Slowed Anisotropic Diffusion
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Abstract. A generalization of the regularized (in the sense of Catté,
Lions, Morel and Coll) Perona-Malik anisotropic diffusion equation is
proposed for image analysis. We present a numerical method for solving
the above nonlinear degenerate diffusion problem, together with exis-
tence and convergence results. Numerical experiments are disscussed.

1 Introduction and motivation for the model equation

Let u(t,z) be a function (representing the greylevel intensity function in image
multiscale analysis - [1], [11]) satisfying the partial differential equation
Bt = V.(g(|VGo x ul) Bz, u)) = F(Bla, o) — B, u) (1)

fort e I=1[0,T],z € 2CRY (N =2 or 3 in practice of image analysis), where
£ is a bounded Lipschitz domain with unit normal vector v. The equation is
coupled with homogeneous Neumann boundary and initial conditions in the form

0uB(x,u) =0 on I x 982, u(0,z) =ug(x) in £2. (2)

We assume that
(H1) p(z,s) is nondecreasing Lipschitz continuous in s, §(z,0) = 0,
(H2) g is Lipschitz continuous function, ¢(0) = 1 and 0 < g(s) — 0 for s — oo,
(H3) G, € C*™ (IRN) is a compactly supported smoothing kernel

(IIRN Go(z)de =1, Go(x) — dr - Dirac measure at point z, for ¢ — 0),
(H4) f is Lipschitz continuous, nondecreasing function, f(0) = 0,
(H5) wo € L2(§2) (represents a processed image).

The problem (1)-(2) is a generalization of the regularized (in the sense of
Catté, Lions, Morel and Coll) Perona - Malik anisotropic diffusion equation
widely used in image smoothing and edge detection. Previous papers on the
topic were only dealing with the linear case 3(z,s) = s ([10], [3], [6], [2]).

Due to the properties of g suggested in [10], image analysis depends in a spe-
cial way on Vu (edge indicator) and the equation diffuses the image selectively
conserving the edge positions. However, one can see that if g(s)s is decreasing
then the Perona-Malik equation can behave locally like backward heat equation,
which is a well known ill-posed problem. Consequently, there are serious math-
ematical troubles with the existence and uniqueness of a solution. Using convo-
lution with Gaussian kernel, Catté, Lions, Morel and Coll explicitly introduced



a presmoothing (implicitely included in numerical schemes solving anisotropic
diffusion in original form). This slight modification allowed them to prove the
existence and uniqueness of the solution. From the practical point of view, it
keeps all advantages of the Perona-Malik model.

In the present paper, we add a new nonlinearity represented by the function
# which makes the image multiscale analysis locally dependent on the values
of intensity function u and on the position in the image z. The motivation for
our generalization of the Catté, Lions, Morel and Coll regularization is the fol-
lowing. The setting of the treshold for edges (by a choice of g) and denoising of
the image (by explicit/implicit presmoothing) improve some sets of edges. On
the other hand, it destroys the details which are under the treshold or undis-
tinguished from the noise in some scale. If such details are contained in certain
ranges of (unnoisy) greylevels or image regions, then they can be conserved by
a special choice of 3. Generally, in the points where the slope G (z,u) is small,
the diffusion process is slowed down and vice versa. So, if a different speed of
diffusion process is desirable in different parts of the image or for different values
of intensity function, the model equation (1)-(2) is a very natural tool. Briefly,
the ’gradient term’ is multiplied by 8% (z, u) and it stays in place of the diffusion
coefficient now. Moreover, if the ’contrast’ or ’enthalpy’ function g is constant
in certain subintervals of intensity range [0, 1] (and correspondingly 5, is equal
0 which stops the diffusion) we obtain degenerate cases which are interesting in
practice (see Figures 1 and 2). In a sense, it is similar to the multiphase (la-
tent) heat transfer process when there are no changes on temperature for some
ranges of energies. However, due to the possible degeneracies described above,
the mathematical and computational treatment of (1)-(2) needs a nonstandard
technique. Its numerical approximation is based on a special implicit time dis-
cretization developed and applied in [4], [5], [8], [9] to solve Stefan-like problems
in enthalpy formulation, flow in porous media, anisotropic mean curvature flow
and affine invariant convex curve evolution. Together with the methods devel-
oped in [3] and [6] we obtain the existence of a variational solution of (1)-(2)
and the convergence of approximations.

2 Approximation scheme and numerical experiments

Approximation scheme 2.1: Let n € IN and 7 = L be a discrete scale step.
On each discrete scale level t; = iT, ¢ = 1,...,n we look for the solution 8;,
0,0; = 0 on 982, of the linear elliptic partial differential equation

wi(0; — Bz, uiz1)) =7V (g(|VGo % ui—1|)V0;) = T7f(B(2, uo) — Bz, ui—1))  (3)

where pi; € Lo (£2) is a relaxation function connected with 6; by the convergence
condition

Bt (2, Bz, uim) + a(b; — Bz, uim1))) — ui_n
0; — Bz, ui—1)

K ()

1 .
§Td < pi < min{



where @ € (0,1) (« close to 1), 0 < K (large) and d € (0, 1) are the parameters
of the method and S, (z,s) := B(x,s) + 7%s. The function u; (image in scale t;
approximation) is obtained by the algebraic correction

ui = uio1 + pi (0 — B2, uiz1)). ()

The approximation scheme 2.1 is not explicit with respect to p;, 8;. However, it is
a powerfull theoretical and practical technique for solving nonlinear degenerate
parabolic equations ([4], [8]). We can find p; and 6; using coupled iterations in
(3) and in the right hand side of (4) - for details we refer to [7], [8], [4]. In the
numerical implementation one can also put a = 1 which simplifies the formulas.
In some situations it is sufficient to put simply p; = min{1/8}(z, u;_1), K} and
then use the inversion u; := B;'(z,6;). The linear PDE (3) can be solved by
standard robust numerical methods - finite elements, finite volumes or finite
differences. The pixel-voxel structure is a natural basis for the computational
grid. Space discretization leads to linear systems of equations which have to be
solved in each discrete scale step (see e.g. [2], [12]).

From theoretical point of view, using the function u; determined by Approx-
imation schemes 2.1, we construct Rothe’s (step) functions H(”)(t) = u;, for
tiig <t <tyi=1,...,n, 7" (0) = uy which are considered as approxima-
tions of a solution of (1)-(2). Using the ideas of [5] and [6] we can prove ([7])
that ™) — y in La(I, Ly) for n — oo, where u is a variational solution of the
problem (1)-(2).

We present two numerical experiments demonstrating the features of slowed
anisotropic diffusion. Approximation scheme 2.1 is used and the results are com-
pared with the multiscale analysis based on classical anisotropic diffusion equa-
tion ([3], [6]). We use g(s) = 1/(1+s?), f = 0 and the convolution is realized as
a weighted average on some neighborhood pixels (on which the support of kernel
is located). Together with initial noisy images, the computed solutions after 10
discrete scale steps are plotted. The choice of #’s stops the diffusion where we
want to keep some fine details in the image (otherwise destroyed). E.g. in Fig-
ure 2, only the colours on Flora’s face (detail of Botticelli’s painting Primavera)
contain a ’damage’. Using a proper choice of # which is constant for lower (dark)
greylevels and linear for upper range of u, the face is selectively smoothed and
flowers arround are kept.
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Fig.1. Restoration of the noisy image (left, 200x200 pixels) by anistropic diffusion
(middle) in comparison with slowed anisotropic diffusion (right); B(z,s) = 0 for
s €[0,0.5], B(z,s) = s for s € (0.5,1].

Fig.2. Restoration of the real image (left, 570x350 pixels) by anistropic diffu-
sion(middle) in comparison with slowed anisotropic diffusion (right); 8(z,s) = 0 for
s €[0,0.39], B(x,s) = s for s € (0.39, 1].
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