

4 Experiments

We have worked with a part of the video covering 100 frames with resolution
100x100 pixels. In the beginning of the video there are 12 cells in the area.
These move, mostly to the right, and most of them undergo cell division a
few times during the 100 frames. In the end of the video, there are 11 cells
corresponding to the original cells identified in the first frame - the others
disappear through the right border of the area while moving to the right.
Through the left border, some new cells arrive to the area, but we do not
track these, as their root cell identifiers are unknown. Using this video, we
chose algorithm parameters so that it gives the best possible results.

For the GMCF, we use the edge detector function g(s) = 1/(1 + Ks2),
K = 2000, taking 100 time steps. In the LSCD, δ = 1.0 and µ = 0.000001
and we perform 20 time steps. In the spatio-temporal GSUBSURF, setting
wa = wc = 0.1, 100 time steps are performed.

Then, we took two alternative parts of the video, both covering 100 con-
secutive time steps, both with resolution 100x100 pixels. We wanted to test,
how well do the previously set parameters behave under the new conditions.
In the first alternative video, there are 16 cells in the beginning and 9 corre-
sponding ones in the end. In the second alternative video there are 13 cells
in the beginning, 19 corresponding in the end. Cells in these parts of the



video also move to the right.
We measure the success of our approach by counting number of correct

and incorrect links between the cell identifiers in two consecutive frames.
Number of incorrect links can be understood as the required amount of work
to be performed by a user of the software, in order to achieve perfect tracking.
We call it a number of ”hand-correction” operations.

In the first video, for which the parameters of the model were optimized,
we got 1398 correct links out of 1400 total. That means 99.86% success. In
the first alternative video, using the previously set parameters, we got 1759
/ 1775 - 99.01% success. For the second alternative video we got 1595 / 1600
- 99.69% success.

Computing the whole sequence of algorithm steps took approximately
30 minutes on Intel Core 2 Duo T7250, 2.00 GHz. Tracking results of the
original video part can be seen in fig. 6, alternatives are to be seen in fig. 7.

Figure 6: Tracking in the original video part. From left to right - frame 1,
frame 50, frame 100.

5 Conclusion

In this paper, we have presented an algorithm for tracking cells in image
sequences. An algorithm accepts lightly noised input images. It is robust
against missing boundaries of cells and missing cell identifiers, thanks to
spatio-temporal segmentation. It can overcome imperfections of 3D spatio-
temporal tube separation, via combination of two distance functions. Param-
eters of model, once found, can be used for analysis of similar videos, as we
have shown in section about experiments. We have developed this algorithm
using a 2D+time video, but its ideas can be extended to 3D+time videos as
well.



Figure 7: Tracking in alternative video parts. Upper row - first alternative
part, lower row - second alternative part. From left to right (both rows) -
frame 1, frame 50, frame 100.
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ber of cells and cell segmentation using advection-diffusion equations.
Kybernetika, 43(6):817 – 829, 2007.

[6] S. Kichenassamy, A. Kumar, P. Olver, A. Tannenbaum, and Yezzi A.
Conformal curvature flows: From phase transitions to active vision.
Archive for Rational Mechanics and Analysis, 134:275–301, 1996.
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