
Slovak University of Technology in Bratislava
Department of Mathematics and Constructive Geometry

Faculty of Civil Engineering
Academic year: 2014/2015
Reg. No.: SvF-5343-7433

DIPLOMA THESIS TOPIC

Student: Bc. Balázs Kósa
Student’s ID: 7433
Study programme: Mathematical and Computational Modeling
Study field: 9.1.9. applied mathematics
Thesis supervisor: prof. RNDr. Karol Mikula, DrSc.

Topic: 3D point cloud surface reconstruction by using level set methods

Specification of Assignment:

A mathematical model and efficient and stable numerical method for surface reconstruction from unorganized
3D point cloud will be created. The method will be implemented in C language and tested on artificial and real
data.

Assignment procedure from: 01. 10. 2014

Date of thesis submission: 21. 05. 2015

L. S.

Bc. Balázs Kósa
Student

prof. RNDr. Radko Mesiar, DrSc.
Head of department

prof. RNDr. Magdaléna Komorníková, PhD.
Study programme supervisor

Affidavit

I declare that I developed this master thesis by myself, only with the help of the

cited literature and the assistance of my thesis supervisor.

In Bratislava May 21, 2015

student’s signature

Acknowledgment

I want to thank my thesis supervisor prof. RNDr. Karol Mikula, DrSc. for the

help, dedicated time during consultations, expert guidance and valuable advices in the

elaboration of this thesis. Special thanks to my family for their support and classmates

for the common study.

Abstrakt

V rámci práce sme vytvorili matematický model a numerickú metódu na rekonštrukciu

plôch z 3D mračien bodov pomocou tzv. level-set metódy. Prezentovaná metóda rieši

rekonštrukciu plôch výpočtom distančnej funkcie k útvaru, ktorý je reprezentovaný

mračnom bodov, s použitím tzv. Fast Sweeping Metódy a riešenia advečnej rovnice s

krivostnou časťou, ktorá vytvorí evolúciu počiatočnej podmienky do finálneho stavu.

Pre numerickú diskretizáciu sme navrhli novú bezpodmienečne stabilnú metódu, ktorá

využíva semi-implicitnú co-volume schému pre krivostnú časť a implicitný upwind pre

advektívnu časť modelu. Metóda bola naprogramovaná v jazyku C, a testovaná na

reprezentatívnych príkladoch a komplexných reálnych dátach.

Abstract

In this work we created a mathematical model and numerical method for surface recon-

struction from 3D point cloud data, using the level-set method. The presented method

solves surface reconstruction by the calculation of the distance function to the shape,

represented by the point cloud, using the so called Fast Sweeping Method, and the

solution of advection equation with curvature term, which creates the evolution of an

initial condition to the final state. For the numerical discretization of the model we

suggested a novel unconditionally stable method, in which the semi-implicit co-volume

scheme is used in curvature part and implicit upwind scheme in advective part. The

method was implemented in the programming language C and tested on representative

examples as well as complex real data.

Contents

1 Introduction 7

2 Mathematical formulation 7

3 Numerical solution 8

3.1 Calculation of the distance function . 8

3.2 Numerical scheme for advection equation with curvature term 11

3.2.1 Time discretization . 11

3.2.2 Spatial discretization . 11

3.3 Calculating the coefficients of the linear system 15

3.4 Calculation of the initial condition . 22

4 Numerical results 24

5 Computation acceleration 29

6 Conclusions 31

1 Introduction

The aim of our work is to create a reliable numerical method which can easily create

computerized 3D models from point cloud data that resembles the original object as

much as possible. These type of data can be obtained by 3D scanning or by pho-

togrammetric methods. Papers as [1, 2] have shown us that for these type of tasks the

level-set method is suitable. We follow basic ideas from these papers, but we take a

different approach in the solution of the partial differential equation presented here.

After we finished the theoretical deduction of our method we implemented it in the

language C with the use of the programming environment of Visual Studio 2013, so

we could prove that it works not only in theory but in practice as well. As you will

read along you will notice several exempla pictures of results for the different sections

in our work. These are direct outputs from our application processed in the freely

available open-source visualization software Paraview. With the help of this software

we can easily compare the initial point cloud data and our results, to confirm that our

assumptions regarding this new numerical method are right.

In the following sections we will present a detailed breakdown of our method and

its numerical discretization and solution as well as results which we achieved so far.

2 Mathematical formulation

The level set method, which we are using is based on the solution of the advection

equation with the curvature term

ut −∇d · ∇u− δ |∇u| ∇ ·
(
∇u
|∇u|

)
= 0

(x, t) ∈ Ω× [0, T]

(2.1)

where v = −∇d is the advective velocity defined by the gradient of the distance function

d, the parameter δ ∈ [0, 1] before the curvature part determines its influence to the

result and Ω is the computational domain. This equation is coupled with homogeneous

Neumann boundary conditions and an initial condition which we will discuss later in

this paper.

6

3 Numerical solution

For the numerical solution of the model created from point cloud data, denoted by

Ω0 ⊂ Ω and determined by equation (2.1) the following steps have to be executed.

First we have to calculate the distance function to the point cloud, then we have to

find a surface containing Ω0 which will be the initial condition for the generation of

the final solution of the equation. The final model will be represented by an isosurface

of the calculated function u (x) with value 0.5.

3.1 Calculation of the distance function

For the calculation of distance function we use the Fast sweeping method, as introduced

in [3], which solves the Eikonal equation with boundary conditions which in our case

has the following form

|∇d (x)| = f (x) x ∈ Ω

d (x) = 0 x ∈ Ω0 ⊂ Ω
(3.1)

where f (x) = 1. For introducing the method we will use the following notation. xi,j,k

will be used for the grid point of Ω , h is the size of the edges of a grid cell and di,j,k

denotes the numerical solution at xi,j,k. The discretization of (3.1) at interior grid

points is done according to the Godunov upwind difference scheme:[
(di,j,k − dxmin)+

]2
+
[
(di,j,k − dymin)+

]2
+
[
(di,j,k − dz min)+

]2
= h2

i = 1, ..., I − 1, j = 1, ..., J − 1, k = 1, ..., K − 1

dxmin = min (di,j−1,k, di,j+1,k)

dymin = min (di−1,j,k, di+1,j,k)

dz min = min (di,j,k−1, di,j,k+1)

(3.2)

(x)+ =

x, x > 0

0, x ≤ 0

At the boundary of Ω we use one sided difference.

The initialization of d(x) is done the following way. For every grid cell which

contains a point from the point cloud we calculate the exact distance between the

vertexes of the element and the point and set the values of di,j,k to the calculated

7

distance. For the values to be correct we have to check if there is a smaller distance

for the vertexes in the neighboring grid cells. The obtained values will be fixed in the

main process of the algorithm. This way we enforce the boundary condition d (x) = 0

for x ∈ Ω0 ⊂ Ω. At all the other grid points a large positive number is assigned to

di,j,k.

After the initialization is done the algorithm continues with Gauss-Seidel iterations

with alternating sweeping orderings. For each non fixed grid point xi,j,k we compute the

solution of (3.2) from the neighboring values di,j−1,k, di,j+1,k, di−1,j,k, di+1,j,k, di,j,k−1, di,j,k+1

and then we update di,j,k if the solution is smaller than the current value. For three

dimension we sweep the computational domain with eight alternating orderings:

1. i = 1 : I, j = 1 : J, k = 1 : K 2. i = I : 1, j = 1 : J, k = 1 : K

3. i = I : 1, j = J : 1, k = 1 : K 4. i = I : 1, j = J : 1, k = K : 1

5. i = I : 1, j = 1 : J, k = K : 1 6. i = 1 : I, j = 1 : J, k = K : 1

7. i = 1 : I, j = J : 1, k = K : 1 8. i = 1 : I, j = J : 1, k = 1 : K

(3.3)

The unique solution, denoted by x̄, to the equation

[
(x− a1)+

]2
+
[
(x− a2)+

]2
+
[
(x− a3)+

]2
= h2 (3.4)

where a1 = dxmin, a2 = dymin, a3 = dz min can be found as follows. We order a1, a2, a3

in increasing order. For generality we assume a1 ≤ a2 ≤ a3. There is an integer

p, 1 ≤ p ≤ 3, such that x̄ is the unique solution that satisfies

(x− a1)2 + (x− a2)2 + (x− a3)2 = h2 and ap < x̄ < ap+1 (3.5)

To find x̄ we start with p = 1. If x̃ = a1 + h ≤ a2 then x̄ = x̃. Otherwise we have to

find the solution of the quadratic equation

(x− a1)2 + (x− a2)2 = h2

that satisfies x̃ > a2. We always take the maximum of the two solutions as our x̃. If

x̃ ≤ a3 then x̄ = x̃. If we still doesn’t have a x̃ which satisfies all the conditions as the

third step we compute the solution of the quadratic equation

(x− a1)2 + (x− a2)2 + (x− a3)2 = h2

8

which will satisfy (3.5).

In Figure 1 we visualize the calculated distance function on the planes z = 0, y = 0

and x = 0, comparing it to the initial point cloud data. We can see that distance

function crates surfaces with constant values in both outer and inner regions of the

grid surrounding the object.

Figure 1: Distance function with point cloud data. On the top left we see the distance

function on the plane z = 0, on the top right the plane y = 0 and on the bottom the

plane x = 0.

9

3.2 Numerical scheme for advection equation

with curvature term

Now that the distance function is calculated we proceed with the discretization of the

equation (2.1). We will do this analogically to the discretization used in [4].

3.2.1 Time discretization

For the time discretization we have to choose uniform discrete time step, denoted by

τ . We can replace the time derivative in (2.1) with a backward difference. Then we

can formulate our semi-implicit time discretization the following way:

Let τ be a fixed number and u0 the initial surface of our model. Then at every

discrete time tn = nτ, n = 1, ..., N we search for the function un as the solution of the

equation
un − un−1

τ
−∇d · ∇un − δ

∣∣∇un−1∣∣∇ · (∇un

|∇un−1|

)
= 0 (3.6)

3.2.2 Spatial discretization

Our model consists of a 3D grid, which is built of voxels with cubic shape and an edge

size h. We will interpret the spatial discretization of the level set function u as the

numerical values ui,j,k at the voxel centers. In order to easily calculate the gradient of

the level-set equation |∇un−1| in every time step of (3.6) we induct a 3D tetrahedral

grid into the voxel structure and take a piecewise linear approximation of u (x) on such

a grid. This way we obtain a constant value of the gradient for each tetrahedron, by

which we can construct a simple and clear fully discrete system of equations.

The 3D tetrahedral finite element grid is created with the following approach. Every

voxel is divided into six pyramid shaped elements with base surface given by the voxel’s

walls and vertex by the voxel center. Each one of these pyramids is joined with the

neighboring pyramids with whom they have a mutual base surface. These newly formed

octahedrons are then split into four tetrahedrons as seen in Figure 2. In our new grid

Th the level-set function will be updated only at the centers of the voxels, they will

represent so called degree of freedom (DF) nodes.

For the tetrahedral grid we construct a co-volume mesh, which will consist of cells

p associated only with DF nodes of Th. We denote all neighboring DF nodes q of p

10

Figure 2: Our initial voxel grid cell with a tetrahedral grid cell

with Cp. The DF nodes q are all connected to the DF node p by a mutual edge of

four tetrahedrons, which is denoted by σpq with the length hpq. Each co-volume p is

bounded by a plane for every q ∈ Cp which is perpendicular to σpq and is denoted by

epq. The set of tetrahedrons which have σpq are denoted by εpq. For every T ∈ εpq cTpq is

the area of the intersection of epq and T . Np will be the set of tetrahedrons that have

DF node p as a vertex. On this grid uh will be a piecewise linear function. Then we

can use the notation up = uh (xp), where xp denotes the coordinates of DF node p.

Now that we have all the notations which are needed we can begin the derivation

of the spatial discretization of (3.6). We will do this by using the following modified

form of the equation:

un − un−1

τ
+ v · ∇un = δ

∣∣∇un−1∣∣∇ · (∇un

|∇un−1|

)
(3.7)

where v = −∇d.

As the first step we will integrate (3.7) over every co-volume p.∫
p

un − un−1

τ
dx+

∫
p

v · ∇undx =

∫
p

δ
∣∣∇un−1∣∣∇ · (∇un

|∇un−1|

)
dx (3.8)

For the first part of left hand side of (3.8) we get the approximation in the form∫
p

un − un−1

τ
dx = m (p)

unp − un−1p

τ
(3.9)

where m (p) is a measure in Rd of the co-volume p. To derive the second part of the

left hand side we use the following approach. This part can be written in an equivalent

11

form by

v · ∇u = ∇ (uv)− u∇ · v∫
p

v · ∇undx =

∫
p

∇ (unv) dx−
∫
p

un∇ · v dx

Using the divergence theorem we get∫
p

∇ (unv) dx−
∫
p

un∇ · v dx =

∫
∂p

unv · n dσ − unp
∫
∂p

v · n dσ =∑
q∈Cp

unpq

∫
epq

v · n dσ −
∑
q∈Cp

unp

∫
epq

v · n dσ
(3.10)

where unpq is the value of the level-set function on the surface epq. We substitute∫
epq
v · n dσ in (3.10) with vpq which by solving the integral will have the value vpq =

h2pqv · n. By this we finally get∫
p

v · ∇undx =
∑
q∈Cp

vpq
(
unpq − unp

)
(3.11)

In the upwind approach the set Cp can be divided into Cp = Cin
p ∪ Cout

p , where Cin
p =

{q ∈ Cp, vpq < 0} which consists of the inflow boundaries and Cout
p = {q ∈ Cp, vpq > 0}

consisting of the outflow boundaries. By dividing Cp we can set the values unpq to unq if

q ∈ Cin
p and to unp if q ∈ Cout

p . After these modification we can rewrite the sum right

hand side of (3.11) to∑
q∈Cp

vpq
(
unpq − unp

)
=
∑
q∈Cin

p

vpq
(
unq − unp

)
+
∑

q∈Cout
p

vpq
(
unp − unp

)
As we see the outflow part will be zero and after we rewrite the inflow part for simpler

implementation we get the final form of the second part of the left hand side of the

equation (3.8) ∫
p

v · ∇undx =
∑
q∈Cp

min (vpq, 0)
(
unq − unp

)
(3.12)

Now what remains is the discretization of the right hand side of (3.8). Again we

use the divergence theorem to get∫
p

δ
∣∣∇un−1∣∣∇ · (∇un

|∇un−1|

)
dx = δ

∣∣∇un−1p

∣∣ ∑
q∈Cp

∫
epq

1

|∇un−1|
∂un

∂n
dσ (3.13)

The integral part
∫
epq

1
|∇un−1|

∂un

∂n
dσ and

∣∣∇un−1p

∣∣ from (3.13) will be approximated nu-

merically using piecewise linear reconstruction of un−1 on the tetrahedral grid Th, thus

we get

δ
∣∣∇un−1p

∣∣ ∑
q∈Cp

∑
T∈εpq

cTpq
1∣∣∇un−1T

∣∣
 unq − unp

hpq

12

Mp =
∣∣∇un−1p

∣∣ =
∑
T∈Np

m (T ∩ p)
m (p)

∣∣∇un−1T

∣∣
and the final form of the equation (3.7) will be

m (p)
unp − un−1p

τ
+
∑
q∈Cp

min (vpq, 0)
(
unq − unp

)
=

δMp

∑
q∈Cp

∑
T∈εpq

cTpq
1∣∣∇un−1T

∣∣
 unq − unp

hpq

(3.14)

From this form we are able to derive the system of linear equations which we will

solve at every time step. For the linear equations we will define the regularized gradients

by

|∇uT |ε =

√
ε2 + |∇uT |2 (3.15)

After we arrange all the parts of the equation (3.14) we get the following coefficients

an−1pq =

min (vpq, 0)− δMp
1

hpq

∑
T∈εpq

cTpq
1∣∣∇un−1T

∣∣
ε

 (3.16)

thus we can formulate our semi-implicit co-volume scheme:

Let u0p, p = 1, ...,M be given discrete initial values of the level-set function. Then,

for n = 1, ..., N we look for unp , p = 1, ...,M , satisfying

unp +
τ

m (p)

∑
q∈Np

an−1pq

(
unq − unp

)
= un−1p (3.17)

With addition of the homogeneous Neumann boundary conditions to our fully dis-

crete scheme we obtain a system of linear equations for which we can declare the

following statement.

Theorem. There exists unique solution (un1 , ..., u
n
M) of (3.17) for any τ > 0, ε > 0,

and for every n = 1, ..., N . The system matrix is a strictly diagonally dominant M-

matrix. For any τ > 0, ε > 0, the following L∞ stability holds:

min
p

u0p ≤ min
p

unp ≤ max
p

unp ≤ max
p

u0p, 1 ≤ n ≤ N. (3.18)

Proof. First we will prove the inequality for the maximum. Let unpmax be the

maximum of the time step n achieved in the DF node p. If we appoint this value to

the equation (3.17) we get:

unpmax +
τ

m (p)

∑
q∈Np

an−1pq

(
unq − unpmax

)
= un−1p

13

. Since the coefficient an−1pq ≤ 0 and unq ≤ unpmax, thus
(
unq − unpmax

)
is either zero or

negative, the second part of the left hand side is non-negative. Therefore unpmax ≤ un−1p ,

so we can write

max
p

unp ≤ max
p

un−1p (3.19)

To prove the inequality for the minimum, we can apply the same argumentation. If

we appoint value unpmin = min (un1 , ..., u
n
M) to (3.17) the second part will be non-positive

and un−1p ≤ unpmin, thus we can write that

min
p

un−1p ≤ min
p

unp (3.20)

If we apply (3.19) and (3.20) to every time step 1 ≤ n ≤ N we get

min
p

u0p ≤ min
p

unp ≤ max
p

unp ≤ max
p

u0p

by which we proved our theorem.

The number of time steps N is determined by the difference of the solution in the

current and the previous time step in discrete L2 norm. The computation is stopped if

this difference is less than the prescribed tolerance, which we usually set to 10−6. Then

the stopping time T = Nτ .

3.3 Calculating the coefficients of the linear system

Now that we formulated our scheme for the easy replicability and simplicity of imple-

mentation we will write the co-volume scheme in a "finite-difference notation". We

will associate our 3D co-volume p with the index triplet (i, j, k), where i represents

the y axis, j the x axis and k the z axis. Analogically the values unp will be associated

with uni,j,k. In each co-volume p, the set Np consist of 24 tetrahedrons on which we

will compute absolute value of gradient denoted by Gl
i,j,k, l = 1, ..., 24. Furthermore

to keep the formulas as comprehensible as possible we will introduce a notation seen

in Figure 3.

14

T0•

S0•
E0•

P8

P1

P3

P5

P4

P7

P6

•

•

•

•

•

•

•

P14
•

P15•

P58
•

P48•

P34•

P37•

P78•

P67•
P56•

N0•

B0•

W0•

P2

P1

P3

P5

P4

P7

P6

•
•

•

•

•

•

•

P14
•

P12•

P15•

P34•

P23•

P37•
P26•

P67•
P56•

Figure 3: Notation for the additional points of a grid cell used for the easier formulation

of the coefficient computation

15

Now we will explain what these new symbols mean and how their values are com-

puted. For every vertex of a square cubic element we use P1, ..., P8 to denote the

average values of un at these points, which are calculated the following way:

P1 = 1
8

(ui,j,k + ui,j−1,k + ui−1,j,k + ui−1,j−1,k + ui,j,k−1 + ui,j−1,k−1 + ui−1,j,k−1 + ui−1,j−1,k−1)

P2 = 1
8

(ui,j,k + ui,j−1,k + ui+1,j,k + ui+1,j−1,k + ui,j,k−1 + ui,j−1,k−1 + ui+1,j,k−1 + ui+1,j−1,k−1)

P3 = 1
8

(ui,j,k + ui,j+1,k + ui+1,j,k + ui+1,j+1,k + ui,j,k−1 + ui,j+1,k−1 + ui+1,j,k−1 + ui+1,j+1,k−1)

P4 = 1
8

(ui,j,k + ui,j+1,k + ui−1,j,k + ui−1,j+1,k + ui,j,k−1 + ui,j+1,k−1 + ui−1,j,k−1 + ui−1,j+1,k−1)

P5 = 1
8

(ui,j,k + ui,j−1,k + ui−1,j,k + ui−1,j−1,k + ui,j,k+1 + ui,j−1,k+1 + ui−1,j,k+1 + ui−1,j−1,k+1)

P6 = 1
8

(ui,j,k + ui,j−1,k + ui+1,j,k + ui+1,j−1,k + ui,j,k+1 + ui,j−1,k+1 + ui+1,j,k+1 + ui+1,j−1,k+1)

P7 = 1
8

(ui,j,k + ui,j+1,k + ui+1,j,k + ui+1,j+1,k + ui,j,k+1 + ui,j+1,k+1 + ui+1,j,k+1 + ui+1,j+1,k+1)

P8 = 1
8

(ui,j,k + ui,j+1,k + ui−1,j,k + ui−1,j+1,k + ui,j,k+1 + ui,j+1,k+1 + ui−1,j,k+1 + ui−1,j+1,k+1)

We will also need the average values between each of these points for which we use

these notations:

P12 =
1

2
(P1 + P2) P14 =

1

2
(P1 + P4) P15 =

1

2
(P1 + P5)

P23 =
1

2
(P2 + P3) P26 =

1

2
(P2 + P6) P34 =

1

2
(P3 + P4)

P37 =
1

2
(P3 + P7) P48 =

1

2
(P4 + P8) P56 =

1

2
(P5 + P6)

P58 =
1

2
(P5 + P8) P67 =

1

2
(P6 + P7) P78 =

1

2
(P7 + P8)

The values at the points where the edges σp of the tetrahedral elements intersects

the plains epq, for every q ∈ Cp, are marked as N0, S0, E0,W0 for the corresponding

cardinal directions and B0, T0 for bottom and top. These values are calculated as the

average between two neighboring co-volumes p.

N0 =
1

2
(ui,j,k + ui+1,j,k) S0 =

1

2
(ui,j,k + ui−1,j,k)

E0 =
1

2
(ui,j,k + ui,j+1,k) W0 =

1

2
(ui,j,k + ui,j−1,k)

T0 =
1

2
(ui,j,k + ui,j,k+1) B0 =

1

2
(ui,j,k + ui,j,k−1)

16

With these new points we are ready to derive the values Gl
i,j,k, l = 1, ..., 24 with

some simple equations.

Generally the Gl
i,j,k can be calculated the following way

Gl
i,j,k =

√(
∂ui,j,k
∂x

)2

+

(
∂ui,j,k
∂y

)2

+

(
∂ui,j,k
∂z

)2

(3.21)

where the derivatives are calculated on the l th tetrahedron of the co-volume p. Ac-

cording to this formula and Figure 3 for the tetrahedrons intersected by the bottom

surface of a voxel grid cell we get:

dB =
ui,j,k − ui,j,k−1

h

G1
i,j,k =

√(
P2− P1

h

)2

+

(
B0− P12

0.5h

)2

+ dB2

G2
i,j,k =

√(
B0− P14

0.5h

)2

+

(
P4− P1

h

)2

+ dB2

G3
i,j,k =

√(
P3− P4

h

)2

+

(
P34−B0

0.5h

)2

+ dB2

G4
i,j,k =

√(
P23−B0

0.5h

)2

+

(
P3− P2

h

)2

+ dB2

Analogically for the top surface

dT =
ui,j,k+1 − ui,j,k

h

G5
i,j,k =

√(
P6− P5

h

)2

+

(
T0− P56

0.5h

)2

+ dT 2

G6
i,j,k =

√(
T0− P58

0.5h

)2

+

(
P8− P5

h

)2

+ dT 2

G7
i,j,k =

√(
P7− P8

h

)2

+

(
P78− T0

0.5h

)2

+ dT 2

G8
i,j,k =

√(
P67− T0

0.5h

)2

+

(
P7− P6

h

)2

+ dT 2 ,

17

for the north wall

dN =
ui+1,j,k − ui,j,k

h

G9
i,j,k =

√
dN2 +

(
P7− P6

h

)2

+

(
P67−N0

0.5h

)2

G10
i,j,k =

√
dN2 +

(
P37−N0

0.5h

)2

+

(
P7− P3

h

)2

G11
i,j,k =

√
dN2 +

(
P3− P2

h

)2

+

(
N0− P23

0.5h

)2

G12
i,j,k =

√
dN2 +

(
N0− P26

0.5h

)2

+

(
P6− P2

h

)2

,

the south wall

dS =
ui,j,k − ui−1,j,k

h

G13
i,j,k =

√
dS2 +

(
P8− P5

h

)2

+

(
P58− S0

0.5h

)2

G14
i,j,k =

√
dS2 +

(
P48− S0

0.5h

)2

+

(
P8− S4

h

)2

G15
i,j,k =

√
dS2 +

(
P4− P1

h

)2

+

(
S0− P14

0.5h

)2

G16
i,j,k =

√
dS2 +

(
S0− P15

0.5h

)2

+

(
P5− P1

h

)2

,

the east wall

dE =
ui,j+1,k − ui,j,k

h

G17
i,j,k =

√(
P3− P4

h

)2

+ dE2 +

(
E0− P34

0.5h

)2

G18
i,j,k =

√(
P37− E0

0.5h

)2

+ dE2 +

(
P7− P3

h

)2

G19
i,j,k =

√(
P8− P7

h

)2

+ dE2 +

(
P78− E0

0.5h

)2

G20
i,j,k =

√(
E0− P48

0.5h

)2

+ dE2 +

(
P8− P4

h

)2

,

18

the west wall

dw =
ui,j,k − ui,j−1,k

h

G21
i,j,k =

√(
P2− P1

h

)2

+ dW 2 +

(
W0− P12

0.5h

)2

G22
i,j,k =

√(
P26−W0

0.5h

)2

+ dW 2 +

(
P6− P2

h

)2

G23
i,j,k =

√(
P6− P5

h

)2

+ dW 2 +

(
P56−W0

0.5h

)2

G24
i,j,k =

√(
W0− P15

0.5h

)2

+ dW 2 +

(
P5− P1

h

)2

Now that we can calculate
∣∣∇un−1T

∣∣
ε
from (3.16) we will determine the values vpq. As

mentioned earlier vpq = h2pqv ·n and with v = −∇d by evaluating for the six directions,

we get

vti,j,k = −h (di,j,k+1 − di,j,k) , vbi,j,k = h (di,j,k − di,j,k−1)

vni,j,k = −h (di+1,j,k − di,j,k) , vsi,j,k = h (di,j,k − di−1,j,k)

vei,j,k = −h (di,j+1,k − di,j,k) , vwi,j,k = h (di,j,k − di,j−1,k)

Then we can construct the coefficients

bi,j,k =
τ

h3

min (vbi,j,k, 0)− δMi,j,k
h

4

4∑
l=1

1√
ε2 +

(
Gl

i,j,k

)2


ti,j,k =
τ

h3

min (vti,j,k, 0)− δMi,j,k
h

4

8∑
l=5

1√
ε2 +

(
Gl

i,j,k

)2


ni,j,k =
τ

h3

min (vni,j,k, 0)− δMi,j,k
h

4

12∑
l=9

1√
ε2 +

(
Gl

i,j,k

)2


si,j,k =
τ

h3

min (vsi,j,k, 0)− δMi,j,k
h

4

16∑
l=13

1√
ε2 +

(
Gl

i,j,k

)2


ei,j,k =
τ

h3

min (vei,j,k, 0)− δMi,j,k
h

4

20∑
l=17

1√
ε2 +

(
Gl

i,j,k

)2


wi,j,k =
τ

h3

min (vwi,j,k, 0)− δMi,j,k
h

4

24∑
l=21

1√
ε2 +

(
Gl

i,j,k

)2


19

where Mi,j,k is

Mi,j,k =

√√√√ε2 +

(
1

24

24∑
l=1

Gl
i,j,k

)2

and we define the diagonal coefficients as

ci,j,k = 1− bi,j,k − ti,j,k − ni,j,k − wi,j,k − si,j,k − ei,j,k

so we can define for DF node corresponding to (i, j, k) the equation

ci,j,ku
n
i,j,k + bi,j,ku

n
i,j,k−1 + ti,j,ku

n
i,j,k+1 + ni,j,ku

n
i+1,j,k

+si,j,ku
n
i−1,j,k + ei,j,ku

n
i,j+1,k + wi,j,ku

n
i,j−1,k = un−1i,j+1,k

(3.22)

When we collect the equations for all DF nodes and take into account Neumann

boundary conditions we get the linear system which we have to solve. For the solution

of this system we choose the SOR (Successive Over Relaxation) iterative method. We

start the iterations by setting uni,j,k = un−1i,j,k , then in every iteration l = 1, ... we use the

following two step procedure:

Y = (u
n(0)
i,j,k − bi,j,ku

n(l)
i,j,k−1 − ti,j,ku

n(l−1)
i,j,k+1 − ni,j,ku

n(l−1)
i+1,j,k

−si,j,kun(l)i−1,j,k − ei,j,ku
n(l−1)
i,j+1,k − wi,j,ku

n(l)
i,j−1,k)/ci,j,k

u
n(l)
i,j,k = u

n(l−1)
i,j,k + ω

(
Y − un(l−1)i,j,k

)
We define squared L2 norm of residuum at current iteration by

Rl =
∑
i,j,k

(ci,j,ku
n(l)
i,j,k + bi,j,ku

n(l)
i,j,k−1 + ti,j,ku

n(l)
i,j,k+1 + ni,j,ku

n(l)
i+1,j,k

+si,j,ku
n(l)
i−1,j,k + ei,j,ku

n(l)
i,j+1,k + wi,j,ku

n(l)
i,j−1,k − u

n(0)
i,j,k)2

The iterative process is stopped if Rl < TOL.

20

3.4 Calculation of the initial condition

As mentioned before, this method needs an initial condition u0 (x), which will be

deformed to get the solution, that is the final form of the model. Theoretically any

initial surface that contains the point cloud data set could be used, but an optimal

initial guess is crucial for the efficiency of the method. We can find this optimal surface

by identifying all the points for which the value of the distance function is greater or

equal to a parameter β. For simplicity let us call these points, exterior points. To find

all these points we will use the following algorithm:

• Mark all points on the borders of the grid as exterior and add them to the set E.

• For every point in the set E check all neighboring points in the grid.

• If the neighboring point isn’t an exterior point and his distance from the point

cloud is greater or equal to β add it to end of set E and mark as exterior.

• Continue until you get to the last point of E.

When we found all the exterior point we set u0 (x) to be equal 0 at all exterior point

and 1 at all the other points. With this approach we can find an initial surface close

to the final shape as seen on the Figure 4.

The right choice of the parameter β is very important for finding the optimal surface.

Theoretically we want to get an initial surface as close to the point cloud as possible,

so we would choose a very small β. Our choice could lead to a problem seen on Figure

5, which is a direct result of the discontinuity in our data set. Because β was too small

our algorithm couldn’t find a continuous surface. The right choice of β depends on the

density of the data end and the selected grid size.

21

Figure 4: Examples for the initial condtition used in our method

Figure 5: Initial condtition calculated with wrong choice of β

22

4 Numerical results

After we implemented the method in the programming language C we tested it on

representative examples as well as real data. In this section we present some of our

results. These examples are a good display of the quality of our method.

Figure 6 and 7 illustrate test examples. These were used for the verification of the

correct behavior of our method during the implementation phase. The point cloud

data was generated with the corresponding parametric equations of the objects. These

representative examples where created on a grid containing 803 cells. We can see that

for these tests with such a sparse grid we already got good results.

Figure 6: First test object. On the left we see the point cloud data, in the middle the

point cloud with the final model and on the right the final model only.

Figure 7: Second test object. On the left we see the point cloud data, in the middle

the point cloud with the final model and on the right the final model only.

On Figure 8 and 9 we can see real life data. These items where archaeological finds

and the point cloud scans were provided by Jana Haličková from the Monuments Board

23

of the Slovak republic to which we express our great thanks. On Figure 8 we can see a

bracelet. The model was calculated on a grid with 1603 cells. On Figure 9 we can see

a sealer. The model was calculated on a grid with 3203 cells. This model has a very

interesting surface structure, which confirms the accuracy of the method. Figure 11

shows an angel statue with the numerical results calculated on a 4003 grid.

Figure 8: Archaeological finds: bracelet. On the top we see the point cloud data, in

the middle our final result and on the bottom the final result with triangulated surface.

24

Figure 9: Archaeological finds: sealer. On the left we see the point cloud data, in the

middle and the right the final result from different viewpoints.

Figure 10: Details of the sealer with triangulated surface.

25

Figure 11: Angel statue. On the left we see the original object, on the right the result

of reconstruction by our method.

Figure 12: Details of the angel statue with triangulated surface.

26

We also tested our method on data sets with noise. In the point cloud data of the

sealer and bracelet we added artificial noise by changing the coordinates of 100 random

points. Thanks to the curvature part of equation (2.1) this kind of noise has no effect

on our final model. We can observe that fact in Figures 13 and 14.

Figure 13: Bracelet point cloud data with noise, visualized with the final result.

Figure 14: Sealer point cloud data with noise, visualized with the final result.

27

5 Computation acceleration

The part of our algorithm which consumes the most time during the computation is

the construction and solution of the linear system of equations (3.17). To reduce this

time we came up with the following idea. First we construct a band around the area

between the initial surface and the point cloud data.To find the surface which we want

to reconstruct it is sufficient to update the values on grid cells contained in such a

band, thus we can calculate the SOR method only in this new subset of all grid cells.

On Figure 15 we can see an example of this subset on the sealer mentioned in the

previous chapter. For easier visualization we show this on a slice with the plane x = 0.

Here the red line marks the point cloud data, the purple line the initial surface and

the white lines the borders of the created band. In the background of the picture we

show the values of the distance function like seen in previous examples.

Figure 15: The slice of our new computational area on the plane x = 0.

To find this area we adopted the algorithm mentioned in chapter 3.4, which was used

to find the initial surface, to this task. To obtain an outer border for the band which

contains the initial condition we chose a new parameter γ = 2β. With this additional

parameter and the introduction of a new set denoted F the algorithm changes as follows.

28

• Mark all points on the borders of the grid as exterior and add them to the set E.

• For every point in the set E check all neighboring points in the grid.

• If the neighboring point isn’t an exterior point and his distance from the point

cloud is greater or equal to β add it to end of set E and mark as exterior.

• If the neighboring point isn’t an exterior point and his distance from the point

cloud is smaller or equal to γ add it to end of set F.

• Continue until you get to the last point of E.

• For every point in the set F check all neighboring points in the grid.

• If the neighboring point isn’t an exterior point and his distance from the point

cloud is smaller or equal to γ add it to end of set F.

• Continue until you get to the last point of F.

From the set F we can create an array consisting of values 0, for point not in the band,

and 1, for points in the band. This will serve as a mask for the SOR method, thus in

the calculation loops we can determine if it is necessary to calculate the new value or

if we can skip to the next grid point.

We measured how much time we managed to save with this new approach on the

real life data sets of the bracelet and sealer. The tests were executed on a personal

notebook with a dual core processor and 4 GB of memory. Our results are listed in

the tables 1 and 2. We tested the algorithm on grids containing 403, 803 and 1603 grid

cells. All tests were performed with the same parameter β and stopping criteria for

the iterations.

In the second column of the tables we recorded the number of points contained by

the band. This number depends on the size and form of the original object represented

by the data set. In columns three and four we see the measured times for the original

and optimized implementation. In the tests we achieved not only reduced times but

also better convergence, so fewer time steps were needed. This led to calculations which

were 20 to 60 times faster.

29

Visually we can’t detect any difference between the models created by the two

methods. We measured the mean value of squared differences and listed the obtained

values in the third column. We can see that these values are in the tolerable range.

Number of

grid cells

Points in

band

CPU time (s)

Original

CPU time (s)

Optimized

Mean squared

difference

403 4 636 4.269 0.261 8.90795e-7

803 37 640 34.247 1.677 2.27554e-8

1603 304 456 895.68 13.385 1.92055e-8

Table 1: CPU times comparison for the bracelet data set

Number of

grid cells

Points in

band

CPU time (s)

Original

CPU time (s)

Optimized

Mean squared

difference

403 6 075 13.914 0.537 1.75849e-6

803 48 710 88.673 3.470 4.38982e-8

1603 392 185 2 051.402 72.846 9.36878e-9

Table 2: CPU times comparison for the sealer data set

6 Conclusions

In this work we presented our approach of surface reconstruction from point cloud

data utilizing the level set method. We formulated the mathematical model, derived

the time and spatial discretization and provided the reader with an exact description

of the numerical solution. By implementing the method we could obtain several inter-

esting results for numerical tests and real life data which we presented as examples in

different chapters. Our results show that for smoother objects a sparse grid already

shows good result, but for a model with more detail we need more grid points. With ad-

justing the SOR method to our needs we achieved significant reduction of the required

computational time, thus making our method more suitable for real life application.

30

References

[1] J. Haličková, K. Mikula, Level Set Method for Surface Reconstruction (LSMSR)

and its Application in Survazing . Journal of Surveying Engineering, submitted

2013

[2] H. K. Zhao, S. Osher, B. Merriman, M. Kang, Implicit and Non-parametric

Shape Reconstruction from Unorganized Points UsingVariational Level Set Method

. Computer Vision and Image Understanding Vol. 80 (2000) pp. 295-319

[3] H. K. Zhao, A fast sweeping method for Eikonal Equations. Mathematics of

Computation (2004), pp. 603-627

[4] S. Corsaro, K. Mikula, A. Sarti, F. Sgallari, Semi-Implicit Covolume Method In

3D Image Segmentation. SIAM Journal on Scientific Computing, (2006), pp.2248-

2265

