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Abstract
The paper presents local gravity field modelling in spatial domain using the finite element method (FEM). FEM as a numerical
method is applied for solving the geodetic boundary value problemwith oblique derivative boundary conditions (BC). For such
a problem, we derive a new numerical scheme where the oblique derivative BC are considered directly at computational nodes
on the discretized Earth’s topography. Then, the developed FEM approach is tested in several artificial testing experiments
as well as by a reconstruction of a known harmonic function above the extremely complicated Earth’s topography in the
Himalayas. Amain numerical experiment is focused on very detailed local gravity field modelling in Slovakia using terrestrial
gravity data. The high horizontal resolution 100 × 100 m and non-uniform resolution in the radial direction has resulted in
a 3D unstructured mesh of finite elements with 5,287,500,000 unknowns. Large-scale parallel computations were performed
on a parallel cluster using 1.5 TB of distributed memory. The obtained local quasigeoid model is tested at 403 GNSS-levelling
benchmarks. The standard deviation of residuals 2.77 cm, which decreases to 2.54 cm after excluding 7 outliers, indicates
its high precision. However, depicted residuals show their low-frequency character with amplitudes about ±3 cm. As a by-
product, the first and second derivatives of the obtained disturbing potential in the radial direction are also evaluated in several
altitude levels as well as on the Earth’s surface. Finally, the paper presents a comparison of the obtained FEM solution with
the recent local quasigeoid models in Slovakia computed in the spatial as well as spectral domain. It illustrates a practical
contribution of the presented FEM approach for precise local gravity field modelling, especially in high mountains.

Keywords Finite element method · Local gravity field modelling · Oblique derivative boundary value problem

1 Introduction

The determination of the Earth’s gravity field is usually
formulated in terms of the geodetic boundary value prob-
lems (BVPs). Nowadays, precise 3Dpositioning of terrestrial
gravimetric measurements by GNSS directly provides sur-
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face gravity disturbances that represent the oblique derivative
boundary conditions (BC) of the fixed gravimetric bound-
ary value problem (FGBVP). Hence, from the mathematical
point of view, the FGBVP represents an exterior oblique
derivative geodetic BVP for the Laplace equation, cf. Koch
and Pope (1972), Freeden and Kersten (1981), Bjerhammar
and Svensson (1983) and Holota (1997).

A standard procedure to solve the oblique derivative BVP
has been based on integral equations using the single-layer
potential, cf. Bitzadse (1968) and Miranda (1970). Later
Koch and Pope (1972) applied such an integral equation pro-
cedure to solve the FGBVP.However, the strong nature of the
singularities demanding Cauchy’s principal integral values
turned out to be a serious obstacle, see Freeden and Ger-
hards (2013). Later, Freeden and Kersten (1981) proposed a
new concept of approximations using the generalized Fourier
expansions to transfer strongly singular integrals into regular
ones. This approach has been further developed in Freeden
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(1987), Bauer (2004), Gutting (2007, 2012), Freeden and
Michel (2004) and Freeden and Gerhards (2013). Recently,
Freeden and Nutz (2017) published the conceptual setup of
the Runge–Walsh theorem for the oblique derivative problem
of physical geodesy.

An expansion of high-performance computing (HPC)
facilities has brought new ways and opportunities in solving
various engineering problems, including the Earth’s grav-
ity field modelling. Efficient numerical methods such as the
boundary element method (BEM), the finite element method
(FEM), the finite difference method (FDM) or the finite
volume method (FVM) have been applied for gravity field
modelling. Main advantages of these numerical approaches
in gravity field modelling are a straightforward refinement of
the discretization, opportunity to consider real topography as
well as feasibility for high-resolution modelling.

The first innovative studies on numerical methods applied
to gravity field modelling were introduced in the 1980s, and
they were based on FEM, cf. Meissl (1981) or Shaofeng and
Dingbo (1991). In the 1990s, the FDMwas studied by Keller
(1995) and the indirect BEM approach was developed by
Klees (1995) and Lehmann and Klees (1999). This approach
was later improved by numerical techniques that have sig-
nificantly reduced numerical complexity of the problem;
see Klees et al. (2001). Later on, the direct BEM approach
was introduced by Čunderlík et al. (2008) or Čunderlík
and Mikula (2010). The oblique derivative problem treated
by BEM was discussed in Čunderlík et al. (2012). At that
time, new studies on FEM were developed and published by
Fašková et al. (2007) or Fašková et al. (2010), Šprlák et al.
(2011) and recently by Mráz et al. (2016). However, none of
these approaches has considered the oblique derivative BC
in their concepts. On the other hand, FEM for the elliptic par-
tial differential equations with the oblique derivative BC on
2D curved domains has been studied by Barrett and Elliott
(1985) and recently by Kawecki (2019) and Gallistl (2019).

The first application of FVM to gravity field modelling
was introduced by Fašková (2008) and its parallel implemen-
tation by Minarechová et al. (2015). However, both papers
have studied the geodetic BVP with the Neumann BC. The
first insight of FVM applied to the oblique derivative BVP
has been discussed in Macák et al. (2012). Later this effort
was further developed in Macák et al. (2014) and Macák
et al. (2015), where a treatment of the oblique derivative
by the central scheme and the first-order upwind scheme,
respectively, was introduced for solving FGBVPs on uniform
grids. Recently,Medl’a et al. (2018) have presented the FVM
for solving the oblique derivative BVP on 3D unstructured
meshes above the real Earth’s topography. As an improve-
ment, the authors of Droniou et al. (2019) have developed an
approach where the oblique derivative BC is treated in the
way that its tangential component is considered as an advec-

tion along the Earth’s topography regularized by a carefully
designed surface diffusion term.

In this paper, we continue in our studies on FEM pub-
lished by Fašková et al. (2010) and recently by Macák et al.
(2020). The main difference with the latter one is in applying
the oblique derivative BC. In the previous FEM approach, it
is considered as an average value on the bottom side of finite
elements using two tangential vectors and the same values
of the oblique derivative for all nodes on the bottom side
of the element. This led to instabilities for larger oblique
angles reported in Macák et al. (2020). In this work, the
oblique derivative is incorporated directly into the computa-
tional nodes using two tangential vectors for each node. Such
an approach should reduce a loss of accuracy. The developed
method is tested in 3 artificial testing experiments (Sect. 4.1)
and by a reconstruction of the harmonic function (EGM2008)
above the extremely complicated Earth’s topography in the
Himalayas and Tibetan Plateau (Sect. 4.2). In Sect. 4.3, we
focus on high-resolution local gravity field modelling in Slo-
vakia using terrestrial gravity data. Our aim and challenge is
to reach similar or better accuracy as the recent local quasi-
geoid models obtained by (i) completely different approach
based on a combination of spherical harmonics, band-limited
spherical radial basis functions and the residual terrainmodel
technique (Bucha et al. 2016), and by (ii) applying the afore-
mentioned FVM approach (Droniou et al. 2019) with the
results presented in Čunderlík et al. (2020).

2 Formulation of the oblique derivative BVP

Let us consider the FGBVP, cf. (Koch and Pope 1972; Bjer-
hammar and Svensson 1983; Holota 1997):

ΔT (x) = 0, x ∈ R3 − S, (1)

∇T (x) · s(x) = −δg(x), x ∈ ∂S, (2)

T (x) → 0, as |x| → ∞, (3)

where S is the Earth or more generally any Lipschitz domain,
T (x) is the disturbing potential defined as a difference
between the real and normal gravity potential at any point
x = (x, y, z), δg(x) is the gravity disturbance, and the vec-
tor s(x) = −∇U (x)/|∇U (x)| is the unit vector normal to
the equipotential surface of the normal potential U (x) at
any point x. Eqs. (1)–(3) represent an exterior BVP for the
Laplace equation, where the computational domain lies out-
side the Earth and is infinite.

However, FEM requires a discretization of the whole
computational domain into finite elements. To that goal we
construct a bounded domain Ω in the external space above
the Earth, see Fašková et al. (2010). Such a domainΩ (Fig. 1)
is bounded by the bottom surface Γ ⊂ ∂Ω representing a
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Fig. 1 The computational domain Ω . The domain Ω is delimited by
blue edges; the bottom surface Γ ⊂ ∂Ω hatched by green colour rep-
resents a chosen part of the Earth’s surface; B, L, h coordinates denote
ellipsoidal latitude, longitude and height, respectively

part of the Earth’s surface and an upper surface created at
appropriate altitude, e.g. at a mean altitude of the GOCE
satellite orbits. In case of local gravity field modelling, the
domain Ω is also bounded by four side boundaries (Fig. 1).
Then, on the top and side boundaries, the Dirichlet-type BC
for the disturbing potential can be prescribed.

In the bounded domainΩ , we consider the followingBVP

ΔT (x) = 0, x ∈ Ω ⊂ R3, (4)

∇T (x) · s(x) = −δg(x), x ∈ Γ ⊂ ∂Ω, (5)

T (x) = TSAT (x), x ∈ ∂Ω − Γ , (6)

where Γ ⊂ ∂Ω represents the part of the Earth’s topogra-
phy, ∂Ω − Γ represents the top boundary together with side
boundaries, and TSAT is the disturbing potential generated
from any GRACE/GOCE-based satellite-only geopotential
model.

It is worth noting that by considering the artificial condi-
tion (6) we abandon the condition of regularity at infinity (3).
Instead at infinity, the solution is fixed to theGRACE/GOCE-
based geopotential models on the upper boundary which is
chosen approximately at altitude of theGOCEsatellite orbits.
In this way, we utilize information about the gravity field
detected by the satellite missions, however, at altitudes of
their observations.Moreover, in the case of local gravity field
modelling ’purely’ in the spatial domain, this artificial con-
dition (6) allows us to overcome a problem of integrating
over the whole globe. Such a treatment conceptually differs
from classical approaches based on the well-known ’remove-
compute-restore’ strategy.

3 The FEM solution to the oblique derivative
BVP

In our approach, we follow the fundamental principles of
FEM published in Reddy (2006).

3.1 The finite element discretization

The FEM is a numerical method that assumes discretization
of thewhole computational domainΩ by a union of elements
Ωe, e = 1, ..., N , where N denotes the number of elements
in the domainΩ . For our problem,wewill use the hexahedral
elements with eight nodes, see Brenner and Scott (2002) or
Reddy (2006), and we will divide the computational domain
into n1, n2, n3 elements in latitudinal, longitudinal and alti-
tudinal direction, respectively. Then, the number of elements
in the domain Ω will be N = n1n2n3. To specify the posi-
tion of an element Ωe, we will use indexes k, l, m, where
k = 1, ..., n1 , l = 1, ..., n2 and m = 1, ..., n3. It is well-
known that discretization of spherical domains by polygonal
elements results in the so-called discretization error. This
error can be partially eliminated by using a finer discretiza-
tion, so subsequent refining the computational mesh yields a
convergence of the finite element domain to the original one.

3.2 The weak formulation on the element

Let us consider an arbitrary element Ωe from our finite
element discretization with indexes k = 1, ..., n1, l =
1, ..., n2 and m = 2, ..., n3. We multiply the differential
equation (4) by a weight function w and using Green’s iden-
tity (we omit (x) to simplify the notation in the following
equations) we obtain the weak formulation of (4) over an
arbitrary above defined element Ωe

∫

Ωe

∇T · ∇w dxdydz =
∫

∂Ωe

∇T · nw dσ, (7)

where n denotes the unit normal to ∂Ωe.
Since on the bottom boundary Γ the oblique derivative

BC (5) is prescribed, for the row of elements that lie on this
boundary, i. e. k = 1, ..., n1, l = 1, ..., n2 and m = 1, we
will use and modify (7) in the following way. We split the
oblique vector s into one normal and two tangential compo-
nents

s = c1n + c2t1 + c3t2, (8)

where n is the normal vector and t1, t2 are tangent vectors
to Γ e ⊂ ∂Ωe ⊂ R3, where Γ e denotes the bottom bound-
ary of an element Ωe. These three vectors together form an
orthonormal basis.
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Then, we replace vector s in (5) by (8) to obtain

∇T · s = c1∇T · n + c2∇T · t1 + c3∇T · t2 = −δg. (9)

From (9), we express the normal derivative

∇T · n = −δg

c1
− c2

c1

∂T

∂t1
− c3

c1

∂T

∂t2
, (10)

where we assume that c1 �= 0. Remark: from the theoretical
point of view, c1 = 0 if s is perpendicular to n. However, in
practical experiments we always use a ’nonzero’ horizontal
resolution of the grid points that discretized the real Earth’s
surface. In such cases, s is never perpendicular to n, and thus,
the assumption c1 �= 0 is always fulfilled.

Now, we insert (10) to (7) to get

∫

Ωe

∇T · ∇w dxdydz =

=
∫

Γ e

(−δg

c1
− c2

c1

∂T

∂t1
− c3

c1

∂T

∂t2

)
w dσ

+
∫

∂Ωe\Γ e

∇T · nw dσ. (11)

After some rearrangement, we have

∫

Ωe

∇T · ∇w dxdydz + c2
c1

∫

Γ e

∂T

∂t1
w dσ

+c3
c1

∫

Γ e

∂T

∂t2
w dσ

=
∫

Γ e

−δg

c1
w dσ +

∫

∂Ωe\Γ e

∇T · nw dσ. (12)

In this way, we have obtained the weak formulation (7) or
(12) of the BVP (4)–(6) on every element Ωe of our finite
element discretization. The study of weak solution of the
oblique derivative BVP is included in the book by Lieberman
(2013).

3.3 The finite element model

For a hexahedral element Ωe with eight nodes, we can write

T ≈ T e =
8∑
j=1

T e
j ψ j , (13)

i. e. we take an approximation of the unknown value T as T e,
a linear combination of basis functions ψ j with coefficients
T e
j , j = 1, ..., 8. We substitute it into the weak formulation

(7), namely for elements Ωe where indexes k = 1, ..., n1,
l = 1, ..., n2 andm = 2, ..., n3, and considerψi for weight
function w. We obtain the i th equation in the form

8∑
j=1

T e
j

∫

Ωe

∂ψ j

∂x

∂ψi

∂x
+ ∂ψ j

∂ y

∂ψi

∂ y
+ ∂ψ j

∂z

∂ψi

∂z
dxdydz

=
8∑
j=1

∫

∂Ωe

qn ψi dxdy, (14)

where qn = ∇T · n denotes the projection of the vector ∇T
along the unit normal n.

For the row of elements Ωe given by indexes k =
1, ..., n1, l = 1, ..., n2 and m = 1, we follow the same way
and after inserting (13) into (12) and considering w = ψi ,
we obtain the i th equation in the form

8∑
j=1

T e
j

⎛
⎝

∫

Ωe

∂ψ j

∂x

∂ψi

∂x
+ ∂ψ j

∂ y

∂ψi

∂ y
+ ∂ψ j

∂z

∂ψi

∂z
dxdydz

⎞
⎠

+
4∑
j=1

T e
j

⎛
⎝ c j,2

4c1

∫

Γ e

∂ψ j

∂t j,1
ψi dxdy

+c j,3
4c1

∫

Γ e

∂ψ j

∂t j,2
ψi dxdy

⎞
⎠

=
4∑
j=1

∫

Γ e

−δg j

4c1
ψi dxdy +

8∑
j=1

∫

∂Ωe\Γ e

qn ψi dxdy, (15)

where index j = 1, ..., 4 refers to nodes of the element
Ωe that lie on the bottom boundary Γ of the computational
domain Ω . As we can see in Eq. (15), in comparison with
Macák et al. (2020), there are 8 tangent vectors corresponding
to the nodes lying on the bottom boundary of the element
belonging to Γ . The illustration can be seen in Fig. 2.

Now, we can write (14) and (15) in a compact matrix form

Ke Te = Qe, (16)

whereKe = [Ki j ] denotes an element stiffness matrix,Te =
(T1, ..., T8) is a column vector of unknowns and Qe denote
the right-hand side vector.

To evaluate element matrices and vectors, we proceed the
following way. We choose one basis function ψi per ver-
tex Ne

i . Then, the function ψi is uniquely determined by
choosing value 1 at Ne

i and 0 at every Ne
j , i �= j , and we

differentiate the basis functions with respect to a position of
each node in Cartesian coordinates. For more details about
basis functions, see, e.g. Reddy (2006) or Brenner and Scott
(2002). To evaluate boundary integrals over a boundary Γ e
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N e
1

N e
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N e
3

N e
4

te1,1
te1,2

te3,2
te3,1

Γe
te2,2

te2,1

te4,1

te4,2

Fig. 2 Illustration of tangent vectors tei, j to bottom boundary Γ e at
nodes Ne

i of an element Ωe

in Eq. (15), which include tangential derivatives, we approx-
imate derivatives in the tangential direction (see Fig. 2) like
in the finite difference method. So using values of basis func-
tions at nodes Ne

j of element Ωe, we have

∂ψ j

∂t j,1
≈ ψ j (Ne

j+1) − ψ j (Ne
j )

d(Ne
j , N

e
j+1)

, (17)

∂ψ j

∂t j,2
≈ ψ j (Ne

j−1) − ψ j (Ne
j )

d(Ne
j , N

e
j−1)

, (18)

where d denotes the distance between two neighbouring
nodes that corresponds to the length of edge of an element
Ωe.

3.4 Assembly of element equations

Weassemble all element equationswith using two principles:

(i) continuity of primary variables at the interelement nodes.
It means that nodal values T e

j and T e+1
j of two adjacent

elements Ωe and Ωe+1 at the connecting nodes have to
be the same.

(ii) “equilibrium” or “balance” equations of secondary vari-
ables at the interface between two elements. It means that
on portions of ∂Ωe that are in the interior of the domain
Ω , the value qen on the side p of the element Ωe cancels
with the value qe+1

n on the side r of the element Ωe+1

when sides p of the element Ωe and r of the element
Ωe+1 are the same.

Finally, we take into account the Dirichlet BC (6) for nodes
that lie on the ∂Ω − Γ . In this way, we have obtained the

global linear system of equations with a column vector of
unknown global nodal values T

KT = Q, (19)

where thematrixK is sparse, sincemost of its entries are zero
and positive definite, and the column vectorQwhose entries
are also almost zero except that for nodes with prescribed
oblique derivative BC (5).

4 Numerical experiments

We present three different kinds of numerical experiments.
At first, we investigate the so-called experimental order of
convergence (EOC) of the derived FEM numerical scheme
in several artificial testing experiments. Then, we try to
reconstruct EGM2008 as a harmonic function over the
extremely complicated Earth’s topography in the Himalayas
and Tibetan Plateau. Finally, we apply the developed FEM
approach to local gravity fieldmodelling in Slovakia with the
high-resolution 100 × 100 m while using terrestrial gravity
data.

4.1 Artificial testing experiments

As usual in numerical mathematics, at first we investigate
the EOC of the FEM numerical scheme derived in Sect. 3.
We perform several artificial experiments, the same as used
for testing the EOC of the FEM scheme published in Macák
et al. (2020). It aims to compare the EOC and stability of
both FEM approaches. We start with reminding a definition
of the EOC.

Let us assume that the error of the scheme in some norm is
proportional to some power of the grid size, i.e. ||eh || = Chα ,
with a constant C. The error of the scheme eh is defined
as a difference between the exact and numerical solution.
Then, having two grids with the maximal diameter of the
finite volumes hmax1 and hmax2 , where hmax1 > hmax2 , we
can obtain numerically two errors ||ehmax1

|| = Chα
max1 and

||ehmax2
|| = Chα

max2 . We can see that

||ehmax1
||

||ehmax2
|| = Chα

max1

Chα
max2

=
(
hmax1

hmax2

)α

(20)

from where we can extract

α = log hmax1
hmax2

||ehmax1
||

||ehmax2
|| , (21)

which is called the experimental order of convergence (EOC)
of the scheme. We will use the numerical L2 norm for eval-
uating the EOC.
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To test the EOC of the FEM numerical scheme derived in
Sect. 3, we perform artificial experiments of the gravitational
potential T (x) generated by a unit sphere with the center of
gravity C for different grid sizes. The exact solution is given
by T (x) = 1

|x−(xC ,yC ,zC )| and its values are used to generate
the oblique derivative and the Dirichlet BC. To simulate the
oblique vector in the oblique derivative BC, we have shifted
the center of gravity C (see Fig. 3a) and, in addition, we have
rotated this vector by an angle ±α (see Fig. 3b).

4.1.1 Experiment 1: Shift of the center point

The computational domain has been a tesseroid bounded by
two concentric spheres with radii r1 = 1 and r2 = 2, and a
coaxial cone with dimension (−π/4, π/4) × (−π/4, π/4).
The oblique vector s has been caused by a shift of the center
C = [0.2,−0.3,−0.2] of the computational domain. Results
are presented in Table 1.

It is evident that the numerical scheme, see Table 1, is
stable and second-order accurate.

4.1.2 Experiment 2: Shift of the center point and a rotation
by an angle±˛

In the Experiment 2, the computational domain, the shift
of the center point and BC have been the same as in Experi-
ment 1, onlywe have added a rotation by an angle±α = 60◦.
Obtained results are presented in Table 2. Since this is a large
value of an angle of rotation, for a comparison, we have also
computed the same experiment using the method that was
published in Macák et al. (2020). These results are presented
Table 3.

One can observe, see Table 2, that the method presented in
this paper is second-order accurate also in cases of rotation
by such a large angle, while the method published in Macák
et al. (2020) fails, see Table 3. It demonstrates the unsta-
ble behaviour of the old method in these extremal situations
which vanishes if the method presented in this paper is
employed.

4.2 Reconstruction of EGM2008 over the Himalayas

Next numerical experiments aim to demonstrate how precise
we are able to reconstruct a harmonic function above the
extremely complicated Earth’s topography in the Himalayas
and Tibetan Plateau. Namely, the EGM2008 geopotential
model up to degree 2160 (Pavlis et al. 2012) has been used as
a harmonic function. The upper boundary has been chosen
at the altitude of 230 km above the reference ellipsoid corre-
sponding to an average altitude of the GOCE satellite orbits.
The bottom boundary has been given by grid points located
on the Earth’s surface. Their spacing in horizontal direc-
tions has been uniform. Their heights have been interpolated

from the SRTM30 PLUS topography model (Becker et al.
2009), see Fig. 4a. In these grid points, the first derivatives
in the radial direction have been prescribed that represent the
oblique derivative BC (Fig. 4b). On the rest of the bound-
ary, the Dirichlet BC in form of the disturbing potential have
been prescribed. All these BCs have been generated from the
EGM2008 up to d/o 2160 using the GrafLab program (Bucha
and Janák 2013).

Three experiments with different levels of the discretiza-
tion were performed, namely the meshes with (i) 501 × 301
× 25, (ii) 1001× 601× 49, and (iii) 2001× 1201× 97 com-
putational nodes. They approximately correspond to spacing
0.1◦ × 0.1◦ × 10 km, 0.05◦ × 0.05◦ × 5 km and 0.025◦
x 0.025◦ × 2.5 km. Remark: we have performed the same
experiments as published in Medl’a et al. (2018) in order to
compare efficiency of both approaches, i.e. FEM with FVM.

Figure 4c depicts the disturbing potential generated from
EGM2008 on the Earth’s surface as a known harmonic func-
tion that we have been reconstructing. Figure 4c–e presents
residuals between the obtainedFEMsolutions andEGM2008
on the bottom boundary. The statistics of the corresponding
residuals are summarized in Table 4. Similarly, statistics of
residuals for all nodes in thewhole 3D computational domain
is in Table 5. Both tables clearly demonstrate that refinements
of the discretization lead to higher accuracy of the FEM solu-
tion giving a better agreementwithEGM2008.On theEarth’s
surface (Table 4), the standard deviations (SDs) of residuals
are decreasing from 0.61 to 0.09 m2s−2 (≈ 7 cm to 9 mm)
and the maximal values from 7.19 to 0.76 m2s−2 (≈ from
7.3 dm to 7.7 cm). Such an improvement is achieved despite
the fact that refinements of the discretization involve a more
detailed consideration of the Earth’s topography.

The obtained results also demonstrate that by a suffi-
cient refining of the discretization we are able to reconstruct
EGM2008 on such extremely complicated Earth’s surface
with the “cm-level” accuracy. To compare with the FVM
approach, themaximal values are very similar; however, SDs
in the FEM experiments are about 1.5 times better and the
mean values almost 2 times smaller (compare Table 5 here
with Table 3 in Medl’a et al. (2018)). This confirms a higher
efficiency of the presented FEM approach.

4.3 Local gravity field modelling in Slovakia using
terrestrial gravity data

4.3.1 Computational domain and input data

In the last numerical experiment, we apply the developed
FEM approach to local gravity field modelling in Slo-
vakia using terrestrial gravity data. The upper boundary
has been again chosen at the altitude of 230 km above
the reference ellipsoid (a mean altitude of the GOCE satel-
lite orbits). Here, the Dirichlet BC has been prescribed in
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Fig. 3 Illustration of the 2D
FEM grid on a sector of a circle.
The oblique vector s depicted by
red arises from (a) a shift of the
center C of the computational
domain, (b) a shift of the center
C of the computational domain
and a rotation by an angle ±α.
The ±α means that on one
element we modify the vector sei
by a value +α and on its
adjacent elements by −α

(a) (b)

Table 1 Experiment 1: Shift of
the center point

No. of elements ||ehmax ||L2 EOCL2 ||ehmax ||MAX EOCMAX

3 × 3 × 3 3.954 × 10−2 2.036 × 10−1

6 × 6 × 6 4.043 × 10−3 3.289 1.730 × 10−2 3.556

12 × 12 × 12 7.627 × 10−4 2.406 3.512 × 10−3 2.300

24 × 24 × 24 1.683 × 10−4 2.179 8.005 × 10−4 2.133

48 × 48 × 48 3.970 × 10−5 2.084 1.913 × 10−4 2.064

96 × 96 × 96 9.646 × 10−6 2.041 4.683 × 10−5 2.031

Table 2 Experiment 2: Shift of
the center point and a rotation
by an angle ±α = 60◦

No. of elements ||ehmax 1 ||L2 EOCL2 ||ehmax ||MAX EOCMAX

3 × 3 × 3 1.669 × 10−2 8.167 × 10−2

6 × 6 × 6 2.327 × 10−3 2.842 1.247 × 10−2 2.710

12 × 12 × 12 4.129 × 10−4 2.494 2.326 × 10−3 2.422

24 × 24 × 24 8.860 × 10−5 2.220 4.821 × 10−4 2.270

48 × 48 × 48 2.057 × 10−5 2.106 1.134 × 10−4 2.087

96 × 96 × 96 4.960 × 10−6 2.052 2.748 × 10−5 2.045

the form of disturbing potential (Fig. 5) generated from
theGO_CONS_GCF_2_DIR_R6 satellite-only geopotential
model up to d/o 300 (Bruinsma et al. 2014). In this way, our
FEM solution has been fixed on the upper boundary to the
gravity field information detected by the satellite missions
CHAMP, GRACE and GOCE.

On4 side boundaries, theDirichletBChas beenprescribed
as well. However, here the disturbing potential has been gen-
erated from the EIGEN-6C4 geopotential model up to d/o
2160 (Förste et al. 2014). Due to the fact that the side bound-
aries have been chosen quite close to the borders of Slovakia,
the prescribed disturbing potential could not be generated

Table 3 Experiment 2: Shift of
the center point and a rotation
by an angle ±α = 60◦. Results
obtained by the method
published in Macák et al. (2020)

No. of elements ||ehmax 1 ||L2 EOCL2 ||ehmax ||MAX EOCMAX

3 × 3 × 3 8.490 × 10−3 4.391 × 10−2

6 × 6 × 6 9.119 × 10−3 − 0.103 5.863 × 10−2 − 0.417

12 × 12 × 12 2.388 × 10−3 1.933 2.076 × 10−2 1.497

24 × 24 × 24 2.257 × 10−3 0.081 2.031 × 10−2 0.031

48 × 48 × 48 2.313 × 10−3 − 0.035 2.067 × 10−2 − 0.025

96 × 96 × 96 2.323 × 10−3 − 0.006 2.081 × 10−2 − 0.009
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Fig. 4 a The Earth’s surface topography in the Himalayas and Tibetan
Plateau (the bottom boundary), b gravity disturbances (the oblique
derivative BC), c the disturbing potential generated from EGM2008
on the Earth’s surface (a reconstructed harmonic function), and d–f

residuals between the FEM solutions and EGM2008 for different dis-
cretizations of the computational domain: d 501 × 301 × 25, 1001 ×
601 × 49, and f 2001 × 1201 × 97

Table 4 Statistics of residuals
between our FEM solution and
EGM2008 on the bottom
boundary in the Himalayas
(units: m2s−2)

No. of nodes 501 × 301 × 25 1001 × 601 × 49 2001 × 1201 × 97

Min. value − 4.26 − 5.69 − 3.07

Mean value 0.17 0.01 − 0.02

Max. value 7.19 2.12 0.76

St. deviation 0.61 0.17 0.09
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Table 5 Statistics of residuals
between our FEM solution and
EGM2008 in the whole 3D
computational domain above the
Himalayas (units: m2s−2)

No. of nodes 501 × 301 × 25 1001 × 601 × 49 2001 × 1201 × 97

Min. value − 2.80 − 1.48 − 0.75

Mean value 0.95 0.41 0.18

Max. value 20.90 10.98 3.25

St. deviation 1.45 0.65 0.29

purely from satellite-only models. Otherwise, it would badly
influence our numerical solution close to the side boundaries,
especially near the Earth’s surface (Fašková et al. 2010).

In our numerical experiment, we have considered the
Earth’s topography with the high horizontal resolution 100
× 100 m (Fig. 6). At grid nodes on the bottom boundary,

the surface gravity disturbances as the oblique derivative BC
have been prescribed (Fig. 7). Outside Slovakia, they have
been interpolated from the GGMPlus database (Hirt et al.
2013). Inside Slovakia, the gravity disturbances have been
generated from the detailed map of the complete Bouguer
anomalies (Pašteka et al. 2017) using the CBA2G software

Fig. 5 Disturbing potential at the altitude of 230 km above the reference ellipsoid as the Dirichlet BC on the upper boundary generated from the
GO_CONS_GCF_2_DIR_R6 model up to d/o 300

Fig. 6 The Earth’s topography in area of Slovakia as a bottom boundary of the 3D computational domain (the horizontal resolution: 100 × 100 m)
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Fig. 7 Gravity disturbances on the Earth’s topography as the oblique derivative BC on the bottom boundary

Fig. 8 The sketch of lower computational nodes along the meridian
profile crossing the High-Tatras (horizontal spacing: 100 m)

(Marušiak et al. 2015) and the detailed digital terrain model
(see Acknowledgment). In this process, precise modelling of
terrain corrections has played a crucial role, c.f. Majkráková
et al. (2016) or Zahorec et al. (2017a). In this way, all infor-
mation from the detailed terrestrial gravimetric mapping in
Slovakia (Zahorec et al. 2017b) has been incorporated into
the input data. All computations have been performed in the
JTSK03 national coordinate system.

In the radial direction, the 3D computational domain
has been discretized non-uniformly depending on altitude.
According to our limits of memory access, we have divided
the radial dimension into 450 parts. The radial size of finite

elements on theEarth’s surface has been set to 10m,while the
radial size of finite elements above has been increasing lin-
earlywith increasing altitude exceeding 1 km for those on the
upper boundary. Figure 8 depicts a sketch of lower compu-
tational nodes along the meridian profile crossing mountains
of the High Tatras. To consider such non-uniform division
is quite natural taking into account that the gravity field
becomes smother and smoother with increasing altitude.

4.3.2 Computational aspects and derived quantities of the
local gravity field

The computational domain has been discretized into the 3D
unstructured mesh of finite elements which has consisted
of 4700 × 2500 × 450 (longitude × latitude × height) =
5,287,500,000 elements in the whole computational domain
(11,757,201 computational nodes on the discretized Earth’s
topography). A numerical solution of FGBVP using the
developed FEM approach on such a large 3D unstructured
mesh has required about 1.42 TB of internal memory. The
final large-scale computations have been performed on 6
nodes of our cluster with 1.7 TB of distributed memory (each
node consists of four 8-core CPUs with 256 GB RAM).
Thanks to the NUMA (Non-Uniform Memory Access)
architecture of each node, we have implemented a hybrid
parallelization. Finally, the large-scale parallel computations
were performed on 192 cores using 48 MPI processes, each
with 4 OpenMP threads, taking about 90 h of the CPU time
(≈ 3.8 days). Such relatively high computational time was
mainly caused by a slow convergence of the BiCGSTAB lin-
ear solver for such a detailed consideration of the Earth’s
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Fig. 9 Local quasigeoid model in Slovakia as the FEM numerical solution of FGBVP (the horizontal resolution: 100 m × 100 m)

Fig. 10 GNSS/levelling test of the local quasigeoid model in Slovakia at 403 benchmarks

topography as well as due to the non-uniform discretization
in the radial direction.

A benefit of such large-scale computations is that they
have resulted in the disturbing potential obtained in every
point of the whole 3D computational mesh, i.e. in all
5,287,500,000 elements. Hence, it is possible to derive differ-
ent quantities of the local gravity field in every point, e.g. the
first, second or higher derivatives in different directions. For
example, we have evaluated the first and second derivatives
in the radial direction in 5 altitude levels, i.e. approximately
at 500 m, 1 km, 2 km, 5 km and 10 km above the reference
ellipsoid. Figures in “Appendix” show how the gravity field
is smoother and smoother with increasing altitude.

4.3.3 Local quasigeoid model in Slovakia and its
GNSS/levelling test

To get a local quasigeoid model, the disturbing potential T
obtained on the bottom boundary, i.e. at points directly on
the Earth’s surface (Fig. 6), has been transformed into the
quasigeoidal heights ξ using the formula

ξi = hi − Hnorm
i = hi − −(Ti +Ui − W0)

γi
(22)

where h is the ellipsoidal height, Hnorm denotes the normal
height, U is the normal potential evaluated at the i-th grid
point on the Earth’s surface, γ is a mean value of the normal
gravity between the quasigeoid and the Earth’s surface at this
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Fig. 11 Differences between the obtained local quasigeoid model in Slovakia and DVRM05

Fig. 12 Overlapping the residuals at GNSS/levelling benchmarks with differences between the obtained local quasigeoid model and DVRM05 (7
identified outliers ‘crossed’)

Table 6 Statistics of theGNSS/levelling test of the obtained local quasi-
geoid model in Slovakia

Characteristic For all points Without outliers

Points 403 396

Minimum 12.2 cm 15.6 cm

Maximum 34.9 cm 34.9 cm

Range 22.7 cm 19.3 cm

Mean 22.29 cm 22.31 cm

Median 22.28 cm 22.28 cm

STD 2.77 cm 2.54 cm

point, andW0 represents a reference value of the geopotential
adopted for a realization of the International Height Refer-
ence System (IHRS) (Sánchez et al. 2016). Parameters of

the normal gravity filed have been computed from theWGS-
84 reference ellipsoid. In this way, the quasigeoidal heights
have been expressed with respect to the WGS-84 reference
ellipsoid and to the W0 value adopted for IHRS.

Figure 9 depicts the obtained local quasigeoid model in
Slovakia with the resolution 100 m × 100 m. To validate
its precision, the GNSS/levelling test has been performed
at 403 benchmarks. Figure 10 depicts the obtained resid-
uals. Their statistics is summarized in Table 6. The local
quasigeoid model has been also compared with DVRM05
(Digital Vertical Reference Model), which is currently “an
official model in Slovakia to transform ellipsoidal heights
(determined by GNSS in the ETRS89 system) into sea level
heights, namely into the normal heights in the Bpv verti-
cal system” (www.geoportal.sk). This model was developed
by polynomial fitting of a gravimetric-only quasigeoid to
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Fig. 13 Differences between the local quasigeoid models in Slovakia obtained by FEM: the older numerical scheme (Macák et al. 2020) minus the
presented new one

Fig. 14 Differences between the local quasigeoidmodels in Slovakia: the FVMapproach (Čunderlík et al. 2020) minus the presented FEM approach

304GNSS/levelling benchmarks of the National Spatial Net-
work of Slovakia (Klobušiak et al. 2005). Consequently,
differences between both the models depicted in Fig. 11
show how the “GNSS-levelling quasigeoid” differs from our
gravimetric-only quasigeoid. When overlapping both figures
(Fig. 12), one can see a nice agreement except several points,
where the colours are significantly different. These bench-
marks have been identified as outliers (‘crossed’ in Fig. 12).
Statistics of the GNSS/levelling test excluding these 7 out-
liers is presented in Table 6.

A mean value and median of the residuals of the
GNSS/levelling test are 22.3 cm (Table 6). They indicate an
offset of the national vertical datum of Slovakia with respect
to W0 = 62, 636 853.4 m2s−2 adopted as a reference value
for a realization of IHRS (Sánchez et al. 2016). SD of resid-
uals is 2.77 cm and decreases to 2.54 cm after excluding 7

evident outliers (Table 6). It indicates high precision of the
obtained local quasigeoid model.

4.3.4 Comparison with recent local quasigeoid models in
Slovakia

A comparison with the previous quasigeoid models in Slo-
vakia shows that the obtained local quasigeoid model has
outperformed all versions developed before 2016 while it is
of a very similar quality as the recent ones. To see differences,
we have compared our FEM solution with three different
local quasideoid models, namely with (i) one obtained by
FEM using the older numerical scheme published in Macák
et al. (2020) (Fig. 13), with (ii) one based on the FVM
approach (Čunderlík et al. 2020) (Fig. 14), and with (iii)
one computed in the spectral domain using a combination
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Fig. 15 Differences between the local quasigeoid models in Slovakia: computed in the spectral domain (Bucha et al. 2016) minus the presented
FEM approach

Table 7 Statistics of the
GNSS/levelling test of the
recent quasigeoid models at 396
GNSS-levelling benchmarks

Local quasigeoid
model

The new FEM
approach cm

The previous
FEM approach
(Macák et al.
2020) cm

The FVM
approach
(Čunderlík et al.
2020) cm

Spherical Radial
Basis Functions
(Bucha et al.
2016) cm

Range 19.3 20.1 20.5 18.8

Mean 22.3 24.6 23.1 −53.7

St. dev. 2.54 2.53 2.63 2.46

The mean value differs due to different transformation of the disturbing potential and related to the GRS-80
reference ellipsoid

of spherical harmonics, band-limited spherical radial basis
functions and the residual terrain model technique (Bucha
et al. 2016) (Fig. 15). In all cases, we have tested their preci-
sion at the same 396 GNSS/levelling benchmarks (excluding
7 aforementioned outliers). Table 7 depicts the statistics of
GNSS/levelling test for all models.

SDs of residuals are very similar, and they differ less than
0.2 cm. The ranges of residuals are also very similar. Both
quantities are slightly better for the model computed in the
spectral domain (see Table 7), while the mean value is sig-
nificantly different due to a different transformation of the
disturbing potential (Bucha et al. 2016). Differences between
the FEM or FVM numerical solutions depicted in Figures 13
and 14 show that the new FEM solution makes considerably
lower undulation in areas of the highestmountains, especially
in Tatra Mountains. The highest positive differences are in
theHighTatras exceeding 10 cm. Itmeans that here the quasi-
geoid undulation is more than 10 cm smaller. It is due to a
different consideration of the oblique derivative BC where a
stronger impact of the tangential components decreases the
local undulation.

A comparison with the local quasigeoid model obtained
in the spectral domain (Bucha et al. 2016) shows that the

differences have mainly a low-frequency character (Fig. 15).
The negative differences up to -4 cm dominate in the western
Slovakia and close to the border with Ukraine on the east.
The positive differences are mainly close to the border with
Poland on the north. The highest differences are again in the
High Tatras where the quasigeoid undulation is more than
6 cm higher than in the FEM solution. Here, there is only
one GNSS-levelling benchmark, in which the difference is
+5.1 cm. Nevertheless, the low-frequency character of the
differences and slightly better SD indicates a contribution
of the low frequency part in the case of local gravity field
modelling in the spectral domain.

Finally, we have also compared the FEM solutions when
using the uniform and non-uniform discretization of the 3D
computational mesh in the radial direction (see the sketch in
Fig. 8). In the case of uniform spacing, the height of finite
elements has been about 500 m. Figure 16 depicts how the
non-uniform division contribute to the solution. It is evident
that it makes higher undulation in the central part of Slovakia
up to 4 cm. For the uniform division, the SD of residuals is
3.01 cm, which is 2.4 mm worse than in case of the non-
uniform division.
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Fig. 16 Comparison between the FEM solutions when using the uniform and non-uniform discretization of the 3D computational mesh in the
radial direction

Fig. 17 Gravity disturbing gradients Tzz evaluated numerically at grid points on the Earth’s surface

4.3.5 Surface gravity disturbing gradients and their testing

Our motivation to set the radial size of finite elements on
the Earth’s surface to 10 m and then use its linear increasing
was (i) to capture better the local gravity field close to the
Earth’s surface, and (ii) to derive the second derivatives of the
disturbing potential in the radial direction as precise as pos-
sible. Figure 17 depicts the gravity disturbing gradients Tzz
evaluated numerically at grid points on the Earth’s surface
using finite differences. However, their testing by terrestrial
measurements of the vertical gravity gradients (Zahorec et al.
2014) shows that our resolution 100 × 100 m is still not suf-
ficient to get satisfactory values. In areas of high mountains

or deep valleys, the Earth’s topography is too smoothed for
modelling such ‘topography-sensitive’ quantity. Moreover,
available measurements of the gravity gradients were often
performed in areas of the extremely complicated Earth’s
topography in order to observe extreme values, i.e. the high-
est or ‘close-to-zero’ vertical gradient of gravity (Zahorec
et al. 2015). Nevertheless, after removing several pointsmea-
sured in extreme topography, the testing on 32 points shows
the maximal difference 0.068 mGal/m, minimal difference
−0.059mGal/m, mean value−0.008mGal/m and SD 0.029
mGal/m (290 E).

In the case of evaluating the second derivatives of the
disturbing potential at different altitudes above the Earth’s
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surface (see Figures in “Appendix”), the horizontal resolu-
tion of the Earth’s topography 100 m × 100 m is sufficient.
Here, the derived derivatives are not so topography-sensitive.
Therefore, they better reflect the real gravity field and could
be useful for geophysical investigations.

5 Conclusions and discussion

The presented FEM approach is solving the geodetic BVP
with an oblique derivative BC numerically in a spatial
domain. It allows to model gravity field directly on the
discretized real Earth’s topography. The derived numerical
scheme, in which the oblique derivative BC are consid-
ered directly in computational nodes located on the Earth’s
surface, seems to be more efficient than our previous treat-
ment based on their averaging over bottom sides of relevant
finite elements (Macák et al. 2020). All numerical experi-
ments have confirmed higher efficiency of the new numerical
scheme, which avoids a loss of accuracy due to averaging.
Artificial testing experiments have clarified that the presented
FEM method is more stable and the second-order accurate.

Reconstruction of EGM2008 as a harmonic function over
the Himalayas and Tibetan Plateau has shown that with a suf-
ficient refinement of the discretization we are able to achieve
“cm-level” accuracy, even on such extremely complicated
Earth’s surface. A comparison with the results obtained by
the FVM approach (Medl’a et al. 2018) has also confirmed
a higher efficiency of the presented FEM approach.

The last numerical experiment has demonstrated that the
developed FEM approach is suitable for very detailed and
precise local gravity field modelling using terrestrial gravity
data. The conceptual difference of our FEM approach treated
‘purely’ in the spatial domain in comparison with classical
approaches based on the well-known ‘remove-compute-
restore’ strategy is that we use low-frequency information
detected from the satellite missions like CHAMP, GRACE
or GOCE only on the upper and side boundaries. Here, our
FEM solution is fixed to the GRACE/GOCE-based models
by the Dirichlet BC; however, there is no information from
the satellite missions in input data on the Earth’s surface as
a bottom boundary.

This has obvious pros and cons. An advantage is that
the impact of omission errors of the GRACE/GOCE-based
satellite-only models on our FEM solution is considerably
reduced, especially on the Earth’s surface. A drawback is that
all systematic errors included in terrestrial gravimetric mea-
surements as input data on the Earth’s surface, e.g. from an
offset or tilt of vertical levelling networks, can fully influence
obtainedFEMsolutions. In case of the spectral treatment, this
drawback should be reduced.

A comparison of the FEM solution obtained in the spatial
domain with the local quasigeoid model computed in the

spectral domain (Bucha et al. 2016) shows a low-frequency
character of differences. The GNSS-levelling test confirms
very similar accuracy of both models, while the standard
deviations of residuals differ only by 0.1 mm. Taking into
account accuracy of theGNSS-levelling benchmarks, we can
state that the local gravity field modelling has reached such
accuracy that it allows to detect some systematic tendencies
in the vertical levelling network in Slovakia.

For local gravity field modelling in the spatial domain, a
high density of terrestrial gravity data is extremely impor-
tant in order to achieve sufficiently accurate result. Thus,
the process of generating input gravity disturbances from the
detailed map of the complete Bouguer anomalies (Pašteka
et al. 2017) using the CBA2G software has played a crucial
role in our experiment. However, an impact of the possible
systematic tendencies hidden in input gravity disturbances
should be investigated in this process.

Finally, we have to remind that detailed local gravity field
modelling in the spatial domain using the presented FEM
approach requires large-scale parallel computing. Obvious
large memory requirements could seem as a limiting draw-
back. However, nowadays in era of HPC facilities such a
drawback should not be a limiting, but rather challenging
factor, which should motivate applications of the numerical
methods like FEM, FVM or BEM for precise gravity field
modelling. We believe that the results of presented numeri-
cal experiments have demonstrated that our FEM approach
can reach the same quality as the state-of-the-art approaches
nowadays used in physical geodesy.
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Appendix

See Fig. 18.
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Altitude: 500 m

Altitude: 1 km

Altitude: 2 km

Altitude: 5 km

Altitude: 10 km

Fig. 18 The first and second derivatives of the disturbing potential in the radial direction evaluated in 5 altitude levels (approximately at 500 m, 1
km, 2 km, 5 km and 10 km above the reference ellipsoid)
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KrajňákM, IvanM,Mikuška J, BielikMM (2017) High resolution
Slovak Bouguer gravity anomaly map and its enhanced derivative
transformations: new possibilities for interpretation of anomalous
gravity fields. Contrib Geophys Geodesy 47(2):81–94. https://doi.
org/10.1515/congeo-2017-0006

Pavlis NK, Holmes SA, Kenyon SC, Factor JK (2012) The devel-
opment and evaluation of the Earth Gravitational Model 2008
(EGM2008). JGeophysRes 117:B04406. https://doi.org/10.1029/
2011JB008916

Reddy JN (2006) An introduction to the finite element method, 3rd edn.
McGraw-Hill Education, New York
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Zahorec P, Mikuška J, Papčo J, Marušiak I, Karcol R, Pašteka R (2015)
Towards the measurement of zero vertical gradient of gravity on
the Earth’s surface. Stud Geophys Geod 59:524–537

Zahorec P, Marušiak I, Mikuška J, Pašteka R, Papčo J (2017) Numer-
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