
Distance function and extension in normal direction for

implicitly defined interfaces

Peter Frolkovič1,2, Karol Mikula1,2, Jozef Urbán2

Department of Mathematics and Descriptive Geometry, Slovak University of Technology,
Bratislava, Slovakia

Abstract

In this paper we present a novel application of extrapolation procedure for
three popular numerical algorithms to compute the distance function for an
interface that is given only implicitly. The methods include the fast marching
method [9], the fast sweeping method [10] and the linearization method [3].
The extrapolation procedure removes the necessity of a special initialization
procedure for the grid nodes next to the interface that is used so far with
the methods, thus it represents a natural extension of these methods. The
extrapolation procedure can be used also for an extension of a function that
is defined only locally on the interface in the direction given by the gradient
of distance function [2].

Keywords: distance function, extrapolation, fast marching method

1. Introduction

When using level set methods to describe an evolving curve or surface
[8, 6], the interface is given only indirectly as a zero level set of some func-
tion. Consequently, to obtain the distance function to such interface one
needs to solve eikonal equation with Dirichlet boundary conditions defined
on implicitly given boundary.

To avoid any explicit reconstruction of the boundary we propose here to
use extrapolation procedure near the boundary for three popular numerical

Email address: peter.frolkovic@stuba.sk (Peter Frolkovič)
1The author was supported by VEGA 1/1137/12.
2The author was supported by APVV 0184-10.

Preprint

algorithms: the fast marching method [9], the fast sweeping method [10],
and the linearization of eikonal equation [3]. In such a way, one can skip any
initialization of numerical values in the grid nodes next to the interface as it
is realized for these methods so far. For the fast marching method with the
extrapolation procedure near the interface we can report an improvement
when compared with the fast marching method in [1] for the computations
of the distance function of implicitly defined interface.

Moreover, these numerical methods using the extrapolation near interface
can be applied also for so called extension in normal direction to the interface
[11, 1, 2]. Such procedure is required when some quantity known only on the
interface must be extended away from the interface to a surrounded com-
putational domain. The extension can be obtained by solving a stationary
linear advection equation with Dirichlet boundary conditions defined on the
implicitly given interface.

We note that our aim is not to compare the available numerical algorithms
for the computations of distance function or for the solution of stationary lin-
ear advection equation with respect to efficiency and accuracy. We recognize
that each of them is preferable in some special situations, see e.g. [5].

The paper is organized as follows. In section 2 we present the related
mathematical models. In section 3 the numerical scheme of Rouy-Tourin
[7] is extended by extrapolation procedure for the grid nodes next to the
interface. In section 4 some numerical experiments are presented.

2. Mathematical models

Let Γ be a closed interface contained in D ⊂ R2. The domain enclosed
by Γ will be denoted by Ω, i.e. Γ ≡ ∂Ω. We suppose that the interface is
given only implicitly as the zero level set of some function φ : D → R such
that φ(x) < 0 for x ∈ Ω and φ(x) > 0 for x ∈ D \ Ω, so

φ(x) = 0 , x ∈ D ⇔ x ∈ Γ . (1)

The implicit definition (1) of Γ using the zero level set of φ is typical
when some evolving interface is described using level set methods. We avoid
in our approach any explicit reconstruction of Γ.

The distance function d of Γ is defined by

d(x) = min
γ∈Γ
|x− γ| , (2)

2

where | · | denotes the Euclidean norm.
The gradient of distance function plays an important role in level set

methods. One can show [6] that if for x ∈ D there exists a unique closest
point γ ∈ Γ such that d(x) = |x−γ| then∇d(x) is well defined and |∇d(x)| =
1. The existence of ∇d(x) or the property |∇d(x)| = 1 need not to be true
when the closest point on Γ for x is not unique.

Following [8, 6], one can find d as a viscosity solution of eikonal equation

|∇d(x)| = 1 , x ∈ D , d(γ) = 0 , γ ∈ Γ . (3)

The problem (3) can be solved independently for two subdomains of D, once
for x ∈ Ω and once for x ∈ D\Ω. For the first subdomain one has Γ ≡ ∂Ω, for
the second one the boundary is given by Γ∪∂D, but no boundary conditions
are required on ∂D.

The equation (3) can be written formally as a stationary advection equa-
tion with right hand side

~v(x) · ∇d = 1 , ~v =
∇d
|∇d|

. (4)

The formulation (4) can be used for a linearization of eikonal equation [3].
Once the distance function d is available and ∇d can be computed, one

can utilize the linear advection equation for an unknown function s,

∇d · ∇s(x) = 0 , x ∈ D , s(γ) = S(γ) , γ ∈ Γ . (5)

The interpretation of (5) can be seen [2] as an extension (extrapolation)
of known values S (that are given only on the interface Γ) to the values s
defined in the whole domain D. The extension using (5) is constant in normal
direction to the interface, and the value s(x) is equal to S(γ) if γ ∈ Γ is the
unique closest point to x. Again, the problem (5) has to be solved for two
subproblems.

3. Numerical methods

We present a numerical scheme of Rouy-Tourin proposed in [7] that is
popular to use when solving the eikonal equation (3) on rectangular grids.
The method seems to give the smallest error among several first order accu-
rate schemes [9, 10].

3

We use a standard notation for rectangular grids. For a simplicity of
notation let D be a square (0, L)2. Let N > 0 be a chosen number and
h = L/N . We aim to find the values dij that approximate the exact distances
d(xi, yj) with xi = ih and yj = jh, i, j = 0, 1, . . . , N by numerical solution
of (3). Analogously, the values sij ≈ s(xi, yj) will be found by solving (5)
numerically.

The main idea is to choose an appropriate approximation of gradient
∇dij ≈ ∇d(xi, yj). It can be obtained by finite difference scheme

∇dij = (∂xdij, ∂ydij) ≈
1

h
(δxdij, δydij) , (6)

where the “upwind” differencing shall be used:

δxdij :=

dij − di−1j di−1j ≤ min{dij, di+1j}
di+1j − dij di+1j ≤ min{dij, di−1j}
0 dij ≤ min{di−1j, di+1j}

(7)

and analogously

δydij =

dij − dij−1 dij−1 ≤ min{dij, dij+1}
dij+1 − dij dij+1 ≤ min{dij, dij−1}
0 dij ≤ min{dij−1, dij+1}

(8)

When using (7) and (8) for the nodes lying on ∂D, one has to simply skip
the unavailable difference in (7) or (8).

Before using the approximation (6) with (7) and (8) for the fast marching
[9] or the fast sweeping method [10], the eikonal equation (3) is written
in the form |∇d|2 = 1. Consequently, the numerical scheme to find the
approximative distance function can be written in the form

(δxdij)
2 + (δydij)

2 = h2 . (9)

When solving the eikonal equation using (4) the scheme takes the form

~vij · ∇dij = 1 , ~vij =
∇dij
|∇dij|

. (10)

Note that when linearizing (10), one must insure that no division by zero
occurs in (10), see later the related discussion in section 3.2.

Finally, to solve (5) numerically we use standard first order accurate
upwind differencing to obtain

max{0, δxdij}(sij − si−1j) + min{0, δxdij}(si+1j − sij) +

max{0, δydij}(sij − sij−1) + min{0, δydij}(sij+1 − sij) = 0 . (11)

4

3.1. Extrapolation procedure

For implicitly defined interfaces (as described in section 2) one has to
use (9) - (11) for two subdomains. To identify to which subdomain the grid
points (xi, yj) belong, we denote φij := φ(xi, yj). Clearly, (xi, yj) ∈ Ω when
φij < 0, and (xi, yj) ∈ D \ Ω when φij > 0. If φij = 0 one can use directly
the Dirichlet boundary conditions on Γ for dij and sij, therefore we exclude
these values later from unknowns in algebraic equations.

We say that the grid node (xi, yj) is next to the interface in x direction if
at least one of the following two inequalities is valid:

φijφi−1j < 0 , φijφi+1j < 0 . (12)

Analogously, we say the node (xi, yj) is next to the interface in y direction if
at least one of following inequalities is true:

φijφij−1 < 0 , φijφij+1 < 0 . (13)

We comment the computations of distance function for the grid nodes
next to the interface. In previous efforts [1, 10], the values dij for the nodes
next to the interface are computed by some kind of “brute force” method (or
its approximation) using directly the definition (2). This might not always be
straightforward to do and needs not to be compatible with the computations
of dij obtained by the numerical scheme (9).

Here we propose to use an extrapolation procedure near the interface, so
the values dij for the grid nodes next to the interface are computed by the
numerical scheme (9).

To do so we characterize the position of a point on the interface between
two neighboring grid points for which φ changes its sign. Let (xi, yj) be a
grid node next to the interface in x direction. The required point, say xi−α j
or xi+α j, will be identified with some αi−1j ∈ (0, 1) or αi+1j ∈ (0, 1) such
that

xi±α j = αi±1jxi±1 + (1− αi±1j)xi.

Analogously the values αij±1 ∈ (0, 1) and the point yi j±α shall be treated.
The values αi±1j will be determined from the linear interpolation of φij

and φi±1j by requiring that 0 = αi±1jφi±1j + (1 − αi±1j)φij and analogously
for αij±1. Clearly,

αi±1j =
φij

φij − φi±1j

, αij±1 =
φij

φij − φij±1

. (14)

5

Note that the values αi±1j and αij±1 are specific for each grid node (xi, yj)
that we do not further emphasize in their notation.

The idea of extrapolation near the interface is to use the same procedure
to compute the values that are not available in (7) and (8) for the grid nodes
next to the interface. Particularly, the value ui±1 j for the node next to the
interface in x direction can be extrapolated from the values uij and ui±α j :=
u(xi±α j, yj) with the latter one given by Dirichlet boundary conditions on Γ.
In our case, di±α j = dij±α = 0, si±α j = S(xi±α j, yj) and si j±α = S(xi, yi j±α).

From ui±α j = αi±1jui±1j + (1− αi±1j)uij and so on one obtains

ui±1j =
(αi±1j − 1)uij + ui±α j

αi±1j

, uij±1 =
(αij±1 − 1)uij + ui j±α

αij±1

. (15)

Substituting (15) to (7) and (8) we obtain for the nodes next to the interface
in x direction

δxuij =

{ 1
αi−1j

(uij − ui−α j) φijφi+1j ≥ 0 or αi−1j ≤ αi+1j

1
αi+1j

(ui+α j − uij) φijφi−1j ≥ 0 or αi+1j < αi−1j

(16)

and analogously for the nodes next to the interface in y direction

δyuij =

{ 1
αij−1

(uij − ui j−α) φijφij+1 ≥ 0 or αij−1 ≤ αij+1

1
αij+1

(ui j+α − uij) φijφij−1 ≥ 0 or αij+1 < αij−1

(17)

Summarizing, in numerical schemes (9) - (11) one has to use the defini-
tions (16) and (17) for the grid nodes next to the interface, for all other grid
nodes the definitions (7) and (8) shall be used.

In next section we introduce numerical methods to solve the algebraic
equations (9) - (11).

3.2. Numerical solution of algebraic systems (9) - (11)

Before introducing three algorithms to solve the algebraic system of equa-
tions (9) - (11), we discuss the possible forms of these equations in details.

Firstly, we consider (9) used for the fast marching and the fast sweeping
method. In a generic case when the both components of ∇dij computed
from (7) and (8) are nonzero, the equation (9) has three unknowns and can
be written in the form

(dij − di±1 j)
2 + (dij − di j±1)2 = h2 . (18)

6

The choice of signs ± in (18) is determined from the valid cases in conditional
definitions (7) or (8). If one component of ∇dij is zero, the equation (9) has
only two unknowns and takes a simpler form

(dij − di±1 j)
2 = h2 or (dij − di j±1)2 = h2 . (19)

Clearly, the correct solutions of quadratic equations (19) are dij = di±1 j + h
and dij = di j±1 + h.

Now we discuss the form of (9) for the nodes next to the interface. Firstly,
if only one inequality in (12) - (13) is valid, then one component of ∇dij is
computed from (16) or (17) and the other one from (7) or (8). We recognize
then two cases. The first case is when the component of ∇dij computed from
(7) or (8) is nonzero, then the equation (9) turns to

d2
ij

α2
i±1 j

+ (dij − di j±1)2 = h2 or (dij − di±1 j)
2 +

d2
ij

α2
i j±1

= h2 . (20)

In the other case one obtains directly

d2
ij

α2
i±1 j

= h2 ⇒ dij = αi±1 jh or
d2
ij

α2
i j±1

= h2 ⇒ dij = αi j±1h . (21)

Of course, the values dij in (21) represent the exact distance between xi and
xi±α and the exact distance between yj and yj±α.

Finally, if the both component of ∇dij are computed from (16) and (17),
the value dij can be determined from (9) directly by

d2
ij

α2
i±1 j

+
d2
ij

α2
i j±1

= h2 ⇒ dij =
αi±1 jαi j±1√
α2
i±1 j + α2

i j±1

h . (22)

Again, the choice of plus or minus sign in α is given by the corresponding
valid cases in conditional definitions (16) and (17). The value dij in (22)
represents the exact distance of (xi, yj) to the line segment between two
points (xi±α, yj) and (xi, yj±α).

Note that if (9) turns to any particular form (18) - (22), one has that
|∇dij| = 1. We note that the exact distances in (21) and (22) for the grid
nodes next to the interface are fixed in the fast marching method as described
in [1], and the form (20) of numerical scheme is never used in [1]. We can
show later in section on numerical experiments that using the extrapolation

7

procedure (20) - (22) with the fast marching method one can improve slightly
the results for the chosen examples comparing with the method given in [1].

Now we are ready to present the solution procedures to solve the algebraic
system of equations (9). The basic feature of fast marching and fast sweeping
method is to suggest such consecutive steps in solving (9) that one has to
solve in each step only one scalar quadratic equation with single unknown
dij. It means that if any particular form (18) - (20) has to be solved then
the required neighbor values di±1j or dij±1 are known at that moment. It is
interesting to remark that the scheme (9) can take different particular form
(18) - (22) during different steps of solution procedure.

We begin with the introduction of fast marching method [9] using the
extrapolation procedure. We skip the implementation details like a heapsort
technique that can be found in literature and we emphasize the algebraic
part of the algorithm.

The basic idea is to label all grid nodes by one of the marks [1]: Accepted,
Close and Far. At the beginning of fast marching method with the extrap-
olation procedure the set of Accepted nodes is empty, the set of Close nodes
is given by all grid nodes next to the interface, and the rest of nodes are
labeled as Far. Note that in the previous implementations of fast marching
method [9, 1], the set of Accepted nodes consists of all grid nodes next to
the interface for which the values of distance function are computed by some
kind of brute force method.

The basic idea of fast marching method is to use the conditional defini-
tions (7) and (8) for the node (xi, yj) only with the neighbors (xi±1, yj) and
(xi, yj±1) that are labeled as Accepted. This can be formally viewed as if the
neighbor values di±1 j and di j±1 for the nodes (xi, yj) labeled as Close or Far
are set to infinity. Consequently, at the initial part of algorithm, the values
dij for all Close nodes can be computed using only the direct definitions (21)
or (22).

The fast marching method consists now in repeating the following step
until all nodes are labeled as Accepted:

• the minimal value dij among Close nodes is fixed and the corresponding
node is labeled as Accepted;

• the neighbors of this node with label Far (if any) are labeled as Close;

• the values for all neighbors of this node that are not yet Accepted are
recomputed using (18) - (22).

8

In such a way the fast marching method gives the final results in the finite
number of steps where the number of steps equals to the number of grid
nodes. In each step at most three values associated with Close nodes must
be computed by solving one of a quadratic equation (18) - (22) having only
one unknown variable dij. Following [9] the larger solution of two possible
solutions to the quadratic equation shall be assigned to dij, see also the text
after (19).

The fast sweeping method [10] is iterative method that is based on nonlin-
ear Gauss-Seidel method with four (in 2D case) different orderings (“sweep-
ings”) of updates for unknown values dij. The initial guess is d0

ij = C where
C is a large constant value that can not be reached by the distance function
for the given interface and the domain D. The consecutive iterations dk+1

ij

are obtained by solving the quadratic equation (9) in four alternating orders

(1) i = 1 : N, j = 1 : N, (2) i = N : 1, j = 1 : N,

(3) i = N : 1, j = N : 1, (4) i = 1 : N, j = N : 1.

In each quadratic equation the only unknown is dk+1
ij with other values di±1 j

or di j±1 in (9) (if used) available in the manner of Gauss-Seidel iterations -
either from the previous k-th iteration or already computed in the (k+ 1)-th
iteration. The detailed description for the solution of quadratic equations is
given in [10]. It is important to note that the value dk+1

ij is updated in each

iteration only if dk+1
ij < dkij. Standard criteria can be used based on residuum

to decide when to stop the iterations. It can be shown that in a theory a
finite number of iterations is necessary to reach the convergence [10].

In the last case we consider the solution procedure for the linearization
method based on the linearization of numerical scheme (10). Let d

(0)
ij be some

initial guess of unknowns dij such that |∇d0
ij| 6= 0 everywhere, e.g. d

(0)
ij = φij.

The linearized form of the scheme (10) takes the form

~v
(m)
ij · ∇d

(m+1)
ij = 1 . (23)

The algebraic system (23) is linear and can be solved by the Gauss-Seidel
iterations in four alternating directions. In general it may happen that for
some inappropriate choice of d0

ij one gets |∇dmij | = 0 when ~v
(m)
ij is undefined

if using (10). Therefore the method (23) is suitable only when some good
initial guess d0

ij for the approximative distance function is available.
Finally we comment the solution of linear advection equation (5). Clearly,

the proposed numerical scheme (11) is in a character very similar to the left

9

hand side of (23), so one can again use the Gauss-Seidel iterative methods in
four alternating directions for the solution of linear algebraic system. No non-
linear (quadratic) equations have to be solved, therefore we do not consider
the fast sweeping method for (5).

The fast marching method to solve (5) is considered in [1] where, in fact,
the both equations (3) and (5) are solved in parallel using (9) and (11). In
each step of the method, the scheme (11) is a linear equation with a single
unknown sij, therefore it is trivial to solve. The order of nodes (xi, yj) in
which the unknowns sij are determined is given by the order in which the
Close nodes are labeled as Accepted in the computations of dij.

In next section we apply all solution procedures for some standard bench-
mark examples.

4. Numerical experiments

The purpose of following numerical experiments is to illustrate that the
extrapolation procedure for the nodes next to the interface does not de-
crease the order of accuracy for three solution algorithms. We begin with
the computations of approximative distance functions to a smooth interface
(a circle), an interface with corners (a square) and a nontrivial interface (a
quatrefoil). For the circle and the square the exact solution is available, for
the quatrefoil it is computed by an approximative brute force method. The
brute force method is approximative in the sense that the distance d(xi, yj)
to a polygonal interface is computed as the minimal distance to the points
that defines the polygon.

In Table 1 we present the discrete L1 error for four consecutively re-
fined grids computed with three methods with the extrapolation procedure
for three interfaces. The experimental order of convergence (EOC) is com-
puted for each method and each interface. The EOC takes approximately
the same value for each method, with the value around 1 for the circle and
the quatrefoil, and the value around 0.8 for the square.

For the chosen examples the fast marching method and the linearization
method give always identical numerical errors. Although all three meth-
ods are based on the same numerical scheme (9) of Rouy-Tourin, the fast
sweeping method gives different errors for the circle and the quatrefoil. To
understand this fact, we modified the original fast sweeping method [10] by
removing the condition that the value dk+1

ij in each iteration is updated only

if dk+1
ij < dkij, see the description of the method in section 3.2. After this

10

N ML S MLS ML S
40 3.553 3.49 4.154 1.746 1.72
80 1.692 1.07 1.68 1.05 2.267 0.87 0.855 1.03 0.852 1.01
160 0.825 1.04 0.821 1.04 1.283 0.82 0.416 1.04 0.413 1.05
320 0.407 1.02 0.406 1.02 0.734 0.81 0.204 1.03 0.203 1.03

Table 1: The discrete L1 errors (the magnitude is 10−3) and the EOCs for the distance
function to the circle (the columns 2−5), the square (the columns 6−7), and the quatrefoil
(the columns 8−11). The fast marching and the linearization method give always identical
errors which are given in the columns with ML in headers, the errors obtained by the fast
sweeping method are given in the columns with the header S.

modification the fast sweeping method gives identical numerical errors as
the other two methods for the chosen examples.

In Figure 1 we plot numerical solutions where the values of computed
distance functions inside of interface are multiplied by −1 to obtain so called
signed distance functions [8]. In Figure 1 one can see a visual compari-
son of numerical solution obtained by the fast marching method with the
exact solution (for the circle and the square) or the distance obtained by
approximative brute force method. We do not compare visually the numer-
ical solutions obtained by the fast sweeping method, because practically no
difference is visible.

-0.2

-0.1

0

0.1

0.2

0.3

0.3

0.3

0.3

0.4

0.4

0.4 0.4

10 20 30 40

10

20

30

40

-0.2

-0.1

0

0.1
0.2

0.3 0.3

0.3 0.3

10 20 30 40

10

20

30

40

-0.1

-0.1

-0.1
-0.1

-0.1
-0.1

-0.1

-0.1

0

0.1

0.1

0.1

0.1

0.2

0.2

0.2

0.2

10 20 30 40

10

20

30

40

Figure 1: The numerical solutions using the fast marching method on the grid 40×40 (the
black contours) compared with the exact solution in the case of circle and square (the red
contours in the color version of article) and with the approximative brute force method in
the case of quatrefoil.

11

Next we present a comparison when using the fast marching method
with an approximative brute force initialization for the grid nodes next to
the interface as described in [1] and the fast marching method with the
extrapolation procedure (20) - (22). As we commented in section 3.2 the
method in [1] uses only the forms (21) and (22) of (9) for the grid nodes next
to the interface.

For the computations of distance to the square the identical numerical
errors are obtained. For the computations with the circle and the quatrefoil
an improvement of results can be reported for the fast marching method with
the extrapolation procedure as given in Table 2.

N E EOC [1] EOC E EOC [1] EOC
40 3.553 3.794 1.746 1.882
80 1.692 1.07 1.844 1.04 0.855 1.03 0.935 1.01
160 0.825 1.04 0.959 0.94 0.416 1.04 0.474 0.98
320 0.407 1.02 0.457 1.07 0.205 1.03 0.240 0.98

Table 2: The discrete L1 errors (the magnitude is 10−3) and the EOCs for the distance
function to the circle (the columns 2 − 5) and the quatrefoil (the columns 6 − 9). The
fast marching method with the extrapolation method is given in the columns with E in
headers, the errors obtained by the fast marching method in [1] are given in the columns
with [1] in the headers.

Finally, an extension of a function S = x of which the values are taken
only on a circle is computed in normal direction and compared with available
exact solution [4]. The numerical solutions obtained by the fast marching
method and the linearization method are compared in Table 3 and in Figure
2.

N M EOC L EOC
40 3.59E-3 3.46E-3
80 1.95E-3 0.88 1.84E-3 0.90
160 1.05E-3 0.89 9.88E-4 0.91
320 5.56E-4 0.91 5.24E-4 0.90

Table 3: The discrete L1 errors and the EOCs for the extension of function S = x defined
only on a circle for the fast marching method (M) and the linearization method (L).

12

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

10 20 30 40

10

20

30

40 -0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

10 20 30 40

10

20

30

40

Figure 2: The left picture shows the numerical solution using the linearization method
on the grid 40 × 40 (the black contours) compared with the fast marching method (the
red contours in the color version of article) for the extension of a function defined on a
circle. The right picture compares the numerical solution using the linearization method
(the black contours) compared with the exact solution (the red contours). For a clarity
the circle is also plotted in both pictures.

References

[1] D. Adalsteinsson and J. Sethian. The fast construction of extension
velocities in level set methods. J. Comput. Phys., 148:2–22, 1999.

[2] Tariq D. Aslam. A partial differential equation approach to multidimen-
sional extrapolation. J. Comput. Phys., 193:349–355, 2003.

[3] S. Fomel. Traveltime computation with the linearized eikonal equation.
Technical report, SEP 94, 1997.

[4] P. Frolkovič. Flux-based level set method for extrapolation along char-
acteristics using immersed interface formulation. In P. Struk, editor,
Magia, pages 15–26. Slovak University of Technology, Bratislava, 2010.

[5] S Hysing and Stefan Turek. The Eikonal equation: numerical efficiency
vs. algorithmic complexity on quadrilateral grids. In Proceedings of Al-
goritmy, 2005, pages 22–31, 2005.

[6] S. Osher and R. Fedkiw. Level Set Methods and Dynamic Implicit Sur-
faces. Springer, 2003.

13

[7] E. Rouy and A. Tourin. A viscosity solutions approach to shape-from-
shading. SIAM J. Num. Anal., 29:867–884, 1992.

[8] J. Sethian. Level Set Methods and Fast Marching Methods. Cambridge
University Press, 1999.

[9] J A Sethian. A fast marching level set method for monotonically ad-
vancing fronts. Proc. Nat. Acad. Sci., 93:1591–1595, 1996.

[10] H. Zhao. A fast sweeping method for eikonal equations. Math. Comput.,
74:603–627, 2005.

[11] H K Zhao, T Chan, B Merriman, and S Osher. A Variational Level Set
Approach to Multiphase Motion. J. Comput. Phys., 127:179–195, 1996.

14

