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NUMERICAL SOLUTION TO TWO FACTOR MODEL FOR
OPTION PRICING WITH STOCHASTIC VOLATILITY

Cyril Ungvarsky ¥ Karol Mikula ™

In this paper we discuss numerical solution of the two factor option pricing model represented by a second order parabolic
partial differential equation. In spite of the standard Black-Scholes equation, not only the asset price but also volatility follow

a stochastic differential equation of diffusive type.

We mainly deal with an application of the finite volume method to the corresponding convection-diffusion equation
accompanied with Dirichlet boundary conditions. It seems that such boundary conditions are much more natural and easy
to implement in algorithms for computing solution of the two factor option pricing models than ones used by Forsyth, Vetzal

and Zvan [2].

Finally, the numerically computed examples for two-factor model are presented and discussed. For a special choice of
parameters in the underlying stochastic differential equations it is possible to compare the behaviour of our numerical solution
with the exact Black-Scholes solution of the European call option problem. We use such an approach for testing the numerical

scheme.
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1 THE TWO FACTOR MODEL
FOR OPTION PRICING

1.1 Governing equations

Let us consider the second order parabolic partial dif-
ferential equation (PDE)

ov oV 1 0%V 0%V
E+(T—D)S%+§vs W+pm}5658v
1, 9%V oV _
+§00W+(/~z(6—v)—/\v)%—ﬂf—0, (1)

which is a well know model for option pricing with
stochastic volatility [2,5,7]. In equation (1) the function
V(S(t),v(t),t) represents the value of the option as a
function of S, v, t, where S(t) is the market price of
the underlying asset (for example stock), v(¢) is volatil-
ity of the underlying asset price and ¢t is time, ¢t € [0,T].
The further parameters represent: ¢ — volatility of the
volatility v, A — the market price of risk, § — the re-
version level of volatility v, kK — the speed of reversion
parameter for v, r — the riskfree interest rate and p —
the coefficient of correlation. In this two factor model the
time evolution of the asset price S and volatility v are
solutions of the stochastic differential equations [2, 6]

dS = uSdt + VoSdv, 2)
dv = k(0 — v)dt + o/vdWa, (3)

where dS is the change of the stock price in a small time
interval dt, dv is the change of the stock volatility in dt,
1 is the expected rate of return on S and dW; are stan-
dard Wiener processes, ¢ = 1,2 with correlation given by
E(dW,dW,) = pdt. If we want to solve PDE (1) uniquely
we have to specify initial and boundary conditions. The
value of the option at the expiry time ¢ = T is deter-
mined by the option payoff diagram. Then the value of
the option V(S,v,T) at expiry time is given by

max(S — E,0)
max(E — S,0)

V(S,v,T) = { for call option,

for put option,

where E is the exercise (strike) price. Since we are dealing
with 2D problem, we consider Dirichlet boundary con-
ditions for S =0, S - 00, v = 0, v = 00. From the
stochastic differential equation (2) it follows that if the
price of the stock S is zero, then the change of the stock
price dS through time interval dt is zero. By that we get
the following condition

V(0,v,t) =0, S—0. (5)
In the case, when the price of stock rises, i.e. S — o0,
we can expect that the owner of the call option will buy
the stocks at the expiry date T'. Moreover the strike price
will be small in comparison with the stock price, so we get
the boundary condition V(S — oo,v,t) — S. However
in the numerical approximation we are looking for the
solution on the finite interval. So taking into account the
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dividends and the time value of the money the boundary
condition has the following form

V(S,v,t) = Se PT=D _ Ee= (T for § - 00. (6)

In order to define Dirichlet boundary conditions for v — 0
and v — oo we use the explicit Black-Scholes formula for
the value ¢(S,4d,t) of the European call option given by
[4,5,7]

¢(S,0,t) = SePT-UN(dy) — Ee " TV N(dy), (7)
where
Nia) = —— /w e 3v'd
- \/2_7'( o Y,
0" s+ (r—D+ )T —1)

VT —t ’
—oVT —t
and 0 is a constant volatility of the stock. Let § —
0F. If Se=PT=Y > Ee~"(T=Y then dy,d» — oo and
¢(S,6,t) = Se PI—t) _ Ber(T-t) If Se DT-t) <
Ee (T then dy,dy - —oo and ¢(S,d,t) = 0. Thus
we get the boundary condition

V(S,v,t) =max(Se " PT=0)_ BT ) v - 0. (8)
In case v — oo the equation is reduced to [2]
ov ov 1 0%V
E+( D)Sﬁ —SW—V—O 9)

which is nothing else than the Black-Scholes equation and
we have

V(S,v,t) = ¢(S,v,t), v = 0. (10)
In the sequel we will consider equation (1) with the ex-
piry condition (4) and boundary conditions (5), (6), (8)
and (10).

1.2 Transformation of the model

Before numerical discretization, as it is usual in com-
putational finance dealing with option pricing, we trans-
form the model by introducing new variables x,y, T given
by £ = In(S/E), y =v and 7 =T —¢. Then S = €*,
t=T—7 and V(S,v,t) = Eu(z,y, 7). Using such trans-
formation PDE (1) takes the form

@—( D_l)@+162_u+0- azu
or y PoY oxdy

O0r 27 0x2
ou
— — . (11
Ay)ay ru. (11)

1 U
+5Z/U 6—1/2+( k(0 —y) —

In the same way we transform the expiry and boundary
conditions, which get the form

u(z,y,0) = max(e” — 1,0), (12)

u(z,y, )—0 T — —00, (13)

u($7y7 ) —é€ - ? T _> w7 (14)

u(@,y,7) = max(e* P —e7"7,0), y » 0, (15)
E

u(e,y,r) = LDy, (16)

2 THE FINITE VOLUME METHOD

Before constructing the numerical scheme for PDE
(11) we define the mesh L of the domain Q C R2?, which
consists of a finite (control) volume p, such that Q =
UPEL b.

Since we work with a rectangular domain and we usu-
ally construct a simple rectangular grid, we use mesh L =
(Pij)i=t,...,Nasj=1,..,N,+1 of a domain (X1, Xg) x (0,Y),
satisfying the following assumptions. Let N,,N, € N,
he >0, hy >0, hg,hy € R such that

ak h

i=1
where h; = hNy+1 = hy. Let
w%:XLa mi—i—%:wi—%'i_hz: fOI‘iZ].,...,Nz,
—h )
y1 = Ty’ Yirl =Yj_1 +hy, forj=1,...,Ny+1,
such that
hy
tn, 41 =XR, Yn43 =Y+ 9
Then
ij = [mz’—%7$z’+%] X [yj—%ayj-l—%]'
Let (z:)i=1,..,N, > (yj)jzl,,,,,Ny_H be given by
1 ,
:ci::ci_%+§hm fori=1,...,N,,
1 .
y]:yj_l—i-Ehy forj=1,...,Ny+1.
and k = % be a discrete time step, 7, = nk.
ar qs d9
1 Npgs
€pgs
44 nl;:M S | €pas p €pgs | — n;;:M ge
el"h
Tipgs +
q1 q2 q3

Fig. 1. The control volume p, set of its neighbours g;, edges and
normals epq and npg .
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2.1 Discretization of PDE

We can write equation (11) in the form

6—U+E-VU—V (BVu) — ru, (17)
or
where
1 1 po
B_5y<m 02)
L L (18)

- _ r—D—3y—35po

k(0 —y) — Ay — 30?

represent the “diffusion matrix” and “velocity vector”,
respectively [1].

In order to define the finite volume numerical scheme
we integrate equation (17) over each control volume p € L

/(2—“+A Vu)dp = /(V-(BVu)—ru)dp.

Let us denote by u; the expected approximation of
the solution v at time 7, in the control volume p. This
value can be viewed as an approximation of the mean
value of u over volume p or as an approximation of the
value u(x;,y;,7) [1]. Let (zp,yp) be the coordinates of
the center of the control volume p. Let ep, denote the
common boundary of the control volume p and ¢. Let
(®pg, Ypg) be the coordinates of the point of intersection
of e, and the line connecting (zp,yp) and (z4,y,)-

Now by backward Euler discretization for time deriva-
tive and using relation

V- (Au)=A-Vu+ (V- Au

for the convective term we can write
R0~ m) + [ v (Eap

:/v-(BVu")dp+/(v-fY—r)u"dp, (19)

where m(p) = hghy is an area of the control volume p.
Using divergence theorem

m(p) / A. npqu"d

Pl
/ BVu™ -npedy + (V- A—r) m(p)u, , (20)
q€EN,

where npy is a unit normal vector to e,q, outward to p
and N, is a set of all neighbour volumes of the control
volume p. In our case N, = {q1,--.,94,96,---,99} (see
Fig. 1). Then we can write equation (20) in the form

mk@)( Z quup+

qEN,

Z/ BVU™ - nggdy + (V- A —r)m m(p)uy, -

gEN,

where Qpq = / A-n3,dvy and upwind technique is used
e

to define
for Qpy >0,

22
for Qpq <O0. (22)
Since in our case (V-A—r) = k+A—r is a given constant,
there it remains to approximate the term

/ BVu™ - npedy. (23)

gENP
We can approximate

n - 1
52 = BVu™ - npqzd’}’ ~ §ypqzm(ePQ2)

€pag
% %(mpqzaypqz) +p0%(l‘pq2,ypq2) ) ( 0 )T
n n ,
pa’%(mlﬂlzaylﬂh) + 02%(‘%1)@ ) ypt12) -1

where m(epq,) is the length of the edge e,q, . Then

n

1 ou

Sa & 5 Ypa he (PU%(JL’P‘D > Ypao)

n

ou
+0° E (Tpgas Ypge )) . (24)

For the approximation of the partial derivative with re-
spect to y we use

n n__ ,mn
au uP U’qz

— =~ 2
Ay (wpq27ypq2) hy (25)

For the approximation of the partial derivative with re-
spect to © we use

ou™ n n n

1 ugs —Ug,  Ug — Ug
— N~ . 26
837 (xPQZ ) ypqz) 2 ( 2h$ + 2hm ( )

Using (25) and (26) in (24) we derive the approximation

1

1
S = —5Ype hy (mpa(uq"6 — Uy, +ug, — uy,)

+—o%(ul — u;;))_ (27)

The remaining terms of the sum (23) can be derived in a
similar way.
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2.2 Discretization of initial and boundary condi-
tions

Now we introduce a simple indexing of the control vol-
umes in the admissible mesh L of the domain (X, Xg) x
(0,Y). Let u?;, i=1,...,Nz, j=1,...,N, +1 be the
approximation of the solution corresponding to u; with
volume center (z;,y;) € p. This volume will be also de-
noted by p;; .

Because the initial condition (12) does not depend on
volatility and is not transformed in time, we can write it
in the form

u?aj = ma‘x(ezi -1, 0) )

fori=1,...,N,,j=1,...,N,+1. (28)

In the same way we can write the approximation of
Dirichlet boundary conditions (13) and (14)

ut; =0, (29)
uly, ;= e™Ne DT _ = (30)

for j=1,...,N, +1 and conditions (15), (16)
ugy = max(e® ~P™ — 7" (), (31)
ﬁmﬂ=0@w2gﬁh%% (32)

for i=1,...,N, and c is given by (7).
2.3 The numerical scheme

Substitution (27) to (24) and calculating the remaining
terms of the sum (23) gives for all neighbouring control
volumes of the control volume p ~ (i, j)

k n ko, .
_ Wpd(yj—% + yj)ui—1,j_1 - %U Yj—1ugi_y
k

. k k
+ 8m(p) po(Yj— 3 +yj)uiysj1 — (Wpoyj—% + 22 Y

k n k ko,
- Sm—(p)po'yj-i-%)ui—l,j + <1 + EZ/J + h_;%a Yj

k
k(e +A—71))ul; + ——= Z Qpijqu;:-,--i-
) m(p) e
_(L S SN )un
Sm(p)”"¥i=2 T 2P T Sm(p) Vi E) i

L . n i 2 n
+ 8m(p) po(y; + yj+%)uz'—1,j+1 - 2h§0 Yj4 1541

k n—1
- wpa(w YU = upy 5 (33)

fori=2,...,N,—1,and j=2,...,N,.

Let U™ be the vector of the approximate solution.
Then the system of linear equations (33) together with
the boundary conditions can be written in the matrix
form

MU" =F, (34)

which can be solved, e.g., by Gauss elimination efficiently.

3 DISCUSSION ON
NUMERICAL EXPERIMENTS

3.1 The European call option

We present computational results for a two factor Eu-
ropean call option model with parameters given in Table 1
(these data were taken from [2, 3]).

Table 1. Data used for computing values of the two factor Euro-
pean call option.

name value
E — exercise price 60

r — the riskfree interest rate 0.05

T — time to expiration 0.3

o — the volatility of volatility 0.1

p — the coefficient of correlation 0.5, 0, -0.5
0 — the reversion level of the volatility|  0.02

A — the market price of the risk 0.0

k — the mean reversion 2.0

In Table 2 we present computed values of the two fac-
tor European call option changing correlations between
the evolution of the price and the volatility of the stock.
In the first column there is the stock price S, in the sec-
ond column we use three values of volatility v, the third
column gives the values of the payoff diagram. In the 4th
to 6th columns we have the computed values of V(S,v,t)
for three different coefficients of correlation and in the
two last columns there are classical Black-Scholes values
with fixed volatility = v.

The differences between the explicit solution of the
one factor model and our approximate solution of the
two-factor model with stochastic volatility gives a reason
for further research, for example, calibrating of the two
factor model for a specific stock.

If we compare assumptions of the one factor Black-
Scholes model and two-factor model with the stochastic
volatility, namely stochastic differential equations which
represent the evolution of the stock price S, we find a
correspondence § = /v, where § is a constant volatility
of the Black-Scholes model and v is stochastic volatility
of the two factor model. Then, if ¢ — 0 and Kk — oo, the
values obtained by the two-factor model should converge
to the values of the Black-Scholes model with § = /4. In
Table 3 we present the computational results of the two-
factor model at the stock price S = 61.7649, the volatility
of the volatility o = 0.001 and the reversion level of the
volatility 8 = 0.2. As expected, with increasing speed of
the reversion x the values of the option converge to the
explicit Black-Scholes solution for any level of volatility
v.
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Table 2. Values of the European call option depend on stock price S, stock volatility v and the coefficient of the correlation p.

v European call option
S payoff p=—=05]p=0.|p=0.5]c(S,v,7)|e(S,/v,T)
55.64|0.1] 0. 2.1805 |2.1498 | 2.1996 | 0.2143 2.4651
61.77]0.1] 1.77 | 5.3056 | 5.2250 | 5.2392 | 3.0537 5.6334
68.56/0.1| 8.56 | 10.5112 [10.4176/10.4028| 9.4579 | 10.6494
55.64|0.2] 0. 3.3755 |3.4270 | 3.4971 | 1.1451 4.0288
61.77]0.2| 1.77 | 6.6248 | 6.6488 | 6.6941 | 4.1787 7.3144
68.56|0.2| 8.56 | 11.5161 |11.5129(11.5291| 9.7364 12.0493
55.64(0.3| 0. 4.4146 | 4.4780 | 4.5476 | 2.2750 5.2461
61.77|0.3| 1.77 | 7.7467 | 7.7884 | 7.8355 | 5.4270 8.6119
68.56]0.3| 8.56 | 12.4993 [12.5164/12.5388| 10.4969 | 13.2419

Table 3. Values of the European call option obtained by two-factor

model when the stock price S = 61.7649, volatility v, the volatility

of the volatility o = 0.001 with increasing speed of the reversion
K.

S = 61.7649 Explicit solution of B—S equation: 7.31444
v European call option
k=20 k=50 k=100 k= 1000
0.05| 6.71916 7.06955 7.19349 7.30255
0.10] 6.88090 7.13334 7.22470 7.30561
0.15] 7.06065 7.20648 7.26076 7.30916
0.20] 7.31447 7.31448 7.31448 7.31448
0.25| 7.55015 7.41841 7.36714 7.31980
0.30] 7.70629 7.48694 7.40203 7.32334
0.35| 7.84502 7.54799 7.43326 7.32652
0.40| 7.97521 7.60558 7.46284 7.32955
0.50] 8.22040 7.66106 7.49146 7.33538
0.60] 8.45197 7.81977 7.61494 7.34106
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