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Belläıche from Institut Curie, Paris, who provided us with the data and
with many inspiring ideas.

_____________

Michal Smı́̌sek
Bratislava May 20th, 2011

1



Abstract

In this diploma thesis we present a novel algorithm for tracking cells in
time lapse confocal microscopy movie of a Drosophila epithelial tissue during
pupal morphogenesis. We consider a 2D + time video as a 3D static image,
where frames are stacked atop each other, and using a spatio-temporal seg-
mentation algorithm we obtain information about spatio-temporal 3D tubes
representing evolutions of cells. The main idea for tracking is the usage of
two distance functions - first one from the root cells and second one from
segmented boundaries. We track the cells backwards in time. The first
distance function attracts the subsequently constructed cell trajectories to
the root cells and the second one forces them to be close to centerlines of
the segmented tubular structures. This makes our tracking algoritm robust
against noise and missing spatio-temporal boundaries. In this thesis we also
describe details of numerical discretizations of the corresponding non-linear
partial differential equations and further implementation details. In the end
we discuss our computational results.
Keywords nonlinear partial differential equations, finite volume method,
morphogenesis, cell tracking
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Abstrakt

V diplomovej práci popisujeme nový algoritmus na rekonštrukciu vývoja
buniek v́ınnej mušky (drosophila) v procese morfogenézy z mikroskopického
videa. Rekonštrukciou vývoja buniek v obrazových postupnostiach rozu-
mieme identifikáciu jednotlivých buniek v obraze a nájdenie ich korešponden-
cíı v obrazových sekvenciách. Náš pŕıstup spoč́ıva v uvažovańı 2D videa ako
3D statického obrazu, ktorý vznikne naskladańım jednotlivých sńımok videa
na seba. Následne s využit́ım časopriestorovej metódy subjekt́ıvnych povr-
chov źıskame informáciu o časopriestorových 3D útvaroch pripomı́najúcich
trubice, ktoré reprezentujú evolúcie buniek. Hlavnou myšlienkou je potom
využitie dvoch vypoč́ıtaných funkcíı vzdialenosti - jednej ako vzdialenosti od
počiatočných buniek a druhej ako vzdialenosti od okrajov časopriestorových
útvarov, pomocou ktorých źıskame trajektórie bunkových evolúcíı. Prvá
funkcia vzdialenosti prit’ahuje postupne konštruovanú trajektóriu smerom k
počiatočnej bunke a druhá funkcia vzdialenosti ju udržuje v strede vysegmen-
tovaného trubicovitého útvaru. To rob́ı náš algoritmus robustným voči šumu
a chýbajúcim hranám časopriestorových útvarov. V práci taktiež popisujeme
detaily numerickej diskretizácie zodpovedajúcich parciálnych diferenciálnych
rovńıc a implementačné techniky. Na záver uvádzame diskusiu o výsledkoch
experimentov.
Kl’účové slová nelineárne parciálne diferenciálne rovnice, metóda konečných
objemov, morfogenéza, rekonštrukcia vývoja buniek
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1 INTRODUCTION

Cell tracking means extracting spatio-temporal trajectories of cells in a de-
veloping organism and detecting moments of cell divisions. It is one of the
most interesting topics in the modern biology - a reliable backward tracking
method could answer some of the fundamental questions of developmental
biology: global and local movement of cells, origin and formation of tissues
and organs, cell division rate and localization, etc.

In this paper, we present a new method for tracking cells in 2D + time
image sequences. We consider a time sequence of 2D images as a 3D image,
where separate frames are stacked atop each other. We identify cell evolu-
tions as a set of spatio-temporal tubes. We achieve this via spatio-temporal
segmentation. Having these tubes segmented, tracking means, from a given
point in tube interior, to find a trajectory - within this tube - to the cell
identifier in the first video frame. In later sections, we will refer to these first-
frame cells as to the ”root cells”. Finding a correct trajectory is achieved
via computation and use of two constrained distance functions. The dis-
tance function from root cells forces trajectory to approach a root cell. The
distance from segmented boundaries, keeps this trajectory centered.

We have at disposal a video of the mono-layered epithelium of the Dro-
sophila pupa, which undergoes extensive proliferation and morphogenesis
to form the Drosophila adult. Upon expression of E-Cadherin-GFP, which
localises the adherence junctions, its development can be followed by confocal
time-lapse microscopy[1]. The video was acquired with Nikon Ti spinning
disk microscopes equipped with a HQ2 Ropper Camera. Video consists of
199 frames and has resolution 569 x 500 pixels and pixel intensity ranges
from 0 to 255. In fig. 1 one can see the visualization of image data.
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Figure 1: Data example. In the upper row the 40th frame, in the lower row
the 140th frame. Left - whole frame, right - selected 100x100 pixel part of
the frame under magnification. White box denotes the selected part.
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2 ALGORITHM STEPS

Our algorithm consists of these consistent, but independent steps:

A. Cell identification

B. Spatio-temporal segmentation

C. Computing the distance from root cells

D. Computing the distance from the borders of spatio-temporal tubes

E. Extraction of cell trajectories

These steps are modular - one can choose different implementation for
some of these steps (e.g. use cell identification/segmentation method), while
still taking advantage of our algorithm’s performance and robustness.

2.1 Cell identification

Cells in an image are objects with area larger than a certain threshold and
smaller than some other threshold. Considering isophotes of the image in-
tensity function, we see that if we approximate the contours of cells with a
circle of radius r, this radius lies between some bounds d1, d2, d1 < r < d2.
On the other hand, spurious noisy structures are represented by contours of
radii significantly less than d1, 0 < r � d1. A Level-Set Center Detection
(LSCD) algorithm is designed with this property in mind, and we use it to
identify cells in an image[2, 3]. In LSCD, we look for a numerical solution to
the following equation:

ut + δ|∇u| − µ|∇u|∇ ·
(
∇u
|∇u|

)
= 0 , (1)

where the initial condition is an input image and boundary condition is zero
Neumann. δ and µ are the coefficients of advection in the inward normal
direction and the curvature regularization, respectively. Function u is defined
as u : R2 × [0, T ] → R. The result of the algorithm is the set of maxima of
u at the end of the evolution.

To illustrate properties of this algorithms, we created an artificial image
containing nine cells and many noisy artifacts. We see that noisy structures
disappear almost immediately - after the first step of LSCD they are gone.
On the contrary, a cell remains in the image after many LSCD time steps.
During the evolution, its contours are moved in the inward normal direction
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Figure 2: Illustration of the LSCD behaviour. Upper row - image itself,
lower row - the same image seen as an intensity function graph. First image
- artificial image of nine cells and 100 noisy structures. Cell is a sphere with
diameter ∈ [12, 24] and intensities ∈ [0.3, 1.0], noisy artifacts are spheres of
diameter 1 and intensity ∈ [0.0, 1.0]. Second image - evolution after one
LSCD step. Third image - evolution after 50 steps. δ = 1.0, µ = 0.000001,
step size = 0.25.

and regularized by curvature diffusion. The only heuristic here is the fact
that contours of noisy structures have much smaller diameter than cells - cf.
fig. 2

Depending on the signal-to-noise ratio of the image, one should consider
filtering of the data in the pre-processing, to remove the image noise. Suitable
filter is e.g. Geodesic Mean Curvature Flow (GMCF) smoothing algorithm[4,
5]. However, cell identification, as well as segmentation (see next step), both
use a curvature regularization, so they implicitly contain smoothing and the
filtering step is not always necessary.

The LSCD method is used separately for every 2D frame of the video.
One can see the results of cell identification algorithm in fig. 3.

2.2 Spatio-temporal segmentation

For segmentation, we use the spatio-temporal Generalized Subjective Sur-
face (GSUBSURF) algorithm[6, 7, 8, 3]. For this algorithm we need first to
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Figure 3: Cell identification visualization. In the upper row: local maxima
of the original image (left) and of LSCD-evolved image (right) are visualized,
viewed together with the original image as background. In the lower row:
the intensity level functions of the original image (left) and the image after
the LSCD evolution (right) are displayed.
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construct an initial condition. This initial condition should approximate the
spatio-temporal tubes according to the information we already have - the
better it does, the less time steps of the algorithm we need to perform. We
call this initial condition ”initial segmentation”. For each 2D frame, we cre-
ate a disc of small radius around each cell identifier and we set pixels inside
this disc to value 1, otherwise value stays at 0. GSUBSURF is a numerical
solution to this equation:

ut − wa∇g · ∇u− wcg|∇u|∇ ·
(
∇u
|∇u|

)
= 0 , (2)

where g is an edge detector function, wa and wc are advection and curvature
parameters of the model. Here, u is defined as u : R3 × [0, T ]→ R. It takes
an initial segmentation profile and lets its isosurfaces evolve. We solve this
equation in the whole spatio-temporal 3D area.

To illustrate the properties of this algorithm, we have created an artificial
image and an initial segmentation. The artificial image is a square-shaped
cell and initial segmentation is a small sphere created around the identifier
of this cell, which is represented by its center. In this experiment, we also
simulate the missing boundary problem by creating two holes in the artificial
cell boundary - cf. fig 4.

During the evolution, shock profiles are created at the edges of cells [6, 7],
and thus, considering pixels bounded by a specific isosurface, we obtain a
border between a set of spatio-temporal 3D tubes and the rest of the image.

An important property of our spatio-temporal segmentation is that even if
a cell identifier in a 2D frame is missing, we can still recover the shape of this
cell by segmentation function evolution in the time direction. Furthermore,
the spatio-temporal borders of cells are respected in GSUBSURF evolution,
so we get separated 3D tubes. Of course, in real data, this separation may
not be perfect, but this is solved in later steps of our approach. Both initial
and final segmentation can be seen in fig. 5.

2.3 Distance from the root cells

To compute the distance from the root cells, we use the time relaxed eikonal
equation, which looks as follows:

dt + |∇d| = 1, d(x, t) = 0, x ∈ Ω0 , (3)

where d, d : R3 × [0, T ] → R, as time increases, approximates the distance
from the points where zero Dirichlet condition is prescribed. In this step of
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Figure 4: Illustration of the GSUBSURF behaviour. Upper image - artificial
image of a square-shaped cell with a missing boundary. Size of the cell is
50x50 pixels. Lower row: first image - initial segmentation profile, created
using the information about location of the cell center. Radius of sphere is 8
pixels. Second image - evolution after 600 GSUBSURF time steps. We can
see shock profiles created along the cell boundary. Third image - evolution
after 1000 time steps - considering the right contour of segmentation profile,
here ≈ 0.2, we can get reliable information about the shape of the cell.
Fourth image - evolution after 3000 steps, steady state solution. Choosing
any contour gives the same answer.
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Figure 5: Spatio-temporal segmentation result visualization. Left, one 2D
frame of initial segmentation - small seeds created around the cell identifiers.
Right, one 2D slice of 3D segmentation result. It is a set of pixels for which
the segmentation function has values greater than or equal to the prescribed
value.

the algorithm, Ω0 is given by the root cell identifiers. We will refer to this
distance function as d1. Technically, this equation is solved as in [9].

If we pick a point in our segmented set of spatio-temporal tubes, we want
it to follow a path ”down”, i. e. in the direction of decrease of this distance
function, until it reaches a root cell identifier - see fig. 6. This path is our
first naive approach to the trajectory extraction. If the spatio-temporal tubes
were perfectly isolated from each other, just following d1 would be sufficient
to get the approximate trajectories.

2.4 Distance from the borders of the spatio-temporal
tubes

Following just d1 often forces paths to follow borders of the spatio-temporal
tubes, rather than their centers - this can be seen in fig. 6, especially in the
top left image. This is not the most accurate path. Furthermore, if tubes
are not perfectly isolated, paths can slip through holes in borders and give
wrong tracking results - see fig. 6, top right image in the figure. The main
idea of this step is to force the paths to follow the approximate centers of
cells, while following d1 distance down. Let us define a cell center as a point
in cell with maximal distance from border of its spatio-temporal tube. To
find this point, we again need to find a distance function.
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The distance from the borders of the spatio-temporal tubes is also com-
puted by the eikonal equation. This time, the points with zero Dirichlet
condition are the border points of the spatio-temporal tubes. We denote this
distance function as d2.

An important property of this path modification is that if the spatio-
temporal tubes meet, no slipping through this meeting point occurs - see fig.
6, in the lower row.

2.5 Extraction of cell trajectories

For a given point in a 3D spatio-temporal tube, we extract its cell trajectory
by minimizing d1 in a steepest-descent manner while maintaining d2 maxi-
mized. In other words, trajectories go through the spatio-temporal 3D tube,
backwards in time, to the root cell identifier, while staying in the cell center
in each time frame.

Logically, a cell evolution can be represented as a binary tree. It is rooted
at the root cell identifier and it branches out into two children each time the
cell divides. As the video starts with many root cells existing already, we
should rather talk about a binary forest - forest simply means a set of trees.
Tree is constructed in such a way that if we choose a particular node as a
representation of a cell, just by following line of its ancestors down to the
root, we obtain a trajectory of this cell.

From the data structure point of view, the whole forest consists of nodes.
These nodes, besides carrying their temporal and two spatial coordinates,
also carry a reference to the parental node, left child node and right child
node. As in most of the frames a cell doesn’t divide, we use a standard of
always following a left branch of a tree - a right child can be different from
NULL if and only if a cell division occured at a given frame. A tree is created
in such a way that for a given node we search for a list of predecessors, thus
the tracking is computed backwards and the tree is constructed in a top-down
manner.

In fig. 7 one can see a visualization of spatio-temporal 3D tubes, which
were obtained using tracking results.

In order to visualize the tracking results themselves, we assign a color
to each cell identified in the beginning of the video. This color is used to
identify the cells corresponding to the evolution of the original cells. In fig.
12 and 13 one can see visualization of few frames of tracking results.
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Figure 6: An illustration of the distance function properties. Image repre-
sents simulated evolution of the three artificial cells, where the cental one
divides at about the half time of the evolution - the time axis goes down.
There is an artificial missing boundary between the two cells in the lower
right part of image. Upper row - trajectories calculated using only distance
to the root cells. Tendency to follow the edges rather than the centers (left)
and non-robustness against missing boundaries (right) is visible. Lower row
- trajectories constructed using both distance function to the root cells and
to the borders of tubes. Trajectories tend to follow centers of cells (left) and
are robust against missing boudaries (right).
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Figure 7: Visualization of the spatio-temporal 3D tubes. We use tracking
results in order to obtain one specific tube from the set of tubes. Time axis
points up. ”Bifurcated tubes” represent evolution of cells which undergo cell
divisions, whereas ”simple tubes” represent cells that did not divide.
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3 DISCRETIZATION

In this section, we are going to describe numerical schemes used to solve
partial differential equations (1) and (2), describing LSCD and GSUBSURF
models respectively, and the eikonal equation (3).

The LSCD and GSUBSURF are discretized and solved using the finite
volume method. LSCD is calculated in a frame-by-frame manner, for each
frame independently. GSUBSURF, on the contrary, is calculated considering
frames stacked atop each other, as a 3D pile. Both these discretizations are
thoroughly explained in [3]. The eikonal equation is solved by the Rouy-
Tourin scheme [10] accompanied by the time relaxation as given in [9].

3.1 LSCD discretization

For LSCD therefore we use a two-dimensional finite volume discretization,
where a natural choice for a control volume is the pixel. The equation (1) for
LSCD is discretized in both temporal and spatial domain. For discretization
in time we approximate all time derivatives with time differences using the
semi-implicit approach - all the terms that are linear will be considered in
new time n+ 1 and all those non-linear are taken at time n. This approach
guarantees that our system stays linear - everything that is non-linear goes to
the right-hand side. Let the evolution of the level set described by the LSCD
equation (1) be computed within the interval t ∈ 〈0, Tc〉. Let the number
of discrete time steps taken be Nc - then the uniform time step length is
τc = Tc/Nc. The equation for LSCD discretized in time looks as follows:

un+1 − un

τc
+ δ|∇un| − µ|∇un|∇ ·

(
∇un+1

|∇un|

)
= 0 . (4)

Then, we need to discretize this equation in space. An idea is to integrate
it over the control volume (pixel) and replace spatial derivatives with differ-
ences. Let the pixel be denoted by Vij, let its barycenter be cij and let the
approximate value of the solution at time n be unij. The pixel area is denoted
by m(Vij). The equation integrated over the control volume reads as follows:

∫
Vij

un+1 − un

τc
dx+

∫
Vij

δ|∇un|dx−
∫
Vij

µ|∇un|∇ ·
(
∇un+1

|∇un|

)
dx = 0 . (5)

Further, in order to write it in the form of a linear system, we need to
define few other variables. Let Npq

ij , where p, q ∈ {−1, 0, 1} and |p|+ |q| = 1
be the set of four neighboring pixels of the pixel Vij. Let σpq

ij denote the line
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Figure 8: Notations for the 2D finite volume discretization.

between pixels Vij and Npq
ij and its length be m(σpq

ij ). Let epqij be the pixel
edge and its length be m(epqij ). Let νpqij be the outward normal of epqij . Let
xpqij be the intersection of line σpq

ij and pixel edge epqij . Figure 8 presents these
definitions in a visual form.

Further, define approximation of gradient modulus on edge, averaged
gradient modulus in pixel, velocity vector field and discrete fluxes through
the pixel boundary:

Qpq,n
ij := |∇upq,nij | ,

Q̄n
ij :=

1

4

∑
Nij

|∇upq,nij | ,

vn := δ
∇un

|∇un|
,

vpq,nij :=
∫
epqij

vn · νpqij dγ ≈ m(epqij )δ
uni+p,j+q − unij
Qpq,n

ij m(σpq
ij )

,

where ∇upq,nij is an approximation of the solution gradient in xpqij , see [3].
We also use the following identity:

vn · ∇un = ∇ · (vnun)− un∇ · vn , (6)

and the upwind principle - that means partitioning fluxes into ”inflows”
(vpq,nij < 0) and ”outflows” (vpq,nij > 0). We define two sets of indices:

17



N out
ij = {(p, q) ∈ Nij, v

pq,n
ij > 0}, N in

ij = {(p, q) ∈ Nij, v
pq,n
ij ≤ 0}. Using

divergence theorem and upwind principle we obtain for the first term on the
right-hand side of (6):∫

Vij

∇ · (vnun)dx ≈
∑
Nout

ij

unijv
pq,n
ij +

∑
N in

ij

uni+p,j+qv
pq,n
ij . (7)

Using the definitions above, one can discretize all terms from the equation
(5) as follows:

∫
Vij

un+1 − un

τc
dx ≈ m(Vij)

un+1
ij − unij
τc

,∫
Vij

δ|∇un|dx =
∫
Vij

δ
∇un

|∇un|
· ∇undx =

∫
Vij

vn · ∇undx ≈

≈
∑
Nout

ij

unijv
pq,n
ij +

∑
N in

ij

uni+p,j+qv
pq,n
ij − unij

∑
Nij

vpq,nij =

=
∑
N in

ij

(uni+p,j+q − unij)v
pq,n
ij ,

∫
Vij

µ|∇un|∇ ·
(
∇un+1

|∇un|

)
dx ≈ µQ̄n

ij

∑
Nij

∫
epqij

∇un+1

|∇un|
νpqij dγ ≈

≈ µQ̄n
ij

∑
Nij

m(epqij )
un+1
i+p,j+q − un+1

ij

Qpq,n
ij m(σpq

ij )
.

The fully discrete form of equation (5) looks as follows:

m(Vij)
un+1
ij − unij
τc

+
∑
N in

ij

(uni+p,j+q − unij)v
pq,n
ij −

−µQ̄n
ij

∑
Nij

m(epqij )
un+1
i+p,j+q − un+1

ij

Qpq,n
ij m(σpq

ij )
= 0 .

3.2 GSUBSURF discretization

In GSUBSURF, we are solving a three-dimensional problem by the finite
volume method. A natural choice for a control volume is thus the voxel
(three-dimensional pixel). The equation (2) for GSUBSURF is discretized in
both temporal and spatial domain.

18



Figure 9: Notations for the 3D finite volume discretization.

For discretization in time, we approximate all time derivatives by using
time differences and using the semi-implicit approach again. Let the evo-
lution of level set, described by the equation (2), be computed within the
interval t ∈ 〈0, Ts〉. Let the number of discrete time steps taken be Ns - then
the uniform time step length is τs = Ts/Ns. The equation for GSUBSURF
discretized in time looks as follows:

un+1 − un

τs
− wa∇g · ∇un − wcg|∇un|∇ ·

(
∇un+1

|∇un|

)
= 0 . (8)

In order to discretize the system in space, same idea as in LSCD discretiza-
tion applies here as well - integrate the equation over the control volume (here
represented by the voxel) and replace spatial derivatives with differences. Let
the voxel be denoted by Vijk, let its barycenter be cijk and let the approxi-
mate value of the voxel at time n be unijk. The voxel volume is denoted by
m(Vijk). An equation integrated over the voxel reads as follows:

∫
Vijk

un+1 − un

τs
dx−

∫
Vijk

wa∇g ·∇undx−
∫
Vijk

wcg|∇un|∇ ·
(
∇un+1

|∇un|

)
dx = 0 .

(9)
Further, we need to define the same variables as we did previously for

the LSCD, but now from a three-dimensional point of view. Let Npqr
ijk , where

p, q, r ∈ {−1, 0, 1} and |p| + |q| + |r| = 1 be the six voxels neighboring to
the voxel Vijk. Let σpqr

ijk denote the line between voxels Vijk and Npqr
ijk and its

length be m(σpqr
ijk ). Let epqrijk be the voxel face and its area be m(epqrijk ). Let

νpqrijk be the outward normal of face epqrijk . Let xpqrijk be the intersection of line
σpqr
ijk and voxel face epqrijk . Figure 9 presents the definitions in a visual form.

Further we define approximation of gradient modulus on faces, averaged
gradient modulus in voxel, velocity field and discrete fluxes on the voxel faces

19



for the 3D scheme:

Qpqr,n
ijk := |∇upqr,nijk | ,

Q̄n
ijk :=

1

6

∑
Nijk

|∇upqr,nijk | ,

v := −wa∇g ,

vpqrijk := m(epqrijk )

(
−wa

gi+p,j+q,k+r − gijk
m(σpqr

ijk )

)
,

where, again, ∇upqr,nijk is an approximation of the solution gradient in xpqrijk -
see [3].

We use the same identity as we did in LSCD discretization:

v · ∇un = ∇ · (vun)− un∇ · v , (10)

and the upwind principle for 3D scheme - we partition fluxes into ”inflows”
(vpqrijk < 0) and ”outflows” (vpqrijk > 0). We define two sets of indices: N out

ijk =
{(p, q, r) ∈ Nijk, v

pqr
ijk > 0}, N in

ijk = {(p, q, r) ∈ Nijk, v
pqr
ijk ≤ 0}. For the first

right-hand term in (10) we obtain:∫
Vijk

∇ · (vun)dx ≈
∑
Nout

ijk

unijkv
pqr
ijk +

∑
N in

ijk

uni+p,j+q,k+rv
pqr
ijk , (11)

and further terms of (9) are approximated as follows:

∫
Vijk

un+1 − un

τs
dx ≈ m(Vijk)

un+1
ijk − unijk

τs
,∫

Vijk

−wa∇g · ∇undx =
∫
Vijk

v · ∇undx ≈

≈
∑
Nout

ijk

unijkv
pqr
ijk +

∑
N in

ijk

uni+p,j+q,k+rv
pqr
ijk − unijk

∑
Nijk

vpqrijk =

=
∑
N in

ijk

(uni+p,j+q,k+r − unijk)vpqrijk ,

∫
Vijk

wcg|∇un|∇ ·
(
∇un+1

|∇un|

)
dx ≈ wcgijkQ̄

n
ijk

∑
Nijk

m(epqrijk )
un+1
i+p,j+q,k+r − un+1

ijk

Qpqr,n
ijk m(σpqr

ijk )
.

The fully discretized GSUBSURF equation looks as follows:

m(Vijk)
un+1
ijk − unijk

τs
−

∑
N in

ijk

(uni+p,j+q,k+r − unijk)vpqrijk
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− wcgijkQ̄
n
ijk

∑
Nijk

m(epqrijk )
un+1
i+p,j+q,k+r − un+1

ijk

Qpqr,n
ijk m(σpqr

ijk )
= 0 .

3.3 Computing distance functions

Finally we need to propose a method for solving the time-relaxed eikonal
equation (3). For this step, we adopt an explicit scheme for temporal dis-
cretization and the Rouy-Tourin scheme, cf. [9], to discretize the equation 3
in space.

The distance function from the boundaries of spatio-temporal 3D tubes is
computed frame by frame - this leads to the two-dimensional problem. The
space grid elements correspond to the pixels of the image. Let the elements
be squares, denoted by Vij, where the length of the pixel side is hD. For each
element Vij, let the approximate value of the solution d at time step n in the
center of Vij be dnij. If we define Mpq

ij , p, q ∈ {−1, 0, 1}, |p|+ |q| = 1 as

Mpq
ij = (min(dni+p,j+q − dnij, 0))2 , (12)

the Rouy-Tourin scheme for the equation (3) in 2D then reads as follows:

dn+1
ij = dnij + τD −

τD
hD

√
max

(
M−1,0

ij ,M1,0
ij

)
+ max

(
M0,−1

ij ,M0,1
ij

)
. (13)

where τD is the time step size. This scheme is stable for τD ≤ hD/2.
On the contrary, the distance function from the root cell identifiers is

computed in the spatio-temporal domain - this leads to the three-dimensional
problem. Here, the space grid elements correspond to the voxels. Let the
elements be cubes, denoted by Vijk, where the length of the side is hD. For
each element Vijk, let the approximate value of the solution d at time step
n in the center the center of Vijk be dnijk. Let us define Mpqr

ijk , p, q, r ∈
{−1, 0, 1}, |p|+ |q|+ |r| = 1 as

Mpqr
ijk = (min(dni+p,j+q,k+r − dnijk, 0))2 . (14)

The Rouy-Tourin scheme for solving the equation (3) in the three-dimensional
space then reads as follows:

dn+1
ijk = dnijk + τD −
τD
hD

√
max

(
M−1,0,0

ijk ,M1,0,0
ijk

)
+ max

(
M0,−1,0

ijk ,M0,1,0
ijk

)
+ max

(
M0,0,−1

ijk ,M0,0,1
ijk

)
,

where τD is the time step size. Scheme is stable for τD ≤ hD/2.
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4 IMPLEMENTATION

For the implementation we chose the programming language C++. We
have considered using Java or C#, but we decided to use a lower-level lan-
guage instead to increase speed of computations. Furthermore, we wanted
to avoid the use of automatic garbage collector of Java, as the algorithm is
very memory-sensitive and we want to have a full control over the memory
management. We have also considered using plain C, but we decided not
to, taking an advantage of the fact that C++ classes can have methods and
overload operators. To give an example of this, compare the two codes. They
both add two images and normalize them according to the maximum of the
third one. Notice that the latter example is easier to read, write and debug.

Example 1 - Plain C implementation:

struct Img{

...

};

Img img1;

Img img2;

Img img3;

...

divide(&(add(&img1, &img2),max(&img3));

Example 2 - C++ implementation using member methods and overloaded
operators:

class Img{

...

};

Img img1;

Img img2;

Img img3;

...

(img1 + img2) / img3.max();
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When calculating coefficients of numerical schemes, things get even more
tangled, with forms containing several levels of brackets, additions, subtrac-
tions, multiplications and divisions. We want our code to be as readable as
possible, for the purpose of debugging and later modifications, so C++ is our
language of choice. It is worth noting here that MPI (Message Passing In-
terface), which we plan to use later to parallelize the algorithms, only works
with plain C and structs, so parallelization of our code adds some work in
recasting C++ code into plain C. We implemented our project in the MS
Visual C++ 2005 environment.

Throughout the code implementation, we adapt a Java-style convention
of naming classes by a capital first letter and their instances, variables and
methods by a small letter.

To view the results of our algorithms, we have implemented some pro-
grams which we call viewers. For this purpose, we chose Mathematica as a
well-suited environment - it contains neat plotting and displaying libraries
which are easy to work with.

4.1 Data structures

class Img - represents a regular 2D image. isize and jsize are width and
height of the image, f is an array of floats representing intensities of image
pixels, assumed to have allocated isize*jsize*sizeof(float) bytes. Pixel
[i,j] is accessed via accessing f[i*jsize+j].

class Vid - represents a sequence of 2D images. tsize is the number of
images in the sequence, isize and jsize are width and height of frames and
f is an array of Img instances. Pixel [i,j] at time t is accessed via accessing
f[t]->f[i*jsize+j].

class Img3D - represents a 3D image. tsize, isize and jsize are
the size in temporal direction, width and height, respectively. f is an array
of floats representing intensities of image voxels. f is assumed to have al-
located tsize*isize*jsize*sizeof(float) bytes. Voxel [t,i,j] is accessed
via accessing f[t*isize*jsize+i*jsize+j]. Img3D and Vid have a remark-
able property: their encoding, i.e. the way they are saved into a file, are
identical. That enables us to convert one of them into the other one via
saveTo/loadFrom operations:

Vid inseg(ts,is,js);

inseg.setToInitSegm( ... );

inseg.saveTo("file.txt");
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Img3D is3D(ts,is,js);

is3D.loadFrom("file.txt");

We use this trick in our code.

class TrajList - represents trajectories of cells in a 3D image. Its ele-
ments are the binary tree nodes - they have a reference to a parental node
and references to two child nodes, called left and right child. Further, a node
contains an information about its position in the image in the form [t,i,j].

TrajList is the list of these nodes. length is the number of nodal struc-
tures. It contains three positional lists tlist, ilist and jlist. The position
of the n-th in the image is [tlist[n], ilist[n], jlist[n]]. Further, it
contains lists plist, lclist, rclist - these are the references to parental
node, left child and right child, respectively.

From a given node, we reach a node representing root cell by following the
line of its ancestors - i.e. for n-th node we call plist[plist[ ... [n] ...]].
Similarly, from a given root cell node, we can assign any ”color” this node
and recursively assign this color its left children subtree and right children
subtree. If we do this using different color for each root cell node, we obtain
a neat visualization of tracking results.

class COHList - represents a set of points in a 2D image. length is the
number of points in the set, ilist and jlist are lists of two spatial coordi-
nates denoting a specific point. COHList only supports adding of points, no
removing was needed to be implemented throughout the whole application.

class COHList3D - represents a set of points in a 3D image. length is
the number of points in the set, tlist, ilist and jlist are lists of a tem-
poral and two spatial coordinates denoting a specific point. COHList3D only
supports adding of points.

4.2 File encoding (save to/load from HDD)

All of the six main data structures use a common pattern of saving their
state to harddisk, loading from it and assigning themselves to some other
instance of a given data structure. We only describe implementation for Img,
as the implementations for other data structures are very similar.

File format for Img is following: line 1 - isize, line 2 - jsize, next
isize * jsize lines - intensities for pixels, pixel [i,j] referring to f[i*jsize+j].
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This encoding is not optimal from the file size minimization point of view,
however it makes it easy to manually modify a data structure by editing file
in a plain-text editor. This human-readable file format also comes handy for
debugging purposes.

Img::saveTo(char * filename) - saves an image to a ”filename” file

Img::loadFrom(char * filename) - loads an image from a ”filename”
file

Img::setTo(Img & source) - sets an image to reflect the state of ”source”
image. As it doesn’t allocate memory anew, it assumes that the images have
identic sizes and this->f to have isize*jsize*sizeof(float) bytes allo-
cated.

4.3 Functions

For Img and Img3D, we often need to perform one of four elementary op-
erations (addition, subtraction, multiplication and division) of either two
instances of a given class, or one instance of a given class and a real number.
To handle these operations comfortably, we take an advantage of C++ op-
erator overloading. Motivation for this step was presented at the beginning
of this section, in the discussion about choice of a programming language.

Thus, Img has eight overloaded operator methods. Img3D is very similar.

Img operator+(Img & first, float scalar);

Img operator+(Img & first, Img & second);

Img operator-(Img & first, float scalar);

Img operator-(Img & first, Img & second);

Img operator*(Img & first, float scalar);

Img operator*(Img & first, Img & second);

Img operator/(Img & first, float scalar);

Img operator/(Img & first, Img & second);

Further, each class has its own set of specialized methods.

class Img {

...

Img takePart(int, int, int, int);
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Img ** gradientsOfVoxelFaces();

Img ** lenOfGrads(float);

Img avgGradModulus();

// filtration

Img gaussStep(float stepsize);

Img gaussConv(float stepsize, int timesteps);

Img gFunc(float K);

Img gmcf(int timesteps);

// cell detection

Img lscd(int timesteps);

COHList getLocalMaximaList();

// distance function

Img rtdist(int, Img&, Img&);

void setToTrousers();

COHList downwardPath(int,int);

// segmentation

void setToInitSegm(COHList& , float);

Img subsurf(int , Img&);

Img gsubsurf(int , Img&, float, float, float);

Img trimSegmentation(float);

}

Main purpose of the methods gaussStep, gmcf, lscd, subsurf, gsubsurf is
to compute coefficients from discretized form of given equations and to call
a linear system solver SOR function - see next subsection.

class Img3D has similar functions, except for the cell detection part.

class Vid has very few functions - it contains an array of Img instances,
so performing an operation is usually implemented using a simple
for (i=0; i<vid.tsize; i++) cycle.

class COHList has a function add(int ptI, ptJ), which adds a point
[i,j] to its list. We obtain a list of points via the function

COHList Img::getLocalMaximaList();

and we use it to construct an initial segmentation profile via the function
void Img::setToInitSegm(COHList& cohlist, float radius)
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class COHList3D works similarly to class COHList. It has a special
function of returning a COHList, being a subset of the points in a given
frame t:

COHList COHList3D::getPtsAtTime(int t);

class TrajList{

...

int loadFrom(char *);

void saveTo(char *);

void setTo(TrajList&);

void addNode(int,int,int,int,int,int);

void setNodeTo(int,int,int,int);

void setChildrenColor(int,float,Vid*);

Vid getColorVideo(int,int,int,int,float);

int getDepth(int);

int getMaxJ(int,int);

};

To obtain a TrajList from what we have computed, we use a procedure
called twoStepPath. From a given point, it creates a chain of nodes down to
the root cell, using two distance functions. It is an algorithm consisting of two
alternating steps. First step is, from the actual point, to find a neighboring
grid point (in 3D, each voxel, except for boundary voxels, has 26 neighboring
voxels) which minimizes the distance function from the root cell identifiers.
Second step is to maximize the distance function from boundaries of spatio-
temporal tubes within a given frame - for a fixed t in 3D image. First
step guarantees that the path goes back in temporal direction. Second step
guarantees that it remains centered within the cell. An algorithm stops if
there is no neighboring voxel with distance function smaller than the actual
point - this yields a root cell identifier.

As it goes down the path, it checks if a new point is already a member of
some other path or is not yet used. If it was not used yet, we simply claim
this point to be a parent of the older one, and the older one to be its left child.
Since new node is parent and old one is child, we see that the binary tree
is created in a top-down manner. If there is an existing path going through
this point, we connect these two points by claiming this point to be a parent
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of the older one and the older one to be its right child, because since it is a
part of the path, it already has its left child assigned. Thus, in this case, we
obtain cell division identification.

The algorithm works as follows:

void twoStepPath(TrajList * ret,

int tStart, int iStart,int jStart,

Vid& dfr, Vid& dfe, int * mem) {

// ret - return value of the function

// tStart,iStart,jStart - starting point coords

// dfr - Distance From Root cell identifiers

// dfe - Distance From Edges of spatio-temporal tubes

// mem - memory of references to trajectory nodes

// ... initialize

do {

if (mem[tAct,iAct,jAct] != -1) {

// set ’’actual’’ to right child

// of mem[tAct,iAct,jAct]

return;

} else {

// set mem[tAct,iAct,jAct] to actual

// ... minimize dfr

if (tMin < tPrev) {

// ... minimize dfe

}

} while (tMin!=tAct || iMin!=iAct || jMin!=jAct);

return;

}

To obtain a complete TrajList, we run this for each cell identifier’s coordi-
nates as tStart, iStart and jStart, using the same mem.

4.4 Linear-system solver: SOR

To solve LSCD and GSUBSURF in the fully discrete form, we use SOR
(Successive Over-Relaxation) algorithm. It is an iterative solver, which is
guaranteed to converge for M-matrices. It is implemented in 2D and 3D,
respectively:
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Img solnOfSystem(

Img& a, Img& aip,Img& ajp,

Img& aim,Img& ajm, Img& b,

float omega, float toll, int type

);

Img3D solnOfSystem3D(

Img3D& a, Img3D& atp, Img3D& aip,Img3D& ajp,

Img3D& atm, Img3D& aim, Img3D& ajm, Img3D& b,

float omega, float toll, int type

);

Here a is a list of diagonal coefficients, next 4 (resp. 6) instances are lists
of coefficients for neighbors, b is a right-hand side of the system. omega is a
relaxation parameter, toll is the precision threshold and type is a boundary
condition type (0=zero Neumann, 1=zero Dirichlet).

The main cycle of the function updates the initial value until norm of
an update is less than toll. In each execution of its body, for each pixel it
computes neighboring pixel intensities (with respect to boundary condition
type) and performs an SOR step. Listed for a 2D solver:

...

initialGuess.setTo(b/a);

iter->setTo(initialGuess);

oldIter.setTo(initialGuess);

...

int it = 0;

float alter, ip, jp, im, jm;

while (diff > toll) {

it = it+1;

for (int i=0;i<isize;i++) { for (int j=0;j<jsize;j++) {

// solving either NEUMANN(0) or DIRICHLET(1)

alter = (type == 0) ? iter->f[i*jsize+j] : 0.0;

ip = (i<isize-1) ? iter->f[(i+1)*jsize+j] : alter;

jp = (j<jsize-1) ? iter->f[i*jsize+(j+1)] : alter;

im = (i>0) ? iter->f[(i-1)*jsize+j] : alter;

jm = (j>0) ? iter->f[i*jsize+(j-1)] : alter;

// SOR step

iter->f[i*jsize+j] = (b.f[i*jsize+j]
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+ (a.f[i*jsize+j] / omega - a.f[i*jsize+j])

* iter->f[i*jsize+j]

- aip.f[i*jsize+j]*ip

- ajp.f[i*jsize+j]*jp

- aim.f[i*jsize+j]*im

- ajm.f[i*jsize+j]*jm

)/(a.f[i*jsize+j] / omega);

}}

// compute "diff"

// set "oldIter" to "iter" for next loop

}

4.5 Control

The image processing chain is controlled by this code:

int ts=120; int is=100; int js=100;

// Load original data

Img3D orig3D(ts,is,js);

Vid orig(ts,is,js);

orig3D.loadFrom("vid_cube100ext.txt");

orig.loadFrom("vid_cube100ext.txt");

// Noise reduction

Vid smooth(ts,is,js);

for (int i=0;i<ts;i++) {

smooth.f[i]->setTo((*(orig.f[i])).gmcf(100));

}

smooth.saveTo("vid_cube100ext_gmcf.txt");

// Cell identification - LSCD evolution

Vid cd(ts,is,js);

for (int i=0;i<ts;i++) {

cd.f[i]->setTo((*(orig.f[i])).lscd(20));

}

cd.saveTo("vid_cube100ext_lscd.txt");

// Cell identification - local maxima

COHList3D coh(COHList3D::MAX_LENGTH);

coh.setTo(cd.centersOfHumps());

30



coh.saveTo("vidcohlist_cube100ext_lscd.txt");

// Initial segmentation

Vid inseg(ts,is,js);

inseg.setToInitSegm(coh, 2.9, smooth, 0.1);

inseg.saveTo("vid_cube100ext_is.txt");

Img3D is3D(ts,is,js);

is3D.loadFrom("vid_cube100ext_is_fin.txt");

// Spatio-temporal segmentation

Img3D gss3D(ts,is,js);

gss3D.setTo(orig3D.gsubsurf(1,is3D,

0.1, // wcon

0.1, // wdif

1.0 // sStepSize

));

// ... trim away first and last 10 frames after segmentation

// ... take a specific isosurface as a segmentation result

// Distance functions

Vid dist1(100,100,100);

Vid distProj(100,100,100);

Vid dist2minus(100,100,100);

dist1.rtdist(500, fixed, mask);

dist1.saveTo("vid_cube100_dist1.txt");

for (int t=0;t<distProj.tsize;t++) {

distProj.f[t]->rtdist(500, *(mask.f[t]), *(zeros.f[t]));

dist2minus.f[t]->setTo(*(zeros.f[t])-(*(distProj.f[t])));

}

distProj.saveTo("vid_cube100_distproj.txt");

dist2minus.saveTo("vid_cube100_dist2minus.txt");

// ... reduce centers

// Extract cell trajectories

TrajList path(TrajList::MAX_LENGTH);

int * mem = (int *)malloc(100*100*100*sizeof(int));

for (int i=0;i<100*100*100;i++) mem[i] = -1;

char pathfilename[] = "trajlist_cube100.txt";

for (int i=reducedCenters.length-1;i>=0;i--) {
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dist1.twoStepPath(&path,reducedCenters.tlist[i],

reducedCenters.ilist[i],reducedCenters.jlist[i],

dist2minusLSCD,100,mem);

}

path.saveTo(pathfilename);

4.6 Result viewers

To view results of the algorithms, we have implemented some programs in
Mathematica. We call them ”viewers”. In general, they read specific inputs
from files and they use Mathematica plotting library to visualize them. We
use 2D viewing functions to view a specific frame. To select a frame, we use
a ”slider” command tool.

To view raw and filtered data, we use viewer_vid.nb. To consult loca-
tions of sets of points, e.g. set of local maxima after LSCD evolution, we use
viewer_vid_centers.nb. To check spatio-temporal segmentation results of
GSUBSURF and to find the right isosurface, we use viewer_vid_segment.nb.
We use the viewer_vid_dist.nb to see distance function results (both spatio-
temporal distance from root cells and frame-by-frame distance from borders
of tubes). To view instances of class TrajList, i.e. lists of trajectories
found in image, we use viewer_vid_trajlists.nb - blue lines are positions
of parental nodes in previous frame, green lines are positions of left-child
nodes in next frame, and orange lines are positions of right-child nodes in
next frame. A node containing both green and orange line refers to a cell
division. Finally, to present tracking results by assigning a color to each root
cell and using it to denote that cell and all its children throughout the video,
we use viewer_vid_colorvideo.nb. In fig. 10 we can see the main control
screen of most frequently used viewers.

4.7 Hand correction interface

We are working with biological data and we expect them to have lot of
noise and irregularities. After the run of the algorithm, we therefore assume
its results will be checked and corrected by the user of the software. This
algorithm is optimized to minimize the amount of work to be done by the
user in the post-processing.

To characterize the amount of work quantitatively, we define two elemen-
tary operations: add_parent and set_parent. add_parent creates a new
parent for a selected node, overwriting the original parent-child connection.
set_parent forces one selected node to become a parent of another selected
node - no new node is created in this step. Both these steps modify the
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Figure 10: Most commonly used viewers. Implemented in Mathematica.
Upper line - simple viewer and viewer of centers, middle line - viewer of
segmentation and viewer of distance, lower line - viewer of TrajList and
viewer of colorvideo.
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Figure 11: Hand correction interface. Three sliders select a specific point in
a 3D image. Via the interface, user can pick a node, add a parent node to
a picked node, or set an existing node to become the parent of the selected
node.

original instance of class TrajList. The amount of work is the count of
elementary operations to achieve the perfect tracking.

For this post-processing purpose we have implemented a simple user in-
terface in Mathematica. In the beginning, it loads a TrajList from a file.
Using three sliders, one can select a specific point in a 3D image, pick a node
and perform add_parent and set_parent operations. User can choose to
save modified TrajList to a file. To see the interface viewer screen, cf. fig.
11.
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5 EXPERIMENTS

We have worked with a part of the video covering 100 frames with resolution
100x100 pixels. In the beginning of the video there are 12 cells in the area.
These move, mostly to the right, and most of them undergo cell division a
few times during the 100 frames. In the end of the video, there are 11 cells
corresponding to the original cells identified in the first frame - the others
disappear through the right border of the area while moving to the right.
Through the left border, some new cells arrive to the area, but we do not
track these, as their root cell identifiers are unknown. Using this video, we
chose algorithm parameters so that it gives the best possible results. In the
LSCD, δ = 1.0 and µ = 0.000001 and we perform 20 time steps. In the
spatio-temporal GSUBSURF, setting wa = wc = 0.1, 100 time steps are
performed.

Then, we took two alternative parts of the video, both covering 100 con-
secutive time steps, both with resolution 100x100 pixels. We wanted to test,
how well do the previously set parameters behave under the new conditions.
In the first alternative video, there are 16 cells in the beginning and 9 corre-
sponding ones in the end. In the second alternative video there are 13 cells
in the beginning, 19 corresponding in the end. Cells in these parts of the
video also move to the right.

We measure the success of our approach by counting number of correct
and incorrect links between the cell identifiers in two consecutive frames.
Number of incorrect links can be understood as the required amount of work
to be performed by a user of the software, in order to achieve perfect tracking.
We call it a number of ”hand-correction” operations.

In the first video, for which the parameters of the model were optimized,
we got 1398 correct links out of 1400 total. That means 99.86% success. In
the first alternative video, using the previously set parameters, we got 1759
/ 1775 - 99.01% success. For the second alternative video we got 1595 / 1600
- 99.69% success.

Tracking results of the original video part can be seen in fig. 12, alterna-
tives are to be seen in fig. 13.
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Figure 12: Tracking in the original video part. From left to right - frame 1,
frame 50, frame 100.

Figure 13: Tracking in alternative video parts. Upper row - first alternative
part, lower row - second alternative part. From left to right (both rows) -
frame 1, frame 50, frame 100.
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6 CONCLUSIONS

In this paper, we have presented an algorithm for tracking cells in image
sequences. An algorithm accepts lightly noised input images. It is robust
against missing boundaries of cells and missing cell identifiers, thanks to
spatio-temporal segmentation. It can overcome imperfections of 3D spatio-
temporal tube separation, via combination of two distance functions. Param-
eters of model, once found, can be used for analysis of similar videos, as we
have shown in section about experiments. We have developed this algorithm
using a 2D+time video, but its ideas can be extended to 3D+time videos as
well, see [11].
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