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Abstract: The paper presents a novel original upwind-
based approach for solving the oblique derivative bound-
ary value problem by the finite volumemethod. In this ap-
proach, the oblique derivative boundary condition is inter-
preted as a stationary advection equation for the unknown
disturbing potential. Its approximation is then performed
byusing the first order upwind scheme taking into account
information from inflow parts of the finite volume bound-
ary only. When the numerical scheme is derived, numeri-
cal simulations in 2D and 3D domains are performed and
the experimental order of convergence of the proposed al-
gorithm is studied. Moreover a comparison with a solu-
tion by the central scheme previously used for this kind
of problem is performed. Finally we present numerical ex-
periments dealing with the global and local gravity field
modelling.

Keywords: Finite volume method, Oblique derivative
boundary-value problem, Upwind principle

1 Introduction
A determination of the Earth’s gravity field is usually for-
mulated in terms of the geodetic boundary-value problem
(BVP). At present, terrestrial gravimetric measurements
are often accompanied by the precise GNSS positioning.
Such a combination yields gravity disturbances that natu-
rally lead to boundary conditions (BC) for the fixed gravi-
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metric BVP (FGBVP). From themathematical point of view,
FGBVP represents an exterior oblique derivative BVP for
the Laplace equation, cf. (Koch and Pope 1972; Bjerham-
mar and Svensson 1983; Holota 1997). In the last decades
several researchers have been dealing with such kind of
BVP, e.g. (Freeden and Kersten 1981; Bauer 2004; Gut-
ting 2007, 2012; Čunderlík et al. 2008, 2012; Grothaus and
Raskop 2009). In this paper we present an upwind-based
approach for solving the oblique derivative BVP that is
based on the finite volume method (FVM).

Nowadays, efficient numerical methods like the finite
element method (FEM), boundary element method (BEM)
or FVM are often used to solve various engineering prob-
lems. In physical geodesy they still represent alternatives
to classical approaches (e.g. the spherical harmonic (SH)
analysis, radial basis functions, least squares collocation
or integral transforms) that are usually preferred for grav-
ity field modelling. Nevertheless, obvious advantages of
the numerical methods like a straightforward refinement
of the discretization, opportunity to consider real topogra-
phyor feasibility for high-resolutionmodellingmake these
methods perspective for further investigation.

The first application of FEM to gravity field modelling
has been introduced by Meissl (1981), later studied in
(Shaofeng and Dingbo 1991) and (Fašková et al. 2010). In
case of BEM, two approaches have been developed. The
first one has been based on the indirect BEM formulation
and the Galerkin BEM (Klees 1995, 1998; Lehmann 1997;
Lehmann and Klees 1999; Klees et al. 2001) and the sec-
ond one on the direct BEM formulation and the collocation
technique (Čunderlík et al. 2008; Čunderlík and Mikula
2010). The variational method based on a weak formula-
tion and a functional minimization has been studied in
(Holota andNesvadba 2008). In case of FVM, the basic nu-
merical scheme for BVP with the Neumann BC has been
introduced by Fašková (2008) and its parallel implemen-
tation by Minarechová et al. (2015).

The first insight of FVM applied to the oblique deriva-
tive BVP has been discussed in (Macák et al. 2012). Later
on, a central numerical scheme for the oblique derivative
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BVP has been developed and efficiently applied to gravity
field modelling (Macák et al. 2014). From the mathemat-
ical point of view it is known that this central numerical
scheme can lead to nonphysical oscillations.

The objective of this paper is to introduce a new
upwind-based numerical scheme in which the oblique
derivative boundary condition is interpreted as a station-
ary advection equation for the unknown disturbing poten-
tial. Such an approach is more robust and avoids the os-
cillations. The numerical simulations aim to demonstrate
this advantage while comparing both schemes. Finally the
proposed upwind numerical scheme is applied to global
and local gravity field modelling.

2 Formulation of the oblique
derivative BVP

Let us consider the fixed gravimetric BVP, cf. (Koch and
Pope, 1972; Bjerhammar and Svensson, 1983; Holota,
1997):

∆T(x) = 0, x ∈ R3 − S, (1)

∇T(x)·⃗s(x) = δg(x), x ∈ ∂S, (2)

T(x) → 0, as |x| → ∞, (3)

where S is the Earth, T(x) is the disturbing potential de-
fined as a difference between the real and normal gravity
potential at any point x = (x, y, z), δg(x) is the so-called
gravity disturbance and s⃗(x) = ∇U(x)/|∇U(x)| is the unit
vector normal to the equipotential surface of the normal
potential U(x) at any point x.

The satellite missions like the Challenging Minisatel-
lite Payload (CHAMP) (Reigber et al., 2002), the Gravity
Recovery And Climate Experiment (GRACE) (Tapley, 2004)
and the Gravity Field and Steady-State Ocean Circulation
Explorer (GOCE) (ESA, 1999) have brought a significant
improvement in determination of the low-frequency part
of the gravity field. Since in our approach we are solving
BVP in a spatial domain, the information obtained from
these satellite missions is incorporated in our solution in
the form of the Dirichlet BC prescribed on an additional
upper boundary (Fig.1a). Altitude of this boundary is cho-
sen to approximate the orbit of the GOCE satellite mission.
Hence, in the following we consider the bounded domain
Ω (Fig. 1) where we solve the modified FGBVP in the form,
c.f. (Fašková et al. 2010) or (Minarechová et al. 2015):

∆T(x) = 0, x ∈ Ω, (4)

(a) (b)

Figure 1: The computational domain Ω for a) global numerical ex-
periment, b) local numerical experiment. The dotted boundary Γ
represents the part of the Earth’s surface. B, L and H denote ellip-
soidal latitude, longitude and height, respectively.

∇T(x)·⃗s(x) = δg(x), x ∈ Γ , (5)

T(x) = TSAT(x), x ∈ ∂Ω − Γ , (6)

where TSAT represents the disturbing potential generated
froma chosen SH-based satellite-only geopotentialmodel.
The bottom boundary Γ represents the Earth’s surface. It
is worth to noting that we are looking for a solution in the
bounded domain Ω, so we do not deal with a regularity
of this solution at infinity. In the caseof local gravity field
modelling, four additional side boundaries are considered
(Fig. 1b). Here the Dirichlet BC in the form of the disturb-
ing potential generated from a satellite-only geopotential
model can be prescribed as well. An impact of such BC
on the obtained numerical solution has been studied by
Fašková et al. (2010). The mathematical theory for a solu-
tion of the Laplace equation (4) with mixed BCs (5)-(6) has
been discussed in (Lieberman, 2013).

3 Solution to the oblique derivative
BVP by the finite volume method

To solve the modified FGBVP (4)-(6), the FVM has been
chosen. The general approach by the FVM, see (Eymard
et al., 2001), is to divide the computational domain Ω into
finite volumes p and integrate the Laplace equation over
each finite volume with a use of the divergence theorem
that turns the volume integrals into surface integrals.

Let us denote q ∈ N(p) as a neighbour of the finite vol-
ume p and N(p) denotes all neighbours of p. Let Tp and Tq
be approximate values of T in p and q, epq be a boundary
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of the finite volume p common with q, m(epq) is the area
of epq. Let xp and xq be representative points of p and q
respectively and dpq their distance. If we approximate the
normal derivative along the boundary of the finite volume
p by differences between Tp and Tq divided by dpq we ob-
tain the following equation for every finite volume p∑︁

q∈Np

m(epq)
dpq

(Tp − Tq) = 0, (7)

which forms together the linear system of algebraic equa-
tions. The term m(epq)

dpq defined on sides of the finite vol-
ume pis the so-called transmissivity coefficient, see (Ey-
mard et al., 2001). To take BCs into account, in case of the
Dirichlet BC (6) we prescribe the value of Tq on the bound-
ary, while in case of the oblique derivative BC (5), a spe-
cial treatment is needed. In Macák et al. (2014) we have in-
troduced a central numerical scheme to approximate the
oblique derivative BC. Since such an approach can lead
to nonphysical oscillations, here we present an upwind-
based scheme that will be discussed in the following sub-
section.

3.1 The upwind scheme for solving oblique
derivative BVP

Figure 2: Illustration of the 2D FVM grid. The dashed lines denote
the boundaries of added finite volumes, the volume of interest tis
shown in blue and its neighboring volumes in green. The vectors s⃗
are depicted by red.

One can rewrite the divergence of T(x)⃗s(x) in the form

∇·(T(x)⃗s(x)) = T(x)∇·⃗s(x) +∇T(x)·⃗s(x). (8)

By inserting (5) into Eq. (8), we obtain

∇·(T(x)⃗s(x)) − T(x)∇·⃗s(x) = δg(x). (9)

We add one rowof finite volumes under the bottombound-
ary, see Fig. 2, and integrate (9) over one of the added finite
volumes p (we omit (x) to simplify the notation in the fol-
lowing equations)∫︁

p

∇ · (Ts⃗)dV −
∫︁
p

T∇ · s⃗dV =
∫︁
p

δgdv, (10)

wheredV is the volume element. Using a constant approxi-
mation of the solution T on the finite volume p denoted by
Tp and applying the divergence theorem to the left-hand
side of the Eq. (10) we obtain∑︁
q∈N(p)

∫︁
epq

Ts⃗ · n⃗pqdS −
∑︁
q∈N(p)

Tp
∫︁
epq

s⃗ · n⃗pqdS =
∫︁
p

δgdV ,

(11)

where dS is the surface area element and n⃗pq is a unit nor-
mal vector oriented from p to q. Denoting a constant ap-
proximation of the solution on the interface epq by Tpq and
a volume of the finite volume p by m(p) yields∑︁
q∈N(p)

Tpq
∫︁
epq

s⃗ · n⃗pqdS −
∑︁
q∈N(p)

Tp
∫︁
epq

s⃗ · n⃗pqdS = δgm(p).

(12)

When we denote

spq =
∫︁
epq

s⃗ · n⃗pqdS ≈ m(epq )⃗s · n⃗pq , (13)

we finally obtain∑︁
q∈N(p)

spq(Tpq − Tp) = δgm(p). (14)

Due to an analogy of the oblique derivative BC (2) and the
stationary advection equationwe applied an upwind prin-
ciple, which is used exclusively in solving advection equa-
tions in fluid dynamics (LeVeque, 2002). Then we define

Tpq = Tp , if spq > 0, (15)

Tpq = Tq , if spq < 0, (16)

which correspond to the inflow part to the finite volume
p(spq <0) and outflow part to the finite volume p(spq >0)
when s⃗ is understood as an advection velocity vector. By
using (15)-(16) in (14)we obtain the final formof an approx-
imation to the oblique derivative BC (5) as∑︁

q∈N(p)in
spq(Tq − Tp) = δgm(p), (17)
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where N(p)in is a set of neighbours at the inflow bound-
aries of the finite volume p, i.e. where spq<0.

Using (17), we get the right-hand side vector with
nonzero entries and modified diagonal coefficients for fi-
nite volumes along the boundary. Hence, the system ma-
trix is nonsymmetric and diagonally dominant.

4 Numerical experiments
In this section, we present several numerical experiments
which were performed in order to test the proposed up-
wind scheme. The numerical scheme will be qualified ac-
cording to the value of the so-called experimental order
of convergence (EOC) that can be computed as follows.
If we assume that the error of the scheme in some norm
is proportional to some power of the grid size, i.e., Er-
ror(h) = Chϵ, with a constant C, then having two grids
with sizes h1 and h2, where h1 >h2, yields two errors Er-
ror(h1) = C(h1)ϵ andError(h2) = C(h2)ϵ fromwherewe can
simply extract ϵ = log h1

h2
(Error(h1)/Error(h2)). If h2 = h1

2

then ϵ = log2(Error(h1)/Error(h2)).
Then the ϵ is the EOC and can be determined by com-

paring numerical solutions and exact solutions on subse-
quently refined grids.

In numerical experiments, we present statistical char-
acteristics of residuals, namely:

– the mean value res = 1
n
∑︀n

p=1 resp, where n = n1n2,
or n = n1n2n3

– the standard deviation (STD) =√︁
1
n
∑︀n

p=1(resp − res)2,
– the MAX-norm on bottom boundary Γ(MAX(Γ)) =

maxp∈Γ |res|
– the L2-norm in domain Ω (L2(Ω)) =√︁∑︀n

p=1(resp)2m(p),

where resp=Tp − T*p, where T*p is either exact or EGM2008
value in a representative point of the finite volume p,
n1, n2 and n3 are the numbers of divisions in L, B, H di-
rections.

4.1 Numerical simulations

First, let us consider the oblique derivative BC defined by
Eq. (2). The gravity disturbance as a difference between
magnitudes of the real and normal gravity represents a
projection of ∇T(x) into the unit vector s⃗(x). The oblique
derivative arises from the fact that the direction of s⃗(x)
in general does not coincide with the normal n⃗(x) to the

Earth’s surface. It means that here we can distinguish two
angles; the first one between n⃗(x) a s⃗(x) is known, while
the second one between ∇T(x) and s⃗(x) is unknown due
to an unknown direction of∇T(x). To simulate uch a situ-
ation in our upwind schemewe perform the following test-
ing experiments.

In the first experiment, we have considered the annu-
lus between two circles with radii Rd = 1 m and Ru = 2 m.
As the Dirichlet BC (6) on the upper boundary, the chosen
exact solution of (4) in the form T* = − log r, where r is the
distance from the point mass source xC = (0.5, 0.35), i.e.
r = |x−xC|, has been applied. As the oblique derivative BC
on the bottom boundary, derivative of this exact solution
in direction of its gradient, which is equal to 1/r, has been
considered. The differences between the exact and numer-
ical solutions together with the L2(Ω) andMAX (Γ) norms
for subsequently refined grids can be found in Table 1. One
can observe that the L2(Ω) and MAX (Γ) norms in case of
the upwind scheme are approximately of the first order.
We can also observe that the convergence rate inMAX (Γ)-
norm of the central scheme significantly decreases with
the refinement of the grid.

For the second numerical experiment we have the
same computational domain and BC on the upper bound-
ary as in theprevious experiment. Thedirectionof the orig-
inal vector s⃗1(x), i.e. the unit gradient vector of the exact
solution, has been modified by an angle α to create a new
unit vector s⃗(x), see Fig. 3. For this experiment we have
chosen α = 60∘. The coordinates of the point mass source
have been xC = (0.25, 0.35). Then the oblique derivative
BC is given by the projection ∇T(x)·⃗s(x) = −(1/r) cos(α).
As we can see in Table 2, the EOC in case of the L2(Ω)
andMAX (Γ)-norms for the upwind scheme remains stable
reaching values approximately 1, while in case of the cen-
tral scheme significantly varies in values. This is a clear
consequence of the known fact that central scheme may
give an oscillatory solution when applied to the advection
equationwith general variable velocity field. These two ex-
periments show the restriction of the central scheme of
smoothly varying oblique derivative vector s⃗(x), while the
upwind scheme can be used for generally varying oblique
derivative directions.

A similar numerical experiment has been performed
in 3D. The computational domain has been a tesseroid
bounded by two concentric spheres with radii Rd = 1 m
and Ru = 2 m, and a coaxial cone with dimension (0, π/4)
× (0, π/4). As the Dirichlet BC (6), the exact solution of (4)
in the form T* = 1/r on the upper and the side bound-
aries, has been prescribed. Analogously to the previous
2D experiment, the direction of the unit vector s⃗1(x), i.e.
the unit gradient vector of the exact solution, has been
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Table 1: The L2(Ω)-norm,MAX (Γ)-norm and the EOC for the 2D experiment with the oblique derivative BC computed from the shifted point
mass source. * results published in Macák et al. (2012, 2014).

Upwind scheme Central scheme∗

n1 × n2 ‖T ∗ − T‖L2(Ω) EOC ‖T ∗ − T‖MAX(Γ) EOC ‖T ∗ − T‖L2(Ω) EOC ‖T ∗ − T‖MAX(Γ) EOC

8×2 0.043461 - 0.137448 - 0.028261 - 0.071431 -
16×4 0.012002 1.85 0.038109 1.95 0.005400 2.38 0.009351 2.93
32×8 0.004297 1.48 0.014736 1.37 0.001113 2.27 0.002370 1.98
64×16 0.001794 1.26 0.006325 1.26 0.000263 2.08 0.000748 1.66
128×32 0.000816 1.10 0.002929 1.11 0.000064 2.01 0.000260 1.52
256×64 0.000389 1.06 0.001409 1.05 0.000014 2.02 0.000102 1.34

Table 2: The L2(Ω)-norm,MAX (Γ)-norm and the EOC for the 2D experiment when the oblique vector s⃗ does not have direction of the solu-
tion gradient.

Upwind scheme Central scheme
n1 × n2 ‖T ∗ − T‖L2(Ω) EOC ‖T ∗ − T‖MAX(Γ) EOC ‖T ∗ − T‖L2(Ω) EOC ‖T ∗ − T‖MAX(Γ) EOC

8×2 0.104581 - 0.437204 - 0.319504 - 1.400150 -
16×4 0.043185 1.28 0.198872 1.14 0.016244 4.30 0.120665 3.54
32×8 0.019540 1.14 0.100127 0.99 0.015214 0.09 0.031821 1.92
64×16 0.009096 1.10 0.048672 1.04 0.002248 2.76 0.004576 2.80
128×32 0.004359 1.06 0.023937 1.02 0.019024 -3.08 0.671130 -7.20
256×64 0.002130 1.03 0.011870 1.01 0.000536 5.15 0.010908 5.94

Figure 3: Illustration of creating the vector s⃗ by rotating of s⃗1 by an
angle ±α in 2D on the bottom boundary Γ.

modified by angle ±α to create a new unit vector s⃗(x). For
this experiment we have chosen α = 20∘. The coordinates
of the point mass source have been xC = (0.3, −0.2, 0.1).
Then the oblique derivative BC is given by the projection
∇T(x) · s⃗(x) = −(1/r2) cos(α). The L2(Ω) and MAX (Γ)
norms of differences between the exact and numerical so-
lutions and the EOC of the methods are shown in Table 3.

We again observe stable behaviour of EOC for the upwind
scheme and oscillatory EOC for the central scheme.

4.2 Global gravity field modelling

In this numerical experimentwe apply the upwind scheme
for global gravity field modelling. We are trying to recon-
struct a harmonic function given by the EGM2008 geopo-
tential model up to degree 2160 (Pavlis et al. 2012). It
means that all BCs are generated from this model. The
Dirichlet BC in the form of the disturbing potential is pre-
scribed on the upper boundary at the constant altitude of
240 km above the reference ellipsoid. The oblique deriva-
tive BCs are generated as the first derivative of the disturb-
ing potential in the direction of the normal to the reference
ellipsoid. They are generated at points on the real topog-
raphy that is approximated using the SRTM30 PLUS global
topographymodel (Becker et al., 2009). Our goal is to show
a convergence of the FVMsolution to EGM2008when refin-
ing the computational grid.

Although the oblique derivative BCs are considered at
points on the real topography, in our FVM approach we so
far use a structured grid of finite volumes. Itmeans that the
computational domain Ω in our computations is bounded
by the reference ellipsoid. However, all input data here are
adopted from the real topography. This means that n⃗pq on
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Table 3: The L2(Ω)-norm,MAX (Γ)-norm and the EOC for the 3D experiment with the 3D oblique derivative BC when the oblique vector s⃗
does not have direction of the solution gradient.

Upwind scheme Central scheme
n1 × n2 × n3 ‖T ∗ − T‖L2(Ω) EOC ‖T ∗ − T‖MAX(Γ) EOC ‖T ∗ − T‖L2(Ω) EOC ‖T ∗ − T‖MAX(Γ) EOC

8×8×4 0.177728 - 0.362022 - 0.061529 - 0.3511 -
16×16×8 0.059441 1.58 0.177806 1.03 0.146351 -1.25 0.209212 0.75
32×32×16 0.022542 1.39 0.083563 1.08 0.058753 1.31 0.050549 2.05
64×64×32 0.010819 1.05 0.041756 1.00 0.008090 2.86 0.053722 2.64

128×128×64 0.005143 1.07 0.019506 1.13 0.004520 0.83 0.024245 0.84

Table 4: Statistics of residuals in T[m2s−2] on the bottom boundary Γ for successive refinemens, and computational details.

Statistics Computational aspects

Resolution Min. Max. Mean
STD Memory

Procs
CPU/Proc

Total Sea Land Req. [GB] [s]

40′ × 40′ -78.910 80.426 -0.392 5.238 4.771 6.228 0.578 16 3.17e2
20′ × 20′ -46.584 27.558 -0.273 1.948 1.489 2.750 4.157 32 6.73e3
10′ × 10′ -22.011 7.954 -0.265 0.904 0.327 1.578 29.897 64 4.11e4
5′ × 5′ -13.926 7.932 -0.114 0.558 0.183 0.991 247.949 128 2.95e5

Table 5: SR: The GPS/leveling test [m] at 61 points in area of Slovakia. * results published in Macák et al. (2014).

FVM

EGM2008 Neumann BC∗
Oblique derivative BC

Central scheme∗ Upwind scheme

Min value 0.301 0.045 0.123 0.131
Mean value 0.437 0.232 0.274 0.279
Max value 0.584 0.393 0.419 0.421

St. deviation 0.043 0.076 0.059 0.058

the bottomboundary is givenby thenormal to the topogra-
phy and not by the normal to the ellipsoid. Then the unit
vector s⃗(x) in Eq. (13) represents the normal to the refer-
ence ellipsoidwhile thedirectionof n⃗pq represents thenor-
mal to the Earth’s surface and is adopted from our approx-
imation of the topography. In thiswaywe are able to evalu-
ate the coefficients s⃗pq in our approximation of the oblique
derivative BC (see Eq. (17)).

The computational grid is constructed using the num-
ber of divisions in L, B, H directions given by n1 × n2 × n3:

a) 540 × 270 × 75 (resolution: 40′ × 40′ × 3200 m),
b) 1080 × 540 × 150 (resolution: 20′ × 20′ × 1600 m),
c) 2160 × 1080 × 300 (resolution: 10′ × 10′ × 800 m),
d) 4320 × 2160 × 600 (resolution: 5′ × 5′ × 400 m).

The obtained FVM solutions are comparedwith EGM2008.
The statistical characteristics of residuals on the bottom
boundary as well as computational aspects are summa-
rized in Table 4. One can see that the FVM solution con-
verges to EGM2008 by refining the finite volume grid, i.e.
the mean value, STD as well as maximum norm are de-
creasing. It is worth to note that every refinement of the
discretization involves a more detailed consideration of
the topography. This does not allow us to compute EOC
directly, however, STD as well as the maximum norm in
Table 4 indicate that the upwind scheme is the first order
accurate.

The residuals between the most refined FVM solution
in case d) and EGM2008 are depicted in Fig. 4. The largest
residuals are negative and they evidently correlate with
high mountainous areas of Himalayas and Andes. The
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minimal values of residuals in Table 4 indicate that re-
finements of the discretization improve the FVM solution
also in these zones of complicated topography. This con-
firms that the presented FVM approach based on the up-
wind treatment of the oblique derivative BC is able to re-
construct a harmonic function and thus is efficient to solve
the oblique derivative BVP.

4.3 Local gravity field modelling

In the last numerical experiment we present the upwind
scheme applied for local gravity field modelling in Slo-
vakia. The computational domain Ω has been defined
by the ellipsoidal latitude and longitude in range B ∈
(47.0∘, 55.5∘) and L ∈ (16.0∘, 23.0∘), respectively, with
the upper boundary at 240 km above the reference el-
lipsoid. The number of discretization intervals has been
840 in longitudinal direction, 630 in meridional and 300
in height. As input data on the bottom boundary Γ we
used the surface gravity disturbances obtained from the
available regular grid 20′′×30′′ of gravity anomalies that
was compiled from the original gravimetricmeasurements
(Grand et al. 2001). To transform these gravity anomalies
into the gravity disturbanceswehaveused the official ”dig-
ital vertical reference model - DVRM” (www.geoportal.sk).
Thedisturbingpotential onupper and side boundaries has
been computed from the GOCO03Smodel up to degree 250
(Mayer-Gürr et al., 2012).

Figure 4: Residuals in T[m2.s−2] between the disturbing potential
computed by the FVM solution with upwind treatment of oblique
derivative and EGM2008 solution on the bottom boundary Γ.

The computations were performed on the parallel
cluster using 32 cores and 8.3 GB of distributed memory.
It took about 22 min of the CPU time per processor. The re-
sulting FVM solution obtained by the upwind scheme has
been comparedwith one based on the central scheme. Fig-
ure 5 depicts the residuals between both solutions. It is ev-
ident that the upwind scheme gives slightly higher undu-

Figure 5: Differences in T[m2.s−2] between the FVM solution with
upwind treatment of oblique derivative and FVM solution with cen-
tral scheme treatment of oblique derivative on the bottom boundary
Γ in area of Slovakia.

lation towards the highest mountains ofWestern andHigh
Tatras areas (depicted by dark blue in Fig. 5) where the dif-
ferences are reaching 0.24 m2s−2 (≈ 2.5 cm).

Finally we present the GNSS-levelling test of the dif-
ferent FVM solutions and EGM2008 (Tab. 5). Although the
smallest STD in case of EGM2008 indicates its best accu-
racy, our treatment of the oblique derivative has evidently
improved the FVM solution based on the Neumann BC.
Moreover, the upwind scheme has given slightly better re-
sults than the central scheme. It is probably due to the fact
that the upwind scheme approximates the oblique deriva-
tive BC better than the central scheme. This advantage to-
gether with the fact that the upwind scheme avoids possi-
ble oscillations of the central scheme, make this approach
more robust and suitable for solving the oblique derivative
BVP.

5 Conclusions
In this paper we have derived an original numerical
scheme of FVM based on the approximation of the oblique
derivative boundary conditionusing theupwindprinciple.
We have tested this approach in several 2D and 3D testing
experiments. They have showed that the upwind scheme
ismore robust and stable than the central scheme. The ob-
tained results have indicated that this numerical approach
is first order accurate. Its application for global gravity
field modelling has demonstrated that the upwind treat-
ment of the oblique derivative boundary conditions is able
to reconstruct a harmonic function in case of real topogra-
phy. In case of local gravity field modelling we have com-
pared the obtained local solution with the one based on
the central scheme. This comparison as well as the GNSS-
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levelling test have indicated that the upwind scheme ap-
proximates the oblique derivative BC better than the cen-
tral scheme. Our outline for future is to develop a method
based on the upwind principle that will be the second or-
der accurate.
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