

Slovenská technická univerzita
 v Bratislave

Stavebná fakulta

Študentská vedecká konferencia
Akademický rok 2011/2012

Extrakcia dobre popísateľných
bodov z obrazov a ich porovnávanie
Extraction and matching of feature

points in bitmaps

Meno Priezvisko študenta: Peter Kottáš

Ročník a program/odbor štúdia: 3.ročník, matematicko-počítačové

 modelovanie

Vedúci práce: Mgr.art., Mgr. Ladislav Šipeky

Katedra: KMDG

Bratislava 18. apríl 2012

1

Extraction and matching of feature points in bitmaps

Peter Kottáš; petokottas@gmail.com

Introduction

We are going to cover the problem of feature points recognition in bitmaps. Follow-up
to this problem is the usage of the database as a source of potential matches. This approach
brings us closer to understand object recognition. Main purpose of this article is to introduce
variety of steps required for basic feature recognition application to work. Main idea was
thought out by David G. Lowe and is covered in "Object recognition from local scale-invariant
features", International Conference on Computer Vision, Corfu, Greece (September 1999).
This document contains huge amount of theoretical information necessary to fully understand
whole problem. However there are parts that might be confusing, especially during
algoritmization process. I would like to create a user-friendlier description of this state-of-art
idea and introduce few of my observations and potential improvements that I thought-off
during implementation. This paper might be as well considered to be jumping-board for
computer vision itself. In fact I expect it to lay ground work for understanding feature
recognition at all levels. Hopefully it will make it possible to introduce my own solutions for
numerous problems still present in computer vision. I consider this paper to be a guideline for
a person with no prior knowledge on the topic of feature recognition. Still I want it to be as
fluent as possible. As a consequence, the first chapter is devoted solely to build up
foundation of terms one should be familiar with before going further inside the subject.

2

1. Familiarization of technicalities

1.1 Feature point

 Co-ordinates in bitmap that refers to point in R2 as a projection from R3. What we are
trying to achieve is reliable recognition of these R3 points in projections (bitmaps) that have
different properties. Our features should be rotation and scale invariant. It is although
required for features to be illumination and viewpoint invariant, however this is only
approximation. It is understandable that under certain kinds of lighting conditions (complete
darkness) and or viewpoint orientation (close to 90 degrees) feature points would not be
extracted correctly.
This is the first time probability comes into mind of perceptive reader. The better the input
image (less illumination or viewpoint changes) the higher probability of recognizing stable
features thus higher probability to find exact matches later on.

1.2 Feature descriptor

 Feature point is described only by its R2 coordinates. Given two sets of feature points,
one from each image (or one being the database), we need some tool to identify possible
feature points corresponding to the same R3 point in real world. Descriptor is the desired tool
represented as multidimensional vector. This vectors entries must be as invariant as feature
points themselves. To compare two descriptors Euclidean distance is used. The less the
distance between two descriptors, the higher the probability that it is the same R3 point
projected in two R2 planes.

1.3 Epipolar geometry

 As described in Richard Hartley and Andrew Zisserman (2003), epipolar geometry is
the geometry of stereo images. Consider 3D scene with two pinhole cameras both looking at
same R3 point from different viewpoints. Plane described by two centers of projection of
each individual camera and R3 point is called Epipolar plane. This plane intersects each
camera`s image plane in line called Epipolar line. Epipole is the center of projection of
camera 2. as seen from camera 1. Fundamental (F) or essential (E) matrix is used to
describe relation between two images while encoding epipolar geometry.

 (1)

 Where and are the intrinsic calibration matrices of the two images involved.

 (2)

 and being projections of single point in R3 to stereo images. For indefinite (2)
gives us one equation of two unknowns, Epipolar line equation. Therefore if F or E is known
for static scene it is possible to reject false matches based on distance from epipolar line.

3

1.4 Ransac

 Ransac is an algorithm used to fit model to the database of data points. Consider a
simple example:
Dataset of n points is provided and we would like to use Ransac to fit line in that set of data
points. Initial image shows points plotted on R2 plane. Other two images show two
realizations of Ransac main loop.

1. 4.1 Ransac main loop

 Chose random m points from dataset (m is number of points required for model fitting,
e.g. line needs two points to be fit through). Fit model to the m chosen points. Iterate thought
the rest of the dataset and decide if approximation of the model is good enough for the
checked point. In this example distance from the line must be less than some chosen
constant for the point to be an "inlier" shown in blue. Otherwise the point is considered to be
"outlier" shown in red. This process is repeated k times and the best result is kept in artificial
variable. At the end the best model stored is considered to be the best approximation. These
steps are briefly described in the following fig.1.

.
Fig.1: Ransac algorithm visualization

 To compute fundamental or essential matrix we need as many as 8 points so the
Ransac is modified for the model of "solving epipolar geometry" and outliers are then
rejected as false matches. F or E could be solved by Eight-Point Algorithm which we are not
going to cover it in this paper.

1.5 Gaussian blur

 Gaussian blur, widely known as Gaussian smoothing, is filter that convolves image
according to Gaussian function as enumerated around the interest point. A Gaussian blur
effect is typically generated by convolving an image with a kernel of Gaussian values. These
values are results of:

 (3)

 Values are computed for each surrounding pixel. Convolution area´s (square) width in
pixels is equal to 6*σ+1. (3) plotted as 3D object shows that it consists of concentric circles.
This property is known as rotation invariance. That means that the process of convolving
could be split in two passes, horizontal and vertical. Advantage of this approach is described
in this example. Consider Gaussian smoothing with σ=1. Kernel dimension is 7 times 7 giving

4

49 entries. If we would not implement rotation invariance optimization, single blurred pixel in
image L(x,y) would be computed as product of,

resulting in 49 floating-point multiplications and additions. We only need one dimensional
kernel thanks to the proposed optimization.

 (4)

This kernel has 7 entries. Pixel in image L(x,y) is convolved as,

resulting in 14 multiplications and additions. Benefit is even more noticeable when using
large σ values. (e.g. : sigma=5 , 961 operations as opposed to 62)

1.6 Scale space

 Scale space is a theory developed while studying signal processing. It was later
adapted by many as the only reliable tool for achieving scale invariance in image recognition.
Our implementation is based on Lindeberg (1994). Main problem that occurs while studying
unknown scene is that we have no prior information about the scale of the image. Consider
the following scenario: Two bitmaps are studied for possible feature matches. First image is
a photography of a single tree. The other shows whole forest in the distance. There are a lot
of fine details in the first image (e.g.: Leaves, branches, bark texture etc.) that vanished from
the second projection because of loss of data during encoding process. For the application to
produce scale invariant features this has to be dealt with. It would be useless if features
points are only matched correctly if taken from same distance. This is where the scale space
approximation takes place. In our example we have to remove some of the details from the
first image so that feature descriptors would be as close to the ones from the second image
as possible. Gaussian smoothing was proved to be the best approximation of scale space
representation.
 Hopefully this example made things clear enough for the formal encapsulation of the
facts to take place. Scale space is the representation of an image L(x,y) as a one-parameter
family of smoothed images , parameterized by the size of the smoothing kernel
((3) in our implementation). Following fig.2 shows 4 progressively blurred images. Bitmap
used in our implementation is black and white representation of well known test image called
Lenna. This test image scanned in June 1973 has become standard in testing of many image
processing algorithms for over 30 years.

5

Fig.2: Example of the scale space (σ={1,2,4,8})

2. Feature point detector

2.1 Introduction to features extraction

 We already know what feature points are in computer vision, now we are going to take
a further look at how to extract them. We want features to be as stable and scale invariant as
possible. There is a number of approaches available, corner, edge or blob detection just to
name a few. I have chosen local extrema of difference of Gaussian from scale space
representation for my project. It has been proved to produce high quality feature points
(easily recognizable and stable under variety of changes) while sacrificing computational
speed. Corner detection would be better choice if our primary goal was the speed of
application. Real-time recognition was not desired in our case so we focused on quality
rather than speed. Still we are able to match features from bitmaps of medium resolution
(1024 × 768) in around a second. This was achieved by C++ code optimization as well as
designing an application to exploit full potential of multi-core CPU (multi-threading). However
main purpose of this project was not to achieve best optimization possible, it was created as
a step-by-step guideline for developing application while noting potential improvements for
the future releases.

2.2 Scale space representation for image recognition

 Scale space, briefly described in chapter 1.6 as a representation of image

 as a one-parameter family of smoothed images , parameterized by the size of
the smoothing kernel. It is clear that some sort of approximation have to take place while
implementing such phenomenon for computation on hardware with limited performance. Full
scale space representation consists of infinite number of images as convolved by

Gaussian kernels with . In our implementation cascade filtering was chosen to
approximate true scale space.
 Cascade filtering consists of octaves and scales. Before focusing on it let me show
where it originates and why it is not only an approximation but optimization of process as
well. Consider simple scale space as seen in Fig.2. This is in fact non cascade
representation of consequently blurred images (take note of the parameter choice,
σ={1,2,4,8}, as where k≥0 is scale-change factor and i >1,
we are going to focus on that later on). To make it cascade we need to take advantage of
one of the key properties of scale space representation.
 Consider image . By downscaling with a factor of n, parameter sigma
becomes:

 . (5)

6

 Potential for optimization of this property is hidden in chapter 1.5. Gaussian blur is
relatively fast to compute for kernel with small σ. In our example Gaussian kernel of image

 σ has width of σ . Therefore image downscaled by factor n with kernel

width of σ produces close to same results while computational time is reduced
radically. It would need some higher mathematics to take place in order to fully understand
this property. Rather than that I am going to use empiric approach. For that we need to
realize that parameter σ is nothing more than numeric interpretation of the scale of the
scene. Now consider perspective projection. Computer vision tries to copy the way object
recognition works in biology. Therefore there is no accident that perspective projection in
camera (ignoring calibration) works very similar to the way human eye works. Perspective
itself is described as projection from R3 Space to R2 Plane. As opposed to orthographic, it
does not maintain ratio for abscissas in different distances. Consequently objects that are
further away looks smaller than the ones closer to the encoding device. So σ of the object in
background is bigger than the one in foreground. By downscaling we are meddling with
perception of the scale therefore σ is directly affected.

 Now we are ready to proceed to cascade filtering. In our implementation first a table of
σ is created for octaves. One octave is set of progressively blurred out images with the same
width and height. Size of this set is at least 4 while 5 or 6 images in each cascade has
proven to suffice for good-enough scale space approximation. σ parameters of these images
differs from the previous one by factor k. Initial sigma is provided. Assuming that that

photography already contains some blur initial sigma is set to in our algorithm. Best

results were achieved by using parameter , however both initial sigma and parameter
k have such great effect on the process that it is highly recommended for everybody to
experiment a bit, just to see the impact of different values on the feature points. Based on
previously alluded information sigma table for first octave is built as follows in Table.1:

Table.1: Example of σ values for one octave.

 1 2

 Other octave is created from the initial image by downscaling it into half of its original
size. Lowe D. G. (2004) suggested optimization in downscaling process. Since factor of
downscaling is always 2 his idea was to leave out every other pixel during the process
achieving desired effect. However while experimenting with variety of rotated bitmaps this
proved to discard too much information and produce aliasing so in this implementation
integral downscaling was used instead. Destination pixel in downscaled image is projected
as a square back to the original bitmap where it is used as area of integration. For images of
width=u*2 and height=v*2 (v,u > 0) every destination pixel contributes with 4 floating point
additions and multiplications. Otherwise process is a bit more complex but it is only done
once for every octave so the computational time/quality ratio is quite good. Table of sigma-s
for remaining octaves is built. Table. 2 shows example of σ values for the whole pyramid.
These are actual scale space representation parameters. Hopefully it is clear that for
Gaussian smoothing every octave is convolved by the kernels created from values of first
row (based on (5)).

 (6)

Table.2: Example of σ values for the whole pyramid.

 0.707 1 1.414 2 2.828

7

 1.414 2 2.828 4 5.657

 2.828 4 5.657 8 11.314

 5.657 8 11.314 16 22.627

 Number of octaves is once again up to programmer. Experimental results proven 4 or 5
octaves to be satisfactory however my algorithm uses simple decision equation to determine
desired pyramid "depth".

 number_of_octaves=log(min(width,height))/log(2)-5; (1)

 Now we have reached a point where we are able to built scale space pyramid. After
implementing and benchmarking on variety of different images we came to conclusion that
speed of the application still wasn't as good as desired. Therefore another optimization was
introduced.

2. 2.1 Incremental filtering:

 One of the properties of optimization is to avoid computing one information multiple
times. Just by glancing at Fig.4 it was easily deductable that by convolving initial image over
and over again by kernel with increasing σ values we are ignoring that. What happens is that

image blurred by kernel with σ=a is already "included" in the one with σ>a. The
relation between these two convolutions is best observable under Fourier transform as
suggested by Yu Meng (2006). Convolution becomes multiplication under Fourier transform

therefore Gaussian function

 transformed by Fourier transform becomes:

 (7)

For the sake of example consider two images one convolved with initial sigma and then by
 . Second image is convolved by kernel where h . We want to
calculate h so that resulting σ of both images will be the same. After transformation based on
(7) and reducing we get:

 (8)

After comparison of coefficients of in (8) we get:

 (9)

And from (9):

 (10)

 Now the process could be even more simplified. First we convolve image with kernel of
initial sigma and use it as a first image of Gaussian pyramid. Others are then products of the
preceding image with sigma for Gaussian smoothing taken from (10). After implementation
we get following result in less than 0.1 second. It is recommended to upscale the input image
by the factor of 2 to enlarge the number of located future points in following chapters. Bilinear
filtering is used for the process. Upscaling more than once is not necessary since it does not
provide further improvement. Whole pyramid is illustrated in fig. 3.

8

Fig.3: Example of complete pyramid.

2.3 Difference of Gaussian

 The actual position of feature point in bitmap is described as highly distinctive contrast
point that is extractable under variety of different transformations. To achieve best properties
possible we are going to create Difference of Gaussian (DOG) pyramid from the cascade
filtered image sequence in Fig.3. Feature point location is then located in both maximum and
minimum of DOG images. For every DOG image two Gaussian blurred images are required.

 Dog image is then given as:

 (11)

 Therefore it is possible to obtain n-1 DOG images from Scale space pyramid with n
scales in every cascade. Local maximum and minimum of DOG image were proven to be the
most stable features by Mikolajczyk (2002). DOG is although approximation of Laplacian of
Gaussian (LOG) as studied by Lindenberg (1994). Relation between DOG image and LOG

(σ) is understood from the heat diffusion equation.

 (12)

 From (12) it is deductable that can be computed from the finite difference

approximation to σ, using the difference of consequent images with σ σ and
σ σ.

 (13)

Thus:

 (14)

Obviously (k-1) is same for every image pair and σ is just scaling that does not affect
location of local extrema. Prior theory was not necessary for implementation, however I
decided to paraphrase it from Lowe D. G. (2004) just to give reader better understanding of
complex mathematics behind scale-invariant feature extraction. Whole process is illustrated

9

in Fig.4. This image is example of one cascade of DOG as computed from consequent
images from scale space pyramid. Output has been altered for better visual interpretation. In
our application each bitmap is kept as n x 1 array of numbers from <0,1>, therefore
difference values of these images are from interval <-1,1>. In general these values are close
to zero because of nature of Gaussian smoothing as well as of parameter k which is
relatively small.

Fig.4: One cascade of DOG images

 Every one of these n-1 DOG images has potential to produce high quality feature
points. One of the possible ways to find local extrema in bitmap is comparing every pixel to
its 8-neighborhood. We have successfully located one feature point if the compared pixel´s
value is maximum or minimum of surrounding pixels. An improvement have been proposed
by Lowe D. G. (2004) that makes located feature points even more stable. Instead of finding
extremas in every single image we are going to use three images at once. Therefore first and
last image is skipped and features are located as extrema in 26- neighborhood of currently
checked pixel (8 pixels from current image and 9 from both preceding and consequent
images). Accordingly only n-3 images are actually used to locate stable feature points. This
process is illustrated in Fig.5. This simple concept art shows how feature extraction works.
Pixel (symbolized as red cross) is checked to be maximum or minimum of its 26-
neighborhood (shown as green circles)

Fig.5: Local extrema of DOG computation

 There are 26 floating point comparisons for every pixel and that might seem too much

computation. However, bear in mind that majority of pixels are rejected based on first few
operations. Process is repeated for every octave. New feature point is created after obtaining
extrema. Coordinates of compared pixel becomes coordinates of feature point and sigma
parameter is noted as well for later usage during descriptor calculation.

10

2.4 Sub-pixel accuracy

 Section covering sub pixel accuracy was described very poorly in original Lowe D. G.
(2004). This is why we spent a lot of time on this part of application. Therefore we decided to
provide as much resources as possible. This chapter contains every single equation as well
as pseudo code required for successful implementation. Feature point's coordinates
extracted from DOG are in fact coordinates of the center of the pixel that represents local
extrema. To make our features even more suitable for object recognition or camera resection
we might need better definition of its position in R2. Consider R3 point visible in perspective
camera. Moreover, it has maximum intensity of all projected points after projected on plane
of projection. Plane of projection is in fact our bitmap. Therefore if this point is projected
anywhere except center of pixels its value is divided between neighborhood pixels.
Probability of projection being located exactly at pixel center is very poor. As a consequence
almost every feature point's coordinates gets improved by the following process. Pixel data
as encoded by camera are in fact discretized values of real function F(x,y). We can
reconstruct this function by fitting some approximation surface to the data surrounding
feature point currently in pixel precision. We have chosen Taylor's approximation polynomial
in R2 for that purpose. Taylor polynomial of second degree in R1 is given by:

 (15)

R2 interpretation is easily derived from (15):

 (16)

Sub pixel local extrema is found by differentiating (16) and then setting it to 0:

(17)

 Following pseudo code computes sub pixel's local extrema coordinates offsets from
central point position:

 dx = (right - left) / 2

dy = (bottom - top) / 2
dxx = right + left - 2 * center

dyy = bottom + top - 2 * center

dxy = (bottom_right - top_right - bottom_left + top_left) / 4

det= 1 / (dxx*dyy - dxy*dxy)

x_offset = -1*(dyy*dx - dxy*dy) * det

y_ offset = -1*(dxx*dy - dxy*dx) * det (2)

11

Consequent Fig.6 provides even better explanation of how this process works. Pixel data
plotted as bar chart in shades of grey. Chrome surface is visualization of Taylor
approximation surface. Spheres in the render represents key values in surface
approximation. Red sphere - Pixel accuracy maximum, blue sphere -Sub pixel accuracy
maximum, green spheres - 8-neighborhood of pixel maximum.

Fig.6: Illustration of sub pixel maximum

2.5 Low contrast feature points rejection

 Intensity in DOG image of some feature points will be insufficient to be considered
stable therefore we need to discard them. These feature points are in fact located in low
contrast areas. We need to interpolate exact value of Taylor polynomial in sub pixel accuracy
defined feature points and discard them if:

 (18)

We have to use absolute value because intensity of DOG image is from interval <-1,1>.
Interpolating Taylor polynomial is given by (16) where x_offset is used instead of x and y is
replaced by y_offset. Following pseudo code describes interpolation of Taylor approximation
surface in desired point. Variables dx, dy, dxx, dyy, dxy are taken from {2}.

 interpolated_value = center+dx*x_offset+dy*y_offset+0.5*(dxx*

x_offset * x_offset +2*dxy* x_offset * y_offset +dyy* y_offset *

y_offset)

(3)

2.6 Edges response rejection

 Feature points extraction process described in 2.3 has big response in two cases. First
case is corner location. Corner in image is area of image where x and y differences changes
drastically under small transitions of feature point. This is in compliance with our desire to
produce highly distinctive feature points. Other case is edge response. This area has large
intensity variation if feature point is move perpendicularly to the edge and small to none
variation if moved along the edge. Feature points produced from edge responses are
redundant because they distinctiveness is very poor (huge number of key points are located
along the edge but their surrounding is very similar, that makes them hard to be matched
correctly). We need to compute principal curvatures of DOG extremas to decide whether
located feature points does not lie on the edge. Edge location will have a large principal

12

curvature across the edge but small one in perpendicular direction. These values are easily
computed from the Hessian matrix:

(19)

Determinant and trace of the matrix H is used:

(20)

(21)

Where α and β are eigenvalues of matrix H. These values are proportional to the curvatures
of DOG. Bases on approach proposed by Harris and Stephens (1988), we are only
concerned about ratio of α and β rather than about their actual values. That fact speeds the
process up remarkably. Let r be a ratio between these eigenvalues so that . Than the
edge response rejection is represented by:

(22)

Value of (22) depends on ratio of eigenvalues. Therefore we only need to find r so that if:

(23)

,feature point is rejected. This parameter r was set to 10 in our application based on
experiments with different images containing edges. Following figures shows edge and
corner DOG function. Their principal values are easily derived from their shape.

Fig. 7: Example of edge

response in DOG

Fig. 8: Example of corner

response in DOG

Fig. 9: Example of flat region

response in DOG

Fig. 10. shows the response map with notated regions. Dashed lines represents isolines of
the feature's response function. Flat region (green) is rejected based on chapter 2.5. Edge
regions (grey) are rejected as described in 2.3. Stable feature point have its representation in
corner region area (red).

13

Fig.10: Feature response map with highlighted regions

2.7 Orientation assignment

 Assigning stable orientation to the feature point is essential for descriptor to be rotation
invariant. Image L(x,y,σ) is chosen from Gaussian pyramid based on feature point's σ. We
need to compute magnitude and orientation of data interpolated from this image. These
equations are given by:

 (24)

(25)

 Square window of width 16 pixels is created around the located feature point and (24)
and (25) are computed for all of 256 interpolated values. Small implementation detail has to
be figured in this step. Realize that feature point is centroid of this window. This centroid lies
in between of the values and because of that actual value representing location of feature
point does not have to be interpolated. Therefore we get 256 orientations and appertaining
magnitudes. To make orientation as stable as possible we need to weight magnitudes with
Gaussian kernel of σ=1.5*feature_point_sigma. This operation guarantees that magnitudes
closer to the key point are more significant than the ones near the border of the window. 36
bin histogram is created representing 360 degrees of rotation. Therefore one bin represents
10 degrees. Prior computed orientation is used to choose two closest bin. Magnitude
belonging to this orientation is then linearly interpolated between these two neighboring bins.
Histogram is filled with all 256 magnitudes. Maximum in histogram is located. The actual
maximum is than computed by fitting parabola to the surrounding of the bin as proposed by
Lowe D. G. (2004). Parabola equation is given as:

 (26)

14

Local extreme is than computed by differentiating and setting equal to zero:

 (27)

 We need to know whether point from (27) is maximum or minimum. We are only
interested in maxima which is found if second derivative of (26) is negative in located point.
Orientation of this interpolated maximum is assigned to the feature point. For every
histogram bin with value larger that 80% of maximum new feature point is created. This
feature point's orientation is set by its bin and all the other values are adopted from the
original feature point (obviously parabola is fitted again as described in prior section). These
additional feature points contribute significantly to the stability of features matching.

2.8 Feature points conclusion

 Feature points have been located as extrema of DOG. Taylor expansion up to
quadratic terms was used to provide sub pixel accuracy. Than poorly distinctive feature
points were removed. Whole process is illustrated in following diagrams:

Fig.11: Feature points extracted from DOG

(4509)

Fig.12: Low contrast feature points rejected

(1532)

Fig.13: Feature points located on edges rejected

(1135)
Fig.14: Feature points with assigned orientation

15

3. Feature point descriptor

 All the feature points are located and orientations are assigned. Last thing to do is to
develop way to describe surrounding of the feature point so that it can later be matched
against other key points. Descriptor is a vector, mainly from algorithmic side of view. This
vector have to be as invariant (all the types of invariance mentioned in the text before) as
possible. It is only possible to recognize R2 points representing one R3 point with highest
probability if prior property is fulfilled. One way of creating a descriptor is sampling values
around the feature point and then using some correlation method do compute probability of
feature match. This approach is still used heavily but in our implementation we decided to go
other way. As stated in Lowe D. G. (2004):

 "A better approach has been demonstrated by Edelman, Intrator, and Poggio (1997).
Their proposed representation was based upon a model of biological vision, in particular of
complex neurons in primary visual cortex. These complex neurons respond to a gradient at a
particular orientation and spatial frequency, but the location of the gradient on the retina is
allowed to shift over a small receptive field rather than being precisely localized. Edelman et
al. hypothesized that the function of these complex neurons was to allow for matching and
recognition of 3D objects from a range of viewpoints. They have performed detailed
experiments using 3D computer models of object and animal shapes which show that
matching gradients while allowing for shifts in their position results in much better
classification under 3D rotation. For example, recognition accuracy for 3D objects rotated in
depth by 20 degrees increased from 35% for correlation of gradients to 94% using the
complex cell model. "

 Following algorithm is based solely on citied text. First, we are going to interpolate
values around feature point. This process is similar to the chapter 2.7 where we were
computing orientation. The difference is that we need to rotate this 16 x 16 grid in terms of
feature point's orientation. Rotation of a point in 2D is given as:

 (28)

 Where θ represents feature point's orientation. Keep in mind that feature point is
centroid of this grid. Implementation step from 2.7 takes place as well but the location of the
grid points are rotated. Values for these grid points are computed and orientations and
magnitudes are calculated as well. Magnitudes are than weighted by Gaussian kernel of
sigma of half of the descriptor width (8 in our implementation). This grid , or descriptor if you
will is then divided into 16 sub regions as illustrated on Fig.15 by black and white hatches. 8
bin histogram is created for every sub region. Magnitudes contributes to the bins the same
way as described in 2.7 bearing in mind that one bin no longer represents 10 degrees but 45
instead. In 2.7 we only interpolated orientations in terms of single histogram. Since we want
our descriptor to be invariant to small position changes we need to bring this interpolation to
the second level. Every magnitude is contributing to the correct bin of all the surrounding sub
region histograms. This is ensured by bilinear interpolation. Magnitudes located in the central
part of descriptor contributes to 4 histograms while the ones on the border are only divided
between 2 "border" sub regions. Values in the corners of the descriptor are weighted by their
distance to the closest corner sub region centroid and then assigned to it. Values of
histogram bins than becomes descriptor vector. Since we have 16 histograms of 8 bins,
computed vector is 128 dimensional. This vector need to be normalized in order to cancel
affine changes in illumination. Nonlinear changes have greater effect on matching stability
and there is in fact no perfect way to cancel it altogether. Some improvement in that area is
achieved by setting values of descriptor that are larger than 0.2 to 0.2 and renormalizing
again. Following figure 15 illustrates the descriptor pattern. Red cross represents feature
point's location. Green crosses are interpolated values. Blue crosses symbolizes sub regions

16

centroids as used for bilinear interpolation and hatched black and white areas represents sub
regions. Pixels of the studied bitmap are visible in the background with highlighted pixel
structure. Arrow shows feature point's orientation.

Fig.15: Descriptor illustration.

3.1 Future work with descriptor

 After many hours spent on the problem of describing surrounding of the feature point

we realized that square descriptor as seen on Fig.15 may not be the best solution. Our yet

not implemented proposal for future development of more reliable and faster to compute

image descriptor relies in using different pattern for interpolated values. This pattern is shown

in Fig.16. It has been computed by complex smoothing function which still need some

optimization therefore we decided not to include it in this paper. First idea was to create

descriptor pattern from polar grid but that approach was rejected because coordinates got

pushed together in the center of descriptor. This is not desired because high density of

interpolated values does not provide enough variation for descriptor to be invariant to small

changes of position. Therefore, kind of combination between square and spherical descriptor

was created. Reason for trying to make descriptor border round is hidden in Gaussian

weighting function. Interpolation is rather complex process that requires some computational

time (of course computational time is very relative but since for n feature points we need to

interpolate n*256 values for square descriptor, it is highly advantageous to make as much of

it as possible) . Problem with square pattern is that values near to the corners of the

descriptor have such small contribution to the descriptor itself because of Gaussian

weighting that it is "almost redundant" to compute these values. Odd number of interpolated

values is used as well and as a result feature point location and sub regions centorids are

sampled as well. For the descriptor in Fig. 16 we used only 209 interpolated values as

opposed to 256 in square descriptor created in Lowe D. G. (2004). This improvement was

enabled by better distribution of samples in the pattern. Finally our proposal is going to use

magnitude-space pattern scaling. This phenomena is represented in Fig. 17. Idea behind it is

that feature points's orientation and magnitude could as well be used to calculate

eigenvalues of ellipse. We can then use this elipse to form border of descriptor seen in Fig.

16. to create modified pattern in Fig. 17. This pattern might be beneficial in viewpoint

changes situations since interesting area might get sampled better. This of course needs a

17

lot of experimentation. For now it stays in idea domain. We are going to focus on

implementing this improvements and comparing it to widely used descriptor in future papers.

Fig.16: Proposed descriptor pattern.
Fig.17: Magnitude affected descriptor

pattern.

4. Feature points matching

 In chapter 3 we created multidimensional vector that describes feature point based on

its close neighborhood. These vector's entries directly represents particular regions of

descriptor and since it is rotation invariant the easiest way to correlate two feature vectors is

to calculate Euclidean distance. Therefore if we are searching for correspondence of

currently checked feature vector we need to calculate this distance to all vectors in database

(database might respond to other image or prior computed set get from number of). Closest

match is than find as the future vector from database with smallest Euclidean distance to

original vector. Match is than noted only If second closest match is outside of 80 percent of

closest match. This step take place to cancel indistinctive matches. Unstable matches would

be found if this step was left out. Euclidean distance in our implementation is given by.

(29)

 Computational time of this brute force implementation would be highly affected by
database size. For databases larger than 40000 feature vector this computation would take
tens of seconds which would be unacceptable. We use approximate nearest neighbor search
based on modified k-d tree to speed the process up. Feature vectors of database are first
sorted in ascending order based on their median values. Modified k-d tree is than created
with depth.

 kd_tree_depth=log(database_feature_vector_count)/log(2) (4)

This paper is not focused on k-d tree acceleration structures since there are a lot of
accessible materials on that subject. Basic idea is described in Fig. 18. Sorted array of

medians is divided to halves kd_tree_depth times. And median value representing slice is

18

noted in k-d tree structure. This structure is treelike which makes it possible to get
approximate nearest neighbor (ANN) in few floating point comparisons (e.g. 40000 feature
vectors database only requieres 15 floating point comparisions to get ANN). Since this
nearest neighbor is only approximation wee need to check surrounding of the sorted feature
vectors database to find exact match. It was proved that as much as 200 points around
approximated neighbor is enough to provide over 90 percent chance of finding exact
neighbor while improving computational time drasticly. Actual improvement is around 2
orders of magnitude. By comparing all extracted feature points from first image to the ones in
second we get matches that can later be used for number of applications. These matches
are illustrated in Fig.19. Test images used for this matching were affected by 10 percent
Gaussian noise, exposure was decresed by 1.15 and image was rotated by 162 degrees.
Non primitive angle (e.g. 180 is primitive angle in this case because no interpolation occurs,
therefore image pixels would be the same only their position gets changed) 162 was chosen
to introduce even bigger challenge for matching. 318 feature points were matched. As much
as 3 are needed to recognize object under affine transformation and at least 8 points are
desired to reconstruct camera information. Therefore we consider our implementation to be
rather successfull. Ransac could be used in this point to improve results by rejecting false
matches.

Fig.18: Approximate neighbor search with k-d tree split lines included.

Fig.19: Matched feature points.

19

 Conclusion

 This paper provided closer look on implementing sift while partly focusing on
optimization of key regions in program. We proposed step by step instructions one might
follow to create application of his own. Along with it, equations and pseudo code was
provided to ensure even better comprehension. All the illustrations made by us were once
again aimed to provide factual and fine-looking illustration of more complex functions and
processes. All the figures were created from scratch in order to fully represent our chain of
thought during implementation of this algorithm. We would like to build on the foundation
created by working with image recognition and exploit its potential to maximum. Our main
ambition is to create application for 3D model reconstruction out of 2D projections. This
application will rely heavily on terms proposed in chapter 1. Other areas with huge potential
for image matching is object recognition, panorama stitching, counting algorithms (traffic
cameras for example), face recognition, etc. Computer vision and feature matching in
particular provide tools that have revolutionized the world as we know it. It has already found
its place in many areas and we believe there is still a lot to come.

References:

Edelman, S., Intrator, N. and Poggio, T. 1997. Complex cells and object recognition.

Unpublished manuscript: http://kybele.psych.cornell.edu/∼edelman/archive.html
Harris, C. and Stephens, M. 1988. A combined corner and edge detector. In Fourth Alvey

VisionConference, Manchester, UK, pp. 147-151.
Lindeberg, T. 1994. Scale-space theory: A basic tool for analysing structures at different

scales, Journal of Applied Statistics, 21(2):224-270.
Lowe, D. G. 2004, “Distinctive Image Features from Scale-Invariant Keypoints”, International

Journal of Computer Vision, 60, 2, pp. 91-110, 2004.
Mikolajczyk, K. 2002. Detection of local features invariant to affine transformations, Ph.D.

thesis,Institut National Polytechnique de Grenoble, France.
Richard Hartley and Andrew Zisserman (2003). Multiple View Geometry in computer vision.

Cambridge University Press. ISBN 0-521-54051-8.
YU MENG and Dr. Bernard Tiddeman(supervisor) 2006, "Implementing the Scale Invariant

Feature Transform(SIFT) Method ", Department of Computer Science, University of St.
Andrews,yumeng@dcs.st-and.ac.uk

