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ABSTRACT. The aim of presented paper is to solve the nonlinear geodetic
boundary value problem (BVP) by the finite element method (FEM) involving
the mapped infinite elements (MIE). In comparison to our previous works, see
[MACAK, M. ET AL.: On an iterative approach to solving the nonlinear satellite-
fized geodetic boundary-value problem. In: IAG Symp. Vol. 142 (2016), pp. 185—
192.] and [MACAK, M. ET AL.: A gravity field modelling in mountainous areas
by solving the nonlinear satellite-fized geodetic boundary value problem with the
finite element method, Acta Geodaetica et Geophysica, 58 (2023), 305-320.] deal-
ing with bounded domains, in this paper we propose and study numerical concept
on unbounded domains, given as an exterior BVP for the Laplace equation out-
side the gravitating body, e.g. Earth, with the nonlinear boundary condition (BC)
prescribed on the Earth’s surface and considering the solution regularity condi-
tion at infinity. This concept can be found in many scientific disciplines being
also the most natural from physical geodesy point of view, see, e.g., [BACKUS, G.
E.: Application of a non-linear boundary-value problem for Laplace’s equation to
gravity and geomagnetic intensity surveys, Q. J. Mech. Appl. Math. 2 (1968),
195-221.] and of large practical importance when we are not able to prescribe
BCs on a bounded domain. The proposed concept is based on the iterative pro-
cedure, and as the numerical method we have implemented the FEM with the
MIE to take into account the regularity of the disturbing potential at infinity.
Since the boundary of the computational domain is the discretized real Earth’s
surface considering its topography, as finite and infinite elements we have chosen
the triangular prisms. We study and verify this numerical approach by a testing
experiment with a homogeneous sphere, by the experiment using EGM2008, and
finally, we present one detailed numerical experiment with DTU21GRA data.

© 2025 Mathematical Institute, Slovak Academy of Sciences.

2020 Mathematics Subject Classification: 35J25,65N30.

Keywords: fixed geodetic boundary value problem, nonlinear boundary condition, iterative
procedure, finite element method, mapped infinite element, global gravity field modelling.
Supported by the Grants APVV-23-0186 and VEGA 1/0690/24.

Licensed under the Creative Commons BY-NC-ND 4.0 International Public License.

129



M. MACAK—Z. MINARECHOVA— R. CUNDERLIK—K. MIKULA

1. Introduction

From publishing the fundamental studies of physical geodesy written by Stokes
[33] and later by Molodensky et al. [25], a determination of the external grav-
ity field has been performed by solving the geodetic boundary value problems
(GBVPs). There are various kinds of GBVPs depending on input data and
the knowledge of the 3D position of the Earth’s surface. In the past, when the ver-
tical information of the Earth’s surface was based on levelling, the free GBVPs
with gravity anomalies as input data have been solved in practical solutions.
Even nowadays, the free GBVP is still solved for local gravity field modelling
(e.g., [9]). However, thanks to the precise 3D positioning by GNSS (Global Nav-
igation Satellite Systems) techniques, the absolute 3D position of the Earth’s
surface is known, so the fixed GBVP is increasingly becoming a subject of inter-
est. Hence, the fixed BVP is reduced to the determination of the geopotential
W(x,y, z) in the external space outside the Earth with the gravity measure-
ments observed on the Earth’s surface as boundary conditions (BC). It is worth
mentioning that there are plenty of approaches and methods routinely used
for gravity field modelling. Therefore, here we only mention those that are fo-
cused on the fixed GBVP and preferably its original nonlinear form.

The first studies on the theory of the fixed GBVP have been formulated
by Backus [2] and Hotine [16]. Few years later, Koch and Pope [I§] presented
the proof of uniqueness and existence for the nonlinear fixed GBVP, and Bjer-
hammar and Svensson [7] used the general implicit function theorem to give
a solution of the existence and uniqueness problem. The study presenting an
expansion of the nonlinear BC into a Taylor series using the reference poten-
tial field approximating the geopotential was published by Heck [13] and this
approach was later extended by Heck and Seitz [14]. Sacerdote and Sansé [30]
published the study where they further developed the idea used by Bjerhammar
and Svensson [7] for an iterative solution and they found explicit convergence
conditions. Diaz et al. [I0l[11] showed the existence and uniqueness of a viscosity
solution for the Backus problem.

In general, in physical geodesy the most preferred mathematical parametri-
sation of the gravitational potential is spherical harmonic expansion outside
the minimum Brillouin sphere, see, e.g., [27]. There are two reasons for that.
The first one is that constant spherical harmonic coefficients defining physical
properties of the gravitating body can be estimated by forward modelling or from
available gravitational datasets. Second, having a set of the constant spherical
harmonic coefficients at disposal, one can simply synthesise the gravitational po-
tential and its higher-order spatial derivatives anywhere in the three-dimensional
space, see [37]. There many scientists and researchers who are working on this
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issue and the problems connected with it, but since we are dealing with numer-
ical methods in this paper, we recommend readers who are interested in this
topic, e.g., [BLI7,26[32LB85H37] and the references therein.

Macék et al. [T9] published a numerical approach for solving the nonlinear
satellite-fixed GBVP by the finite volume method, and recently also by the finite
element method (FEM) [22]. In both papers, the infinite computational domain
was truncated by adding an artificial boundary away from the Earth, and the nu-
merical solutions have been fixed by the prescribed Dirichlet BC in terms of the
disturbing potential. In this paper, we continue in our previous studies [19,122],
but we solve the original infinite nonlinear fixed geodetic boundary value prob-
lem (INFGBVP) including the condition of the regularity at infinity. The main
motivation of this contribution is the global gravity field modelling in the case
when only gravity disturbances on the Earth’s surface are available. As a nu-
merical method we have implemented the FEM with mapped infinite elements
(MIE), see, e.g., Bettess [5,[0], Zienkiewicz et al. [38,39] or Macdk et al. [21].
An advantage of using numerical methods for solving the fixed GBVP is that
numerical solutions can be obtained on the discretized real Earth’s surface con-
sidering its topography. This can be challenging in high-mountainous areas where
a contribution of the nonlinearity is expected to be significant.

The paper is organized as follows. In Section 2, we formulate the INFGBVP
with its form for iterative approach. In Section 3, we derive a numerical scheme
for solving the infinite fixed GBVP with the oblique derivative BC by the FEM
with MIE. Numerical experiments are presented in Section 4. The paper ends
with conclusion and summary.

2. Formulation of the infinite nonlinear fixed geodetic
boundary value problem and the iterative procedure

Let us consider the infinite computational domain €2 in the space above the
Earth, that is, the domain bounded by 02 representing the Earth’s surface and
extending to infinity. In such a domain 2, we formulate the nonlinear infinite
fixed geodetic boundary value problem in the following form

AT(x) =0, x € Q, (1)
V(6 + U60)] = o), x € 00 ®)
T(x) =0, x| — o0, (3)

where T'(x) is the disturbing potential defined as a difference between the real
W(x) and normal U(x) gravity potential generated by a reference ellipsoid
GRS80 [I5] at any point x = (z,y,2), g(x) the magnitude of total gravity
vector, 0f) is the surface of Earth or more generally any Lipschitz boundary,
and T'(x) is regular at infinity.
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Eqgs. (I)—@) represent an exterior BVPfor the Laplace equation, where the in-
finite computational domain lies outside the Earth and the equation (2] repre-
sents the nonlinear BC. From mathematical point of view, the equation (2)) is
the so-called eikonal equation that is a nonlinear partial differential equation
encountered, e.g., in problems of wave propagation, see [31].

The iterative procedure for determining the direction of g(x) and the disturb-
ing potential 7'(x) in solving the nonlinear satellite-fixed GBVP has been pub-
lished in [19] or [22]. Now we will apply its main ideas also for solving INFGBVP.

The norm of the gradient in (2) can be rewritten in the following form

V(Ix) +U(x)
IV(T(x) + U(x))l

If we denote the unit vector that defines the direction of the gravity vector, i.e.,

V(T(x) + U(x)) = g(x). (4)

égg;igg;g‘ = @%ﬁgg;‘, by v(x), after some rearrangement in (@) we obtain
the equation, which will form the basis of our iterative procedure
v(x)-V(T(x)) = g(x) - v(x) - V(U(x)), xe€N. (5)

Now we are able to write the iterative procedure for solving INFGBVP as
follows

AT (x) =0, X € Q, (6)
v'(x) V(T" ! (x)) = g(x) — v"(x) - V(U(x)), x €09, (7)
T (x) =0, x| = oo, (8)
forn=0,1,2, ..., where
" V(I (x)+U(x
oy = T LU o)
V(T (x) + U(x))|
We start the iterations with T°(x) = 0, so for v’(x) we obtain v0(x) =
% = s(x), where s(x) represents the direction of the normal gravity vector.

In this way, in every iteration we solve the BVP for 77! (x) with the prescribed
oblique derivative vector v"*(x), while in the first one it is given by

s(x) - V(T (x)) = g(x) = 7(x) = dg(x), (10)
where 7(x) = |V(U(x))| denotes a magnitude of the normal gravity vector and
dg(x) stands for the gravity disturbance.

It means that in each step of our iterative process ([@)—(8) we will deal with
the infinite fixed GBVP with the oblique derivative BC defined as

AT(x) =0, x € Q, (11)
v(x) - V(T(x)) = g(x) — v(x) - V(U(x)) = a(x), x€T, (12)
T(x) =0, |x| = oo, (13)
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During the iterative process we improve the direction of the unit vector v(x)
and we stop the computations, if in each node holds

IT"(x) — T" " (x)] < &, (14)

where ¢ is a user-specified small real number.

Since the last iteration represents the approximation of the disturbing poten-
tial T'(x) and direction of gravity vector v(x) in ([{)—(3), the sum 7"+ (x)+U (x)
represents the approximation of the gravity potential W"*!(x) in every node
of the computational domain €.

3. Solution to the infinite fixed GBVP with the oblique
derivative BC by the FEM with mapped infinite elements

In the finite element analysis, the infinite domain problems are solved in var-
ious ways, e.g., by a truncating of the domain as we used in our previous
papers [12,24], and now we have decided to use the so-called mapped infi-
nite elements (MIE) which can be easily implemented. The MIE were originally
pioneered by Bettess in [5] and later developed in [6,231[38,[89]. To derive our
FEM numerical scheme for solving (II)—(I3]), we will follow the ideas presented
in these works and we will combine them with the basic principles of FEM
published in book by Reddy [29]. In this way, we will also naturally continue
in our previous studies [21[34].

3.1. Discretization of the computational domain

To use MIE, we divide the infinite computational domain €2 into two concentric
parts, where the lower one, denoted by Qpg, is meshed with finite elements and
the upper one, Qug, is meshed with one layer of infinite elements (Fig. [l (a)).
Since in our case 0f2 is a triangulated Earth’s surface, we have chosen triangular
prisms, i.e., finite pentahedral elements with six nodes and five faces (Fig.[dl (b)),
and corresponding mapped infinite pentahedral elements with nine nodes and
five faces (Fig. M (c)). In this way, we divide the computational domain € into

ni, No, n3 elements Q%e =1, ..., ninong, in the latitudinal, longitudinal and
vertical direction, respectively, and to specify the position of an element ¢
we use indexes k, [, m, where k=1, ..., ny,l=1,...,ngand m=1, ..., n3.

3.2. Derivation of the weak formulation on the element

Let us consider an arbitrary element 2¢ from our finite element discretization
with indeces k=1, ..., ny,l =1, ..., ny and m =2, ..., n3. We multiply (1)
by a weight function w and using Green’s identity (we omit (x) to simplify
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F1GUuRE 1. The meshed computational domain:

(a) Hlustration of the computational domain € bounded by blue bound-
ary 002 and meshed with finite elements depicted by green, and one layer
of mapped infinite elements depicted by yellow;

(b) The finite pentahedral elements with six nodes;

(¢c) The mapped infinite pentahedral elements with nine nodes. Isopa-
rametric coordinates are within intervals 0 < ¢ < 1, 0 < 7 < 1 and
-1<¢<L

the notation in the following equations) we obtain the weak formulation (WF)
of (II) over an arbitrary above defined element Q¢

/VTc Vwdzdydz :/VT- nwdo, (15)
Qe o9¢

where n denotes the unit normal to 9.

Due to the oblique derivative BC (I2) prescribed on the bottom boundary T,
we have to derive the WF for elements with indices k=1, ..., n1, =1, ..., ny
and m = 1 separately. We use the ideas published in [20] or [24]. We split
the oblique vector v into one normal, n, and two tangential, t;, t2, components

v =cin+ coty + c3to, (16)
and we insert ([I0)) into (T2))
VI -v=c1VT - n+coVT-t;1 +c3VT-ty = a. (17)
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From (I7)) we express the normal derivative

VIin=——- 22— _2— 18
n C1 C1 8t1 C1 8t2’ ( )

where we assume that ¢; # 0, and we insert (I8))to (I3]) to get

a e 0T 30T
T - [(2-2Z= S T G
/V Vwdzdydz /(61 P e, aQ)wda + /V nwdo. (19)
e Te aQe\Fe

After some rearrangement, we obtain the WF for elements with indices
k=1,....,n,l=1,...,ngand m=1

T T
/VT Vw dzdydz + — 0 wdo + —8 wdo =
8 1 61 8‘52

Qe Fe Te
2 wde + / VT -nwdo, (20)
c1

re o0\

where n is the normal vector and ti, ty are tangent vectors to I'¢ C 9Q°¢ C R?,
where I'® denotes the bottom boundary of an element Q€.

3.3. Derivation of equations over an element

For a pentahedral element Q¢ with indexes k=1, ..., n1,l =1, ..., ny and
m =2, ..., ng — 1 with six nodes we can write
6
TrT =Y T, (21)
j=1

i.e., we approximate the unknown value T as T using a linear combination
of basis functions ¢; with coefficients 77, j = 1, ..., 6. We substitute (21))
into the WF ([I5]) and consider 1; for weight function w. We obtain the ith
equation in the form

O; i | O%; O | 0%; O
Z /< ox 81’ dy Oy + 0z 0z dzdydz

=Z / g 1 dady, (22)

j=1 o0e

where ¢, = VT - n denotes the projection of the vector VI along the unit
normal n.
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For the row of elements Q¢ given by indices k=1, ..., ny, =1, ..., ny and
m = 1, we follow the same way and after inserting (2I]) into (20) and considering
w = 1;, we obtain the ith equation in the form

6
ZT;?/ <%8¢i+%5¢¢+%8wi

Or Oz oy Oy 0z 82) dzdydz

T® 62/‘%’%(1 dy +— ;fjwzdxdy

3
-3 / % dady + 3 [ antidaa, (23)

Jj=1 oQe\Ie

where index j = 1, ... , 3 refers to nodes of the element 2¢ that lie on the bottom
boundary I' of the computational domain 2.

Finally, for the mapped infinite pentahedral element Q¢ given by indices
kE=1,...,n1,1 =1,..., ng and m = ng with nine nodes, see Fig. [ (c),
we can write

9
= ZTjede(x, Y, 2). (24)
j=1
We substitute (24]) for elements Q¢ with indexes k =1, ..., n3, I =1,..., ny

and m = ng into (IH), consider v; for weight function w and we obtain the ith
equation in the form

Z Ty 9 9 + Oy i + 9%, 9 dzdydz

or Ox dy Oy 0z 0z

= Z /qn 1; dady, (25)

jzlage

where ¢, = VT - n again denotes the projection of the vector V1 along the unit
normal n.

3.3.1. Shape and mapped functions

The basis function ; is the piecewise quadratic function and it is uniquely
determined by choosing value 1 at N; and 0 at every N;,i # j, cf. [§]. In our
approach, we will work with isoparametric coordinates &, 7, ¢ in local coordinate
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system, so we transform (21I)) and (24)) to, respectively,

9

6
T° =" T5y;(€m, ),
j=1

T° =" T5;(€m, ),

Jj=1

(26)

(27)

where the transformation between local coordinates &, 1, ( and global coordinates

x,y, z is given by
0Y;
o¢
0Y;
on

9
o¢

oz
¢
Oz
on
Oz
¢

8z
o¢

oz
on

oz
o¢

Oy
ox
9
By |- (28)

Y
0z

Then the shape functions 1, (&, 7, ¢) for finite pentahedral element with six nodes
(see Figlll (b)) in the local coordinate system are defined in Tab. [Il

TABLE 1. The shape functions 1; (&, 7, ¢) for the finite pentahedral element
with six nodes N; defined by isoparametric coordinates &, n and ¢.

N; | €| n| ¢ || Shape functions ¥;(&,n, ()
Ni 001 (1-¢6-m(1-¢/2
Ny |110]-1 £(1-¢)/2
N3 |0 1]-1 n(1-¢)/2
Ny|0]0]1 (1-&-n(1+¢)/2
Ns|1]0]1 £(1+¢)/2
Ne|O|1]1 n(1+¢)/2

In the fixed GBVP ([I)—(13)), the computational domain € tends to infinity
only in the vertical direction. So let us suppose the element 2¢ which extends
from node N; with coordinate x; through N with coordinate x5 to the point
N3 at infinity, see Fig[2l Then this element is mapped onto the parent element
defined in the local coordinate system in the range —1 < ¢ < 1 using formula

z(¢) = M1(Q)xy + Ma(()x,

(29)
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FIGUrRE 2. Illustration of MIE tending to infinity in the vertical direc-
tion Q€
where ¢
-2
M = —= 30
1 (C) 1 — C ’ ( )
1+¢
Ms(C) = i—¢ (31)

It is obvious from (29)-(3I]) that ¢ = —1,0,1 correspond to the global posi-
tions of x1, xs, 00, respectively. Then for infinite pentahedral element with nine
nodes N;, see Fig. [l (c), we obtain the mapping functions M;(&,n,¢) by multi-
plying ([B0)—(3T)) with the shape functions 1;(£,n) for linear triangular element,
where directions £ and 7 are finite, i.e.,

Y€ =1-&—n, ¥2({m) =& and Y3(&n) =1
These mapping functions M;(£,n,¢) can be seen in Tab. ([2I).
Now we can write (22), [23)) and (25)) in a compact matrix form

KT = Q°, (32)

where K¢ = [K;;] stands for an element stiffness matrix, T¢ = (71, ..., Tg)
is a column vector of unknowns and Q¢ denotes the right-hand side vector.

To evaluate element matrices and vectors we proceed as follows. We choose
one basis function v; per vertex N; and we differentiate the basis functions with
respect to a position of each node. To calculate two integrals over a boundary I"
in (23] which include a tangential derivative, we approximate derivatives in tan-
gential direction like in the finite difference method, i.e., using values of basis
functions at nodes N;, see Fig. 3, of element e we have
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TABLE 2. The mapping functions M;(&,n,¢) for the infinite pentahedral
element with nine nodes N; which extends to infinity in the vertical
direction. Values &, n and ( denote isoparametric coordinates of nodes.

| N[ €] n]| ¢ | Mapping functions M;(&,7,0) |
Ny |o|o]-1 (1=&-=n)(=20)/(1-C)
Ny |1]0]-1 §(=2¢)/(1-¢)
N3 |0][1]-1 n(=2¢)/(1-¢)
Ny|O[O]0 (1-&-n)(1+¢/1-0)
N;|1]0]0 §1+¢)/(1—-¢)
Ne|O0[1]0 n(1+¢)/(1-¢)
N;|o]o|1 -
Ne|1]o0|1 -
No|lo|1]1 -

N3

£

N1 N2

FIGURE 3. Illustration of tangent vectors used for approximating the tan-
gential derivatives.

ovl? I (Ny) — i (V)
8t]_ - d(N].;NQ) ’

(33)

ovl? I (Ng) — i ()
oty d(Ny, N3)
where d denotes the distance between two neighbouring nodes. The same idea

of approximating derivatives, however for hexahedral elements, has been pre-
sented in [24].

, (34)
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3.4. Assembly of element equations
Finally, we assemble all element equations using two principles, see Reddy [29]:

(i) continuity of primary variables at the interelement nodes. It means that
nodal values T¢ and T of two adjacent elements Q¢ and Q¢! at the
connecting nodes have to be the same.

(ii) balance of secondary variables in a weighted-integral sense.

In this manner, we obtain the global linear system of equations with a column
vector of unknown global nodal values T,

KT = Q, (35)

where the matrix K is sparse, since most of its entries are zero, which is
a basic feature of the FEM, see [8,29], and positive definite, and Q is the col-
umn vector whose entries are zero except for nodes with the prescribed oblique
derivative BC (12)).

4. Numerical experiments

We have performed three numerical experiments. The first experiment has
dealt with the modelling disturbing potential obtained as a difference between
gravitational potentials generated by two homogeneous spheres with mutually
displaced origins. The aim of this experiment was to test a behaviour of the pro-
posed approach on the example where the exact solution is known.

In the second experiment, the reconstruction of Earth Gravitational
Model 2008 (EGM2008) [28] on the discretized Earth’s surface has been done
and studied.

The last experiment has dealt with detailed global gravity field modelling
using the DTU21GRAV data [I]. This database provides the high-resolution
altimetry-derived gravity data over ocean/seas augmented by the EGM2008-
-based gravity data over lands improved by a detailed terrain effect.

4.1. Experiment with the homogeneous spheres

The first experiment was theoretical, involving an artificial situation, just
to study and test the behaviour of the proposed approach, and it was equiva-
lent to the experiment published in [22]. In this simplified testing case, the dis-
turbing field has been generated between two identical homogeneous spheres
with the radius R = 6378 [km]| but with centers mutually shifted by 100 [km]
in the z-direction, see Fig. 4.

The gravitational potential as the exact solution of (I1) has been calculated
as GM/r, where GM denotes the geocentric gravitational constant and r de-
notes the distance from the origin O or O* see Fig. 4. To obtain BC on the
bottom boundary, the derivative of this exact solution in the form —GM/7? has
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FiGURE 4. The illustration of the testing numerical experiment—
—the disturbing potential is obtained between the gravitational
potential generated by the sphere S representing the simplified Earth,
and the gravitational potential generated by the sphere S* representing
the normal body.

been used. We have started (see Tab. 3) with the resolution 180 x 90 x 45,
where the numbers denote the number of nodes in longitudinal, latitudinal and
radial direction, respectively. Afterwards, we have performed two successive re-
finements and in each refinement we have calculated four iterations. We can
see that with the refinement, we have obtained the convergence of the method,
and moreover, it is obvious that the second iteration of our solution is very close
to the “Reference” value (see Tab. 3), so the following iterations bring only small
improvement of the results. In this case, the “Reference” value is used to desig-
nate the values obtained with the exactly calculated vector v(x) (see e.g. (I2)),
so this value includes only the discretization error.

For a comparison, we have also performed the corresponding experiment,
where we have solved the nonlinear satellite-fixed GBVP, see [22], by the FEM
with the domain truncated at the altitude of 240 km. There the disturbing
potential calculated as GM/r was prescribed. The size of the elements was chosen
identical to the previous experiment. Statistics of residuals between the obtained
solution and the disturbing potential directly calculated as GM/r can be seen in
Tab. 4. It is obvious that again when the grid is refined, the standard deviation
decreases by approximately 4 times. However, minimum and maximum values as
well as the standard deviation of residuals are significantly lower in comparison
to the values presented in the Tab. 3. It is an expected consequence of fixing
the solution with the Dirichlet BC at the altitude of 240 km. It shows that if
sufficiently accurate and reliable data are available at the boundary outside the
Earth, it is reasonable to solve nonlinear satellite-fixed GBVP, but if such data
are not available, solving the INFGBVP by FEM with MIE is an appropriate and
useful alternative.
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TABLE 3. Statistics of residuals between the numerical solution
to the INFGBVP and the exact solution obtained as GM/r on the bot-
tom boundary (units: m2s~2). The “Reference” values are obtained with
exactly calculated vector v(x), see (I2).

No. of nodes No. of it. ‘ Min. ‘ Max. ‘ Mean ‘ St. deviation
1 27.3510 | 60.4258 | 47.0674 9.5872
2 -66.1024 | 67.5531 | 0.2961 44.3976
180 x 90 x 45 3 -66.1023 | 67.5517 | 0.2953 44.3969
4 -66.1023 | 67.5517 | 0.2953 44.3969
Reference | -66.1033 | 67.5526 | 0.2953 44.3978
1 32.3182 | 59.6482 | 47.0545 8.9062
2 -16.6631 | 17.6192 | 0.1483 11.1865
360 x 180 x 90 3 -16.6633 | 17.6189 | 0.1479 11.1864
4 -16.6632 | 17.6189 | 0.1480 11.1864
Reference | -16.6634 | 17.6190 | 0.1480 11.1865
1 33.2430 | 59.5323 | 47.0267 8.8453
2 -4.3218 | 5.5170 | 0.2273 2.9748
720 x 360 x 180 3 -4.4008 | 5.4692 | 0.1257 2.9766
4 -4.4008 | 5.4692 | 0.1257 2.9766
Reference | -4.3944 | 5.2340 | 0.1134 2.9686

4.2. Global gravity field modelling with the EGM2008 as a reconstruc-
tion of the harmonic function

In case of the experiment with the EGM2008, the bottom boundary I" has been
the discretized Earth’s surface created with SRTM30 PLUS data, see [4]. The
height of Qpg has been 5000 [km]. The number of divisions has been 360 x 180 x
90, 720 x 360 x 180 and 1440 x 720 x 360 corresponding to horizontal resolution
1deg x1deg, 0.5deg x0.5deg and 0.25deg x0.25 deg, respectively. The input
surface gravity disturbances as BC ([I2)) have been generated from EGM2008 [2§].

The disturbing potential solution for the finest grid, i.e., 1440 x 720 x 360
is depicted in Fig. 5. Statistics of residuals on the Earth’s surface between the
obtained solution and the disturbing potential generated directly from EGM2008
for successive refinements can be found in Tab. 5. We can see an improvement
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TABLE 4. Statistics of residuals between the FEM solution to the
satellite-fixed GBVP [22] and the exact solution on I' (units: m?s~2).
The “Reference” values are obtained with exactly calculated vector v(x),

see ([I2)).

No. of nodes No. of it. Min. Max. Mean | St. deviation

1 -1.7373 | 2.8744 | 1.3906 1.4734

2 -2.5845 | 2.6150 | 0.0078 1.9819

180 x 90 x 5 3 -2.5845 | 2.6149 | 0.0078 1.9819
4 -2.5845 | 2.6149 | 0.0078 1.9819

Reference | -2.5845 | 2.6149 | 0.0078 1.9819

1 -0.4422 | 2.7906 | 1.3932 1.0235

2 -0.6346 | 0.6422 | 0.0019 0.4873

360 x 180 x 10 3 -0.6346 | 0.6422 | 0.0019 0.4873
4 -0.6346 | 0.6422 | 0.0019 0.4873

Reference | -0.6346 | 0.6422 | 0.0019 0.4873

1 -0.1075 | 2.7838 | 1.3938 0.9852
2 -0.1580 | 0.1599 | 0.00049 0.1213
720 x 360 x 20 3 -0.1580 | 0.1599 | 0.00049 0.1213
4 -0.1580 | 0.1599 | 0.00049 0.1213

Reference | -0.1580 | 0.1599 | 0.00049 0.1213

of all statistical characteristics when refining the computational grid. The dif-
ferences between the obtained solution and the disturbing potential generated
from EGM2008 directly for the finest grid are depicted in Fig. 6. We can
observe the biggest differences at the borders of the continents or significant
terrain changes, which are the result of still coarse discretization, i.e., resolu-
tion 0.25 deg x0.25 deg. The contribution of the first iteration in the disturbing
potential solution is depicted in Fig. 7. As we have expected from our previous
study [22], the iterative process changes the solution in areas with steep changes
in the disturbing potential, although these changes, see Fig. 7, are very small.

For a comparison, we have performed the corresponding experiment with
the corresponding resolution, see Tab. 6, where the computational domain was
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FIGURE 5. Global gravity field modelling with the EGM2008:

The disturbing potential solution by solving INFGBVP in 1440 x 720 x 360
grid (units: m?s~2).

TABLE 5. Statistics of residuals between the FEM with MIE solution
to the INFGBVP and the disturbing potential generated from EGM2008
directly on the bottom boundary (units: m2s=2).

No. of nodes No. of it. ‘ Min. ‘ Max. ‘ Mean ‘ St. deviation

1 -267.505 | 193.158 | 14.173 16.848
360 x 180 x 90 2 -267.744 | 192.956 | 14.094 16.842

3 -267.744 | 192.956 | 14.094 16.842

1 -109.916 | 88.818 | 2.382 6.787
720 x 360 x 180 2 -110.014 | 88.650 | 2.317 6.784

3 -110.014 | 88.650 | 2.317 6.784

1 -37.716 | 55.803 | 0.570 2.054
1440 x 720 x 360 2 -37.892 | 55.691 | 0.516 2.050

3 -37.892 | 55.691 | 0.516 2.050

truncated at the altitude 240 [km] and where we prescribed disturbing poten-
tial generated from EGM2008. Statistics of residuals on the Earth’s surface be-
tween the obtained solution and the disturbing potential generated directly from
EGM2008 for successive refinements can be found in Tab. 6. We notice that val-
ues of standard deviation are smaller in comparison to values presented in Tab. 5,
but on the other hand, we can see that they converge to each other by refine-
ment. The differences between the obtained solution and the disturbing poten-
tial generated from EGM2008 directly for the finest grid are depicted in Fig. 8.
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FIGURE 6. Global gravity field modelling with the EGM2008:
The differences between the INFGBVP solution by FEM with MIE and
disturbing potential generated from EGM2008 directly.
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FIGURE 7. Global gravity field modelling with the EGM2008:
The contribution of the first iteration in the disturbing potential solution
when solving the INFGBVP by FEM with MIE.

When comparing the Fig. 6 and Fig. 8, in case of FEM with MIE we notice
higher differences in the Himalayan region, part of Indonesia and selected ar-
eas of Central America, but, on the other hand, in the area of Australia and
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New Zealand these differences are smaller. The contribution of the first itera-
tion in the disturbing potential solution is depicted in Fig. 9. We can observe
a difference in comparison to Fig. 7 which is a consequence of different concept
in taking into account the regularity of the disturbing potential. This proves
our assumption that if we have the correct values of the Dirichlet BC in the
infinite computational domain, it is appropriate to truncate the computational
domain and take them into account. However, if we do not have such data, then
the use of MIE is a suitable approach, since by refining the computational grid,
the solution becomes more precise and moreover one can improve the solution
in the areas with high values of deflection of vertical when taken into account
the nonlinear BC.

TABLE 6. Statistics of residuals between the FEM solution to the satellite-
fixed GBVP [22] and the disturbing potential generated from EGM2008
directly on the bottom boundary (units: m2s~2).

No. of nodes ‘ No. of it. ‘ Min. ‘ Max. ‘ Mean ‘ St. deviation

1 -284.617 | 157.059 | 0.538 13.132
360 x 180 x 10 2 -284.768 | 156.981 | 0.536 13.132

3 -284.768 | 156.981 | 0.536 13.132

1 -106.447 | 73.866 | 0.011 5.127
720 x 360 x 20 2 -106.483 | 73.826 | 0.008 5.127

3 -106.483 | 73.826 | 0.008 5.127

1 -40.293 | 45.928 | 0.006 1.648
1440 x 720 x 40 2 -40.376 | 45.917 | 0.004 1.648

3 -40.376 | 45.917 | 0.004 1.648

4.3. Global gravity field modelling with DTU21GRAV data

In the last experiment, the bottom boundary I' has been again the discretized
topography created with SRTM30 PLUS data, see Becker et al. [4]. The height
of Qpg has been 5000 [km] and the number of divisions has been 2880 x 1440 x 720
corresponding to horizontal resolution 0.125 deg x0.125 deg, respectively. The in-
put surface gravity disturbances, see Fig. 10, as BC (I2)) applied on I" have been
generated from the DTU21GRAV data [1]. The disturbing potential solution is
depicted in Fig. 11. The contribution of the iterative process in the disturbing
potential solution is depicted in Fig. 12. We can observe that the values of dif-
ferences have the similar behaviour in comparison to Fig. 7, namely the values
and their location, which is related to areas with the high values of deflection
of vertical.
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[mzs.zl

FIGURE 8. Global gravity field modelling with the EGM2008:
The differences between the nonlinear satellite-fixed GBVP solution
by FEM and disturbing potential generated from EGM2008 directly.
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FIGURE 9. Global gravity field modelling with the EGM2008:
The contribution of the first iteration in the disturbing potential solution
when solving the nonlinear satellite-fixed GBVP by FEM.
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FIGURE 10. Global gravity field modelling with DTU21GRAV data:
The surface gravity disturbances.
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FIGURE 11. Global gravity field modelling with DTU21GRAV data:

The disturbing potential solution after the first iteration by the FEM
with MIE.

5. Conclusion and summary

The presented paper is a natural continuation and concluding study of our
previous works focused on solving the fixed geodetic boundary value problems
by the finite element method. In this paper, we have proposed, derived and
implemented a numerical approach for solving the original infinite nonlinear

148



GLOBAL GRAVITY FIELD MODELLING BY SOLVING THE INFGBVP

[m?s7]
0,22
0,2
0,18
0,16
0,14
0,12
0,1
0,08
0,06
0,04

0,02

FIGURE 12. Global gravity field modelling with DTU21GRAV data:
The differences between the first solution and the solution obtained
after the last iteration.

fixed geodetic boundary value problem. This approach was based on the iterative
procedure, which has led to the solution of the oblique derivative fixed geodetic
boundary value problem by the finite element method, while to take into ac-
count the regularity of the disturbing potential at infinity, we have employed the
mapped infinite elements. An advantage of using this approach for solving such
BVP is that numerical solutions can be obtained on the discretized real Earth’s
surface considering its topography. This can be challenging in high-mountainous
areas where a contribution of the nonlinearity is expected to be significant.
The validity of this approach has been tested by one modelling numerical experi-
ment and a numerical study focused on a reconstruction of the harmonic function
(EGM2008) above the discretized Earth’s topography was performed. In these
experiments we have compared the obtained solutions with the solutions by the
FEM with the truncated finite computational domain and prescribed disturbing
potential. Results have showed the advantages of the truncation of computa-
tional domain by adding the artificial boundary with prescribed correct BC, as
well as the fact that in cases when only the surface gravity disturbances are avail-
able, a solution by FEM with MIE is, under certain conditions, e.g., sufficiently
fine grid, an appropriate and comparable alternative. This finding can be applied
also to other BVPs where semi-infinite domain is of interest, but no Dirichlet
BC are available. Finally, we have performed one more detailed experiment with
DTU21GRAV data, where we have shown that the iterative process can improve
the solution in areas with the steep changes in the disturbing potential, that two
iterations are sufficient for this improvement.

149



M. MACAK—Z. MINARECHOVA— R. CUNDERLIK—K. MIKULA

Acknowledgements. We would like to thank the support given by Grants
APVV-23-0186 and VEGA 1/0690/24 as well as an unknown erudite reviewer
for a very precise reading of the paper and many stimulating comments that
significantly improved the paper.

Author Contribution Statement.

Marek Macak developed the theory and performed the numerical experiments.
Zuzana Minarechova contributed to develop the theory and wrote the man-
uscript. Rébert Cunderlik and Karol Mikula devised the project. All authors
discussed the results and contributed to the final manuscript.

Data Availability Statement.

All datasets generated and/or analysed within the experiments are available
from the corresponding author.

Conflict of Interests/Competing Interests.

All authors declare that they have no conflicts of interest.

REFERENCES

[1] ANDERSEN, O. B.—ABULAITIJIANG, A.—ZHANG, S.—ROSE, S. K.: A new
high resolution Mean Sea Surface (DTU21MSS) for improved sea level monitoring,
In: Proceedings of the EGU General Assembly (EGU21-16084), Vienna, Austria,
April 19-30, 2021.

[2] BACKUS, G. E.: Application of a non-linear boundary-value problem for Laplace’s equa-
tion to gravity and geomagnetic intensity surveys, Quart. J. Mech. Appl. Math. 2 (1968),
195-221.

(3] BARTHELMES, F.: Definition of Functionals and of the Geopotential and Their Calcula-
tion From Spherical Harmonic Models Deutsches GeoForschungsZentrum GFZ. Scientific
Technical Report STR09/02, Potsdam, Germany, 2013.

[4] BECKER, J. J.SANDWELL, D. T.—SMITH, W. H. F..—BRAUD, J.— BINDER,
B.—DEPNER, J.—FABRE, D.—FACTOR, J.—INGALLS, S.— KIM, S. H—LADNER,
R.— MARKS, K.—NELSON, S.—PHARAOH, A.—TRIMMER, R.—ROSENBERG,
J.—VON WALLACE, G—WEATHERALL, P.: Global bathymetry and elevation data
at 30 arc seconds resolution: SRTM30 PLUS, Marine Geodesy, 32 (2009), no. 4, 355-371,
https://doi.org/10.1080/01490410903297766.

[5] BETTESS, P.: Infinite elements, Internat. J. Numer. Methods Engnr. 11 (1977), no. 1,
53-64

[6] BETTESS, P.: More on infinite elements, Internat. J. Numer. Methods Engnr. 15 (1983),
no. 11, 1613-1626.

[7] BJERHAMMAR, A.—SVENSSON, L.: On the geodetic boundary wvalue problem for
a fized boundary surface—A satellite approach, Bulletin Géodésique 57 (1983), no. 14,
382-393

[8] BRENNER, S. C.—SCOTT, L. R.: The Mathematical Theory of Finite Element Methods.
2nd ed. Springer-Verlag, Berlin, 2002.

[9] CARRION SANCHEZ, J. L.—DE FREITAS, S.—BARZAGHI, R.: Offset evaluation
of the ecuadorian vertical datum related to the IHRS, Bulletin of Geodetic Sciences 24
(2018), no. 4, 503-525, doi: 10.1590/s1982-21702018000400031

150



(10]
(11]
(12]
(13]
(14]
(15]
(16]

(17]

(18]

(19]

20]

(21]

(22]

23]

(24]

(25]

(26]
(27]

(28]

29]

GLOBAL GRAVITY FIELD MODELLING BY SOLVING THE INFGBVP

DI/AZ7 G.—DI’AZ7 J.I.—OTERO, J.: On an oblique boundary value problem related to the
Backus problem in geodesy, Nonlinear Anal. Real World Appl. 7 (2006), no. 2, 147-166.
DI’AZ7 G.—DI/AZ7 J. .—OTERQO, J.: Construction of the mazimal solution of Backus’
problem in geodesy and geomagnetism, Stud. Geophys. Geod. 55 (2011), no. 3, 415-440.
FASKOVA, Z—CUNDERLIK, R—MIKULA, K.: Finite element method for solving
geodetic boundary value problems, J. Geodesy 84 (2010), no. 2, 135--144.

HECK, B.: On the non-linear geodetic boundary value problem for a fired boundary sur-
face, Bull. Geodésy 63 (1989), no. 1, 57-67.

HECK, B.—SEITZ, K.: Effects of Non-Linearity in the Geodetic Boundary Value Prob-
lems. German Geodetic Kommission (DGK), Series A, No. 109, Munchen, Germany, 1993.
HOFMANN-WELLENHOF, B.—MORITZ, H.: Physical Geodesy. 2nd ed. Springer-
-Verlag, Vienna, 2006, https://doi.org/10.1007/978-3-211-33545-1

HOTINE, M.: Mathematical Geodesy. ESSA Monograph Vol. 2, US Dept. of Commerce,
Washington 1969.

JEKELI, C.: A numerical study of the divergence of spherical harmonic series of the
gravity and height anomalies at the Earth’s surface, Bull. Géodésique, 57 (1983), no. 14,
10-28, doi: 10.1007/BF02520909.

KOCH, K. R.—POPE, A. J.: Uniqueness and ezistence for the geodetic boundary value
problem using the known surface of the earth, Bulletin Géodésique, 46 (1972), 467-476.
MACAK, M.—MIKULA, K.—MINARECHOVA, Z—CUNDERLIK, R.: On an itera-
tive approach to solving the nonlinear satellite-fized geodetic boundary-value problem,
In: TAG Symp 142 (2016), pp. 185-192.

MACAK, M.—MINARECHOVA, Z—CUNDERLIK, R—MIKULA, K.: The finite ele-
ment method as a tool to solve the oblique derivative boundary value problem in geodesy,
Tatra Mt. Math. Publ. 75 (2020), no. 1, 63-80.

MACAK, M.—MINARECHOVA, Z—TOMEK, L.— CUNDERLIK, R—MIKULA K.:
Solving the fized gravimetric boundary value problem by the finite element method using
mapped infinite elements, Computational Geosciences, 27 (2023), 649-662.

MACAK, M.—MINARECHOVA, Z—CUNDERLIK, R—MIKULA, K.: A gravity field
modelling in mountainous areas by solving the nonlinear satellite-fized geodetic boundary
value problem with the finite element method, Acta Geodaetica et Geophysica, 58 (2023),
305-320.

MARQUES, J. M. M. C—OWEN, D. R. J.: Infinite elements in quasi-static materially
nonlinear problems, Computers & Structures, 18 (1984), no. 4, 739-751.
MINARECHOVA, Z.—MACAK, M.—CUNDERLIK, R.—MIKULA, K.: On the finite
element method for solving the oblique derivative boundary value problems and its appli-
cation in local gravity field modelling, J. Geodesy, 95 (2021), art. no. 70.
MOLODENSKII, M. S—EREMEEV, V. F.—YURKINA, M. I.: Methods for the Study
of the External Gravitational Field and Figure of the Earth. TRUDY Ts NIIGAIiK,
Vol. 131, Geodezizdat, Moscow, 1960.

MORITZ, H.: The Figure of the Earth: Theoretical Geodesy and the Earth’s Interior.
Wichmann, Karlsruhe, Germany, 1990.

MORITZ, H.: Classical physical geodesy. In: (W. Freeden, Z. M. Nashed, T. Sonar, eds.),
Handbook of Geomathematics, Springer-Verlag, Berlin, Germany, 2010, pp. 127-158.
PAVLIS, N.K.—HOLMES, S.A.—KENYON, S.C.—FACTOR, J.K.: The development
and evaluation of the Farth Gravitational Model 2008 (EGM2008), Journal of Geophys-
ical Research 117 (2012), Issue B4; https://doi.org/10.1029/2011JB008916

REDDY, J. N.: An Introduction to the Finite Element Method. 3rd ed. McGraw-Hill
Education, New York, 2006.

151


https://doi.org/10.1007/978-3-211-33545-1

(30]

(31]

(32]

(33]

(34]

(35]

(36]

(37]

(38]

(39]

M. MACAK—Z. MINARECHOVA— R. CUNDERLIK—K. MIKULA

SACERDOTE, F.—SANSO, F.: On the analysis of the fized-boundary gravimetric
boundary-value problem. In: (F. Sacerdote, F. Sansé, eds.), Proceedings of the 2nd
Hotine-Marussi Symposium on Mathematical Geodesy, Pisa, Politecnico di Milano, 1989,
pp- 507-516.

SETHIAN, J. A.: Fast Marching Methods. In: (B. Engquist, ed.) Encyclopedia of Applied
and Computational Mathematics, Springer-Verlag, Berlin, Heidelberg, 2015.

SJOBERG, L. E.: On the Errors of Spherical Harmonic Developments of Gravity at the
Surface of the Earth. Report No. 257, Department of Geodetic Science, The Ohio State
University, Columbus, OH, USA, 1977.

STOKES, G. G.: On the variation of gravity on the surface of the Earth, Trans. Cambr.
Phil. Soc. 8 (1849), 672-695.

34 SPRLAK, M.—F‘ASKOVA7 Z.—MIKULA, K.: On the application of the coupled finite-
infinite element method to the geodetic boundary value problem, Studia Geophysica et
Geodaetica 55 (2011), 479-487.

SPRLAK, M.—HAN, S.-C.—FEATHERSTONE, W.: Forward modelling of global gravity
fields with 3D density structures and an application to the high-resolution (2km) gravity
fields of the Moon, 92 (2018), no. 8, 847-862, doi: 10.1007/s00190-017-1098-7.
SPRLAK, M.—HAN, S.-C.—FEATHERSTONE, W.: Spheroidal forward modelling
of the gravitational fields of 1 Ceres and the Moon, Icarus 335, art. no. 113412,
https://doi.org/10.1016/j.icarus.2019.113412

SIPRLAK7 M.—HAN, S.-C.: On the use of spherical harmonic series inside the minimum
Brillouin sphere: Theoretical review and evaluation by GRAIL and LOLA satellite data,
Earth-Science Reviews 222, 2021, art. no. 103739,
https://doi.org/10.1016/j.earscirev.2021.103739

ZIENKIEWICZ, O. C.—EMSON, C.—BETTESS, P.: A novel boundary infinite element,
Internat. J. Numer. Meth. Engnr. 19 (1983), 340-393.

ZIENKIEWICZ, O. C.—BANDO, K.—BETTESS, P.—EMSON, C.—CHIAM, T. C.:
Mapped infinite elements for exterior wave problems, Internat. J. Numer. Meth. Engnr.
21 (1985), 1229-1251.

Received September 11, 2024 Department of Mathematics and
Revised November 25, 2024 Descriptive Geometry

Accepted December 2, 2024 Faculty of Civil Engineering
Publ. online September 30, 2025 Slovak University of Technology

152

Department of Mathematics and

Descriptive Geometry

Radlinského 11

810 05 Bratislava

SLOVAKIA

E-mail: marek.macak@stuba.sk
zuzana.minarechova@stuba.sk
robert.cunderlik@stuba.sk
karol.mikula@stuba.sk


https://doi.org/10.1016/j.icarus.2019.113412
https://doi.org/10.1016/j.earscirev.2021.103739

	1. Introduction
	2. Formulation of the infinite nonlinear fixed geodetic boundary value problem and the iterative procedure
	3. Solution to the infinite fixed GBVP with the oblique derivative BC by the FEM with mapped infinite elements
	3.1. Discretization of the computational domain
	3.2. Derivation of the weak formulation on the element
	3.3. Derivation of equations over an element
	3.4. Assembly of element equations

	4. Numerical experiments
	4.1. Experiment with the homogeneous spheres
	4.2. Global gravity field modelling with the EGM2008 as a reconstruction of the harmonic function
	4.3. Global gravity field modelling with DTU21GRAV data

	5. Conclusion and summary
	REFERENCES

