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Abstract

In the present paper we apply geometry driven diffusion equations to the process-
ing of 2D and 3D echocardiographic images. In general, the blood - cardiac muscle
interface is represented by a level surface of the image intensity function. This non-
smooth image silhouette is moved in the direction of its inner normal vector field by
the velocity proportional to its mean curvature. Such motion leads to a reasonable
surface smoothing and thus to extraction of ventricular shape. We imbed the initial
echocardiographic image to the ’geometrical scale space’ by using the level set equation

Vu
uy = |Vu|div(-=—
corresponding to the mean curvature flow of the isosurface. Evans-Spruck regulariza-
tion of the level set equation is solved numerically by a kind of Rothe’s method in
time-scale combined with the finite element method for the space discretization.

1 Introduction

The aim of this paper is to present a robust technique for the processing of 3D (and
2D as well) echocardiographic images. The main goal is to extract a smooth shape of
the left ventricle in a close as well as in an open phase from 3D greylevel image.

We use the ideas of nonlinear-geometrical scale space theory (see e.g. [29]). Thus,
an image is considered as a real valued function ug(z), defined in a rectangular subdo-
main of RN (N = 2 or 3), which represents the values of greylevel intensity function
given in pixel/voxel structure of the image. The scaling (or multiscale analysis) then
associates with u(z,0) = ug(z) a ’sequence’ of (simplified) images u(z,t) depending
on the abstract parameter ¢t > 0, the scale. Then, the scaling of the initial image can
be understood as its 'running’ through the sequence of physical (biological, computer)
filters, what causes the extracting of some relevant (e.g. for human perception or some
further artificial intelligence operation) information from the recorded signal. Under
some reasonable assumptions (see [1]), the family of nonlinear operators representing
the scaling is given as a function u(z,t) — the solution of a nonlinear partial differen-
tial equation of (degenerate) parabolic type. Such idea is so strong and usefull that
one can provide the majority of classical as well as new image processing operations
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(filtering, restoration, enhancement, edge detection, segmentation, morphology etc.)
by solving the evolutionary partial differential equations. This approach yields also
the possibility to apply robust numerical techniques (finite element, finite volume or
finite difference methods for space discretization and explicit, semiimlicit or implicit
approximations in time-scale) to image analysis. One such access is presented in this
paper. We solve numerically the regularization of the so called level set equation pro-
posed by Osher and Sethian for describing the motion of curves and surfaces governed
by the curvature. The motivation for the usage of level set equation for our prob-
lem of ventricular shape extraction is described in Section 3. In Section 4 we present
the proposed numerical method and disscuss the computed results from mathematical
and biomedical point of view. Our method of echocardiography segmentation is very
general, successfull in both open and close ventricular phase, and thus gives the really
new contribution to biomedical image analysis.

Finally, let us note that the term ’geometrical’ in the title of the paper and in
the geometrical scale space theory, too, means that, the image analysis would strongly
respect the geometrical information contained in the image greylevel intensity function.
Hence, the transparent work with the edges or silhouettes in the image (their motion,
enhancement or smoothing) is highly desirable. The huge research is devoted to these
questions in mathematical as well as computer vision and biomedical literature in the
last decade and this paper also deals with an important application of those ideas.

2 State of the Art in 3D Bioimages Segmentation

Many techniques have been proposed in the literature to extract the ventricular surface
in conditions of systole end/or diastole (thus the ventricle closed) starting from a
small number of 2D images that represent different views of the ventricle. In this case
the first step is to analyze the 2D images and identify manually, semi-automatically
or completely automatically the edges of the ventricle using the techniques of edge
detection and segmentation of 2D images. In order to reconstruct the surface in 3D a
priori knowledge of the shape (that regularizes the problem) is then applied.

Azhari et al. propose a method for reconstructing the ventricular chamber from a
scattered set of 2D echocardiographies by introducing a system of helicoidal coordi-
nates to transform the data of the sections in the space into a single onedimensional
function that is analyzed by means of Fourier techniques ([5]). In this way an an-
alytical descriptive model of the three-dimensional geometry is defined, that can be
used for spectral analysis and evaluation of the geometrical resemblance of the three-
dimensional forms.

Other authors introduce a priori knowledge of the ventricular shape considering
it as radially symmetric surface. Weaker constrain can be imposed by making the
assumption of a vaguely ellipsoidal closed surface; the use of geometrical primitives
such as superquadrics has been proposed in [6]. These functions can be seen as a
generalization of traditional ellipsoids, that can be deformed by means of 6 parameters.
This kind of representation offers a good overall view of the ventricular shape but
neglects the details of the anatomical structure. To overcome the problem Terzopulos
et al. introduced the possibility of locally deforming superquadrics ([32]). Finally, two
kinds of deformation were unified in a single model that enables both a global control
to roughly describe the shape, and a local one to represent the anatomical details
correctly ([33], [26]).

Another way of representing the ventricular surface is based on the usage of or-
thogonal bases e.g. the spherical harmonics. A generalization of the decomposition
of the function representing the ventricular surface in the orthogonal bases can be



found in Galerkin’s method for solving differential problems, in which the surface is
subdivided into a mosaic of simple elements whose deformation can be expressed in
analytical form ([27]).

Coppini et al. ([11]) consider the problem of reconstructing the ventricular chamber
from the analysis of a set of 2D echocardiographies, making use of back-propagation
neural networks. Moreover, an interesting regularization constrain is introduced for
reconstructing the surface in 3D. On the basis of physical hypotheses, the ventricular
surface is considered to be a thin, closed elastic surface, on which forces of an elastical
kind are exerted by means of the edges. The ventricular surface is therefore identified
with the solution of the forces balance problems or with the minimizer of the energy
functional asssociated with the system.

The reconstruction of the ventricular chamber has been widely studied in recent
years using TAC and Magnetic Resonance Images, too. In this case, some of the pro-
posed methods provide a segmentation of 2D images manually or semi-automatically
and then reconstruct the ventricular chamber by connecting the contiguous edges in
the third dimension. Cohen introduces in ([12]) the concept of active deformable
edges for the segmentation of the ventricles in 2D echocardiographic and 3D Magnetic
Resonance images. His approach is a generalization of Kass, Witkin and Terzopulos
deformable elastic edges model ([19]) in which an internal pressure is added to help
the deformable contours to reach the interfaces bettween the segments.

A class of innovative and recent methods for the segmentation use the real valued
evolving function through the 3D-image domain. Then, by selecting of a particular
level of this function, (an implicit) level surface that segment the volume is obtained
without the introduction of a priori knowledge of the topology. We can mention the
work of Velho and Terzopulos ([34]) and Malladi at al. ([20]) based on this idea. The
last one uses the level set approach of Osher and Sethian combined with deformable
contour model of Kass, Witkin and Terzopulos, and the (implicit) level surfaces of
the so called distance function are propagated with local speed influenced by both the
curvature of the surface and the proximity of the edges to be detected.

These techniques, as well as other procedures of nonlinear image multiscale analy-
sis, represented e.g. by the anisotropic diffusion equation of Perona and Malik ([28]),
can be included in the general axiomatic framework given by Alvarez, Guichard, Lions
and Morel ([1], [2]) mentioned also in the introduction. They are extremely valid, do
not introduce topological assumptions on the resulting shape; therefore, they can be
used for the segmentation of the blood-cardiac muscle interface in conditions of either
open or closed ventricle, providing a good global representation and maintaining a
good recognition of the details at the same time.

3 Geometrical Diffusion

For the motivation, let us consider the images collected in Figures 1 and 2. They are
related to our testing data set. We have fourteen cubes (consisting of 256° voxels)
representing echocardiographic images of the left heart ventricle in a different moments
of cardiac cycle from systole to diastole phases. In Figure 1, the 2D cuts of the cube
(intersecting in its center) for diastole are plotted.



Figure 1.

In order to extract the ventricular shape and hence segment the 3D image, first we
try to use 3D anisotropic diffusion model of Perona and Malik ([28], [9]) in an efficient
numerical implementation based on [18]. The corresponding 2D cuts, results of such
image processing operation, are plotted in Figure 2.

Figure 2.

Although, there is a large success in the edge enhancement and noise filtering, one
can hardly use these results for the description of real smooth shape of the ventricle.
The method conserves the nonrealistic fingers, incisions and peaks, origin of which is
in the aquisition.

In rather general situations, the blood - cardiac muscle interface corresponds to an
isosurface (isoline in 2D) of the greylevel image intensity function and hence it forms
recognizable silhouette in the image. This phenomenon is rather transparently visible
in Figures 1 and 2 as well. To remove this silhouette smoothless (from the original
image or prefiltered by anisotropic diffusion image) it seems to be reasonable moving
of such surface (curve) in the direction of its normal vector field with the velocity
proportional to the mean curvature. The motions of convex and concave pieces are
opposite due to the curvature sign, and the large fingers shrink much more faster than
smoother parts due to the curvature dependence of the flow. Thus, locally in time,
we can obtain a reasonable smoothing of the silhouette.

Following these intuitive considerations we use for the extraction of ventricular
shapes from echocardiographies the so called curvature driven evolution of curves and
surfaces leading to the corresponding geometrical diffusion equations. Let us give the
mathematical formalization of the ideas described above (see also e.g. [16], [25]). We
restrict ourselves to 2D case, the generalization to more dimensions is analogic and
straightforward. Let z(p,t) : S x [0,T] = IR? be the family of curves evolving in the

plane by the equation
dx
(1) = = Bk)n,



where S! is the unit circle, k the curvature of the curve at time ¢ at point z(p, 1),
n the unit normal at that point and (3 is a nondecreasing real function. Without
lost of generality we can assume the closedness and such smoothness of the curve,
that all terms in (1) are well defined. The curve evolution equations of type (1) are
used to describe various phenomena in physics, material sciences, computer vision,
robotics and artificial intelligence from which came our motivation to use them also
for echocardiography. In the vision theory, morphological shape analysis and especially
the affine invariant scale space has special conceptual and practical importance ([1],
[30]). It is natural generalization of the linear curve shortening flow, and is given by (1)
with 3(k) = k'/3. The active contour models (snakes), related to edge detection, image
segmentation and recognition, is another important field in which the geometrical
equations (1) are widely used ([19]). In the context of multiphase thermomechanics
with interfacial structure (free boundary problems) the plane curve evolution is a
natural model for the motion of phase interfaces. The theory of Angenent and Gurtin
([4]) has also the form of equation (1).

There are two main approaches to solve the curvature driven evolution problems.
First, the so called "Lagrangean approach’ consider the moving curve (or surface) itself
as the main object of modelling and computing ([22], [21], [24], [14], [15]). In some
situations, it is very efficient and computationaly fast method, but it can hardly handle
the evolution through singularities (splitting and merging of the curves or surfaces,
respectively, during the evolution). In spite of this, the "Eulerian approach’ handles
implicitly the curvature driven motion passing the problem to the higher dimensional
space. The level set methods of Osher and Sethian and phase field models ([8]) are
the approaches of this type. So, we look for the function v : R? — IR , for which the
moving curve is the same level line, at each time moment ¢. So we want to find the
function u for which

(2) u(z(t), t) = a
for every t € I and certain a € IR . Let us differentiate the previous equality in time.
We obtain

du(xz(t),t) dr  Ou _
3) at = Vu. 7 + BN = 0.
Considering the evolution equation (1) and the relation
Vu
4 =
(4) "=

we obtain the following Hamilton-Jacobi partial differential equation

ou
(5) Er (k)| Vul
for the unknown function w. Due to the relation
. Vu

which holds for the curvature % of the isoline of u passing through point z, we obtain

the level set equation
ou Vu

7 — = |Vu|B(div(-=—)).

™) 5t = VUl ()

This equation moves all level lines of u by the curve evolution equation (1). Up to
a constant and with u : R® — IR, this equation holds true also for the evolutionary
isosurfaces. Thus, if the function ug represents the greylevel intensity function of pro-
cessed image then the application of evolutionary equation (7) to ug as initial function



leads to fulfiling of our intuitive requirement of reasonable silhouetess smoothing. So,
as our geometric diffusion model we consider the equation (7) accompanied by zero
Neumann boundary conditions and initial condition given by processed echocardio-
graphic image. In this paper, we use the linear shape of the function £, namely

(8) Bk)=k or B(k)=c+ 0k

with ¢ and § the real constants. However, the different - nonlinear shapes of 8 can
have a large significance in considered image analysis, but it leads to more complicated
numerical approximations.

In the end of this section, let us mention the special type of diffusion expressed
by equation (7). If we fixed the coordinate system at point = € R? in the way
that £ - the first coordinate vector is identical with the tangent of the level line
of u passing through x, and 71 orthogonal to £ corresponds to its normal, then the
differential operator |Vu|div(|g—z| can be rewritten as g%g. It means that the equation
(7) diffuses the solution in the direction perpendicular to the silhouette and that there
is no diffusion in the direction orthogonal to the level line. Thus, the equation (7) has
the hyperbolic character in the directions of 7-s - i.e. it is a degenerate parabolic, so
its solution has to be considered in the viscosity sense of [13].

4 Computational method and disscusion on the re-
sults

As we have mentioned at the end of the previous section, the level set equation (7)
is degenerate parabolic and hence complicated from the numerical point of view. Its
viscosity solution ([10], [13], [16]) can be tracked numerically e.g. by special techniques
based on a solution of Hamilton-Jacobi equation (5) ([25], [31]). We follow a totally
different numerical approach. The motivation is to use standard numerical methods
for solving parabolic PDEs, namely a finite element method for discretization in space
and a kind of implicit (Rothe’s) method in time. We solve a parabolic problem (in
nondivergence form, however) which is close to the basic equation (7). For this purpose
we use a special regularization depending on a small parameter € used by Evans &
Spruck in the proof of existence of a weak solution of generalized mean curvature
flow ([16]). Their regularization is interpreted as a motion of a graph, with a slope
proportional to 1/e, which is thus close to a cylinder with basis given by moving curve
or surface. From [16], it is guaranteed that, for ¢ — 0, solutions of the regularized
problems tend to the viscosity solution of the level set equation.
We therefore solve numericaly the following initial - boundary value problem

1 Vu

9 ————u; — f(div(———=)) = 0 in IxQ,
( ) \/&Wut IB( “](\/m)) n

(10) u = 0 onl x99,
(11) u(0,.) = wo in Q,

where 1 > & > 0is a (small) real number, I = (0,T) is time-scale interval and Q ¢ RY
(N=2,3).

In the linear cases (8) we propose to discretize the equation (9) by means of finite
element method in space and use a kind of (semiimplicit) Rothe’s method in time-
scale treating the nonlinearities from the previous time step ([18], [7]). So, we choose
discrete time-scale step 7 and in each discrete time-scale moment ¢; = i7 we solve the



weak integral identity

i, i-1 i
(12) / o —u Jon / VUV _ ), g, € X,
o Jer Va2 Jofe g vai

for the unknown function u}b € X where X}, is suitable finite element space with
grid size parameter h. The computational grid is given naturally by the pixel/voxel
structure of the initial image. By choosing appropriate finite elements (e.g. linear)
and using standard techniques, the previous integral identity reduces to the solving of
linear systems of algebraic equations which can be done in many ways (e.g. using the
iterative tridiagonal matrix solvers in order to save the memory in our very huge 3D
problems). In particular cases, the convergence of such numerical scheme is studied
in [17].

Applying algorithm (12) we try to obtain a realistic - smooth shape of the left
heart ventricle. In Figures 3 - 7 we visualize the level surfaces which represent the
boundary of the volume containing the blood in several discrete moments of cardiac
cycle from our testing data set (there are documented 1st step - systole, 5th, 7th, 9th
and 14th step - diastole). On the left sides of the figures, the unfiltered isosurfaces are
plotted. The computational results are plotted on right sides of Figures 3 - 7. In the
presented numerical experiments we use 7 = 10%, ¢ = 107%, h = 1/256 and we have
computed 21 time-scale steps on Cray C92.




Figure 5.



Figure 6.

Figure 7.

In Figure 8 we present the smoothing effect of geometrical diffusion (7). In the
left sides the cuts of unfiltered isosurfaces are plotted in the right the filtered ones.
We can see the extinction of small structures due to the high curvature they have and
remaining of the important information contained in the images.



. ad

However, there are many open questions e.g. the volume/area conservation as
good as possible for as long time as possible. We use two phantoms, 2D and 3D,
to study this phenomenon. During the scaling they converge to circle and sphere,
respectively. The area/volume is conserved locally in time in good way, the errors in
these quantities were less than 10 % in both cases until the circle/sphere like shape
was obtained.

Figure 8.
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Figure 9.

Another difficult and interesting question is the problem of estimating the am-
mount of the blood contained in the ventricle in the open phases of cardiac cycle.
The ventricle is connected with the atrium and it is difficult to divide this to objects
in some reasonable and automatic way. One can use the operations of mathematical
morphology, which can be included in the framework of partial differential equation
(7). We consider 8(k) = £1+ 0k, where § is a small constant representing the addition
of artifficial diffusion to the modeling of motion of isosurface in the normal direction
by constant velocity. Equation (7) with 8(k) = 1 provides the erosion of black shape
on white background and its dilation (expansion) in the case §(k) = —1. We take
the 2D image from Figure 10, then we make presmoothing by anisotropic diffusion
combined with geometrical diffusion (3(k) = k) for very short time-scale to smooth
the silhouette. Then we take the black and white image of the isoline and apply the
erosion (Figure 11. left) and dilation (Figure 11. right) for the same time. We receive
the final image (Figure 11. right) which in very good way correspond to the shape of
"closing’ ventricle.

Figure 10.

Figure 11.
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