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a b s t r a c t 

A new parametric class of semi-implicit numerical schemes for a level set advection equa- 

tion on Cartesian grids is derived and analyzed. An accuracy and a stability study is pro- 

vided for a linear advection equation with a variable velocity using partial Lax–Wendroff

procedure and numerical von Neumann stability analysis. The obtained semi-implicit κ- 

scheme is 2 nd order accurate in space and time in any dimensional case when using a 

dimension by dimension extension of the one-dimensional scheme that is not the case for 

analogous fully explicit or fully implicit κ-schemes. A further improvement is obtained by 

using so-called Corner Transport Upwind extension in two-dimensional case. The extended 

semi-implicit κ-scheme with a specific (velocity dependent) value of κ is 3 rd order accu- 

rate in space and time for a constant advection velocity, and it is unconditional stable ac- 

cording to the numerical von Neumann stability analysis for the linear advection equation 

in general. 
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1. Introduction 

In this work, we derive a new class of semi-implicit 2nd order schemes for numerical solutions of a representative linear

advection equation 

∂ t u (x, t) + 

�
 V · ∇u (x, t) = 0 , u (x, 0) = u 

0 (x ) 

with a variable velocity � V = 

�
 V (x ) . We are interested in level set methods [34,39] when this equation is used to track implic-

itly given interfaces, and when discontinuous profiles in the solution are not expected in general. The implicit tracking of

interfaces can be found in any front propagation problems solved by level set methods, see, e.g., [34,39] and the references

there. A typical application is a two-phase flow of immiscible fluids where an interface between the phases must be tracked

to distinguish the different physical properties of fluids [7,9,16,19,21,41,46,50] . Furthermore we mention a tracking of fire

front in forests [2,14] , and a tracking of water table for groundwater flows [8,18] . 

We consider Cartesian grids that are often applied in the context of level set methods [14,15,34,39,41] . We consider the

linear advection equation on Cartesian grids also as a starting point for a study of more complex equations like a nonlinear

advection equation for a motion in normal direction [12,14,30,35,39] and computations on unstructured grids [9,12,17] . We
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are interested here in Eulerian type of numerical schemes of a finite difference form when a stencil of the scheme does

not move in time like in Lagrangian type of numerical schemes [5,11] . Furthermore we restrict ourselves to the schemes

using an implicit or a semi-implicit time discretization with a purpose of favorable stability properties when compared to

the schemes of Eulerian type using a fully explicit time discretization. 

The fully explicit schemes are standard numerical tool in level set methods for the solution of the linear advection

equation [12,16,19,21,22,33,34,36,37,39,41,49] . The main advantage is their simplicity as the numerical solution, once the

scheme is constructed, can be obtained directly without solving any algebraic system. On the other hand the well-known

restriction of fully explicit schemes with fixed stencils is a CFL stability condition on the choice of time steps that depends,

among other, on a length of grid steps. 

Although the CFL restriction is not considered as a disadvantage in general, it can be critical for applications with irregu-

lar computational domains for which the boundaries are treated implicitly like in Cartesian cut cell methods [25] , immersed

interface methods [14,27,28,49] , ghost fluid methods [7,29] and similar. In the quoted methods the presence of arbitrary

small cut cells can give locally an arbitrary small grid size that results in an unrealistic CFL restriction if no modifications of

the numerical scheme is provided. 

Recently some publications [14,30,32] have been dealing with semi-implicit finite volume schemes for a general advec-

tion equation. The main idea is that the implicit time discretization is used only for the values of numerical solution at

inflow boundaries of computational cells. The semi-implicit schemes can be advantageous when solving the advection equa-

tion on implicitly given computational domain as it appears, e.g., when constructing a so-called “extension” velocity in level

set methods, see [1,52] . This approach is used in [14] where the linear advection equation is solved by a particular semi-

implicit method on a time dependent domain given by positions of a fire front in a forest, and where no cut-cell problem

occurs in numerical simulations. 

Although some analysis is provided in [14,30,32] the particular semi-implicit schemes are derived ad hoc. In this work we

present a unified representation of such semi-implicit schemes using a novel approach of partial Lax–Wendroff procedure

and study their accuracy and stability properties. The Lax–Wendroff [23] (or Cauchy–Kowalevski [42] ) procedure in its full

form replaces the time derivatives of the solution in Taylor series by the space derivatives [26,42] . This procedure is used

in a derivation of high order ADER (Arbitrary DERivatives) schemes that are applied to a variety of applications, see, e.g.,

[42] and the references there. In our approach we apply the steps of Lax–Wendroff procedure only partially by allowing the

mixed time-space derivatives of the solution in Taylor series. 

We use this procedure with an approach of fully explicit κ-scheme [44,45,47] that includes as particular cases some pop-

ular numerical schemes like Lax–Wendroff and Fromm scheme [26,47] or QUICKEST scheme [24,47] . The general formulation

of the semi-implicit κ-scheme gives us an opportunity to use special choices of the parameter κ to improve the accuracy

and the stability of the scheme in special cases, and to adapt the scheme near boundaries. 

To show some advantages of the partial Lax–Wendroff procedure with respect to the full procedure, we compare the

semi-implicit κ-scheme with an analogous fully implicit κ-scheme derived in this paper using the full Lax–Wendroff proce-

dure. We study the stability conditions of all presented schemes using von Neumann stability analysis [20,43,47] realized in

a numerical way as suggested in [3,4] . 

The semi-implicit κ-scheme is unconditionally stable in the one-dimensional case for all relevant values of κ that is not

the case for the fully implicit κ-scheme. We show that this property can be used for the immersed interface methods when

boundary conditions are defined on an implicitly given boundary of computational domain. Furthermore we derive a novel

particular variant of the semi-implicit κ-scheme by defining a variable (velocity dependent) value of the parameter κ . The

scheme is 3 rd order accurate in space and time for a constant velocity in 1D. 

Opposite to the fully implicit κ-scheme (and also the fully explicit κ-scheme), the semi-implicit κ-scheme remains 2 nd

order accurate in space and time in several dimensions when using a standard dimension by dimension extension of 1D

scheme on Cartesian grids. Unfortunately, this extension of the semi-implicit κ-scheme in several dimensions is conditionally

stable in general. 

To improve the stability of two-dimensional semi-implicit κ-scheme we apply the idea of Corner Transport Upwind (CTU)

extension [6,26] by adding an additional discretization term to the scheme. The main result is a novel scheme with the ve-

locity dependent value of κ using the CTU extension that is unconditionally stable according to the numerical von Neumann

stability analysis. Moreover the scheme is 3 rd order accurate in the case of constant velocity. For several representative nu-

merical experiments this variant of the semi-implicit κ-scheme gives the most accurate results among other considered

choices of κ . 

The paper is organized as follows. In Section 2 we begin with the one-dimensional case where the fully implicit and

the semi-implicit κ-schemes are derived. In Section 3 we discuss the properties of semi-implicit κ-scheme in several di-

mensions when obtained by the dimension by dimension extension. Furthermore the Corner Transport Upwind extension

of the scheme and the treatment of boundary conditions on implicitly given boundary are described. In Section 4 several

numerical experiments are presented that involve examples on an implicitly given computational domain, an example with

largely varying velocity, and two standard benchmark examples for tracking of interfaces. Finally we conclude the results in

Section 5 . 
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2. One dimensional case 

We begin with a brief derivation of numerical schemes for a one-dimensional advection equation written as 

∂ t u (x, t) + V (x ) ∂ x u (x, t) = 0 , u (x, 0) = u 

0 (x ) , x ∈ (0 , L ) , t ≥ 0 . (2)

Let x i be points of a uniform grid such that x i − x i −1 ≡ h with h = L/M and i = 0 , 1 , . . . , M. Furthermore let τ > 0 be a given

time step and t n = nτ, n = 0 , 1 , . . . . We use a standard indexing of discrete values like V i = V (x i ) and so on. 

Our aim is to find approximate values U 

n 
i 

such that U 

n 
i 

≈ u n 
i 

where u n 
i 

:= u (x i , t 
n ) and U 

0 
i 

= u 0 
i 

= u 0 (x i ) . If V 0 > 0 and/or

V M 

< 0 then the values u n 
0 

and/or u n 
M 

shall be prescribed by Dirichlet boundary conditions. If V 0 = 0 and/or V M 

= 0 then

 

n 
0 

= u 0 
0 

and/or U 

n 
M 

= u 0 
M 

. If V 0 < 0 and/or V M 

> 0 then we require no boundary conditions, and we use a linear extrapolation

by defining auxiliary values U 

n 
−1 

= 2 U 

n 
0 

− U 

n 
1 

and U 

n 
M+1 

= 2 U 

n 
M 

− U 

n 
M−1 

. 

We are interested in finite difference methods using a stencil with at most two neighboring values in each direction,

namely 

U 

n +1 
i 

+ 

2 ∑ 

k = −2 

αik U 

n +1 
i + k = U 

n 
i + 

2 ∑ 

k = −2 

βik U 

n 
i + k . (3)

A fully explicit form of (3) is given by αik ≡ 0, analogously β ik ≡ 0 in the case of fully implicit form. Our aim is to derive

semi-implicit schemes that have in general three consecutive nonzero values of coefficients αik and β ik in (3) . 

To check an order of accuracy for any particular scheme of the form (3) we consider its truncation error that is ob-

tained by replacing all numerical values U 

n +1 
i + k and U 

n 
i + k in (3) with the exact values u n +1 

i + k and u n 
i + k that themselves are then

expressed with Taylor series, see some standard textbooks on numerical analysis, e.g., [20] . 

To derive a stability condition of particular numerical scheme of the form (3) , we use an approach of von Neumann

stability analysis, see, e.g., [20,43,47] . To do so one introduces a grid function εn 
i 

= ε(x i , t 
n ) defined by 

ε(x, t) = exp (−λt) exp (ıx ) , x ∈ R, t ≥ 0 , (4)

where ı is the imaginary number, and the parameter λ shall be found. The values εn 
i 

are supposed to fulfill the numerical

scheme (3) . Using relations 

εn 
i ±k = exp (±ıkh ) εn 

i , εn +1 
i 

= Sεn 
i , S := exp (−λτ ) , (5)

where S denotes an amplification factor, the von Neumann stability analysis is realized by searching for conditions under

which one has | S | ≤ 1 for all h ∈ (−π, π) . Using (5) in (3) one obtains 

S = 

( 

1 + 

2 ∑ 

k = −2 

βik exp (ıkh ) 

) ( 

1 + 

2 ∑ 

k = −2 

αik exp (ıkh ) 

) −1 

. (6)

Although the stability conditions for | S | ≤ 1 from (6) can be found using analytical methods for some schemes [20,43,47] ,

we apply an approach proposed and used in [3,4] where such condition is found numerically. One approach is to compute

the values | S | for very large number of discrete values of h and the input parameters of particular numerical scheme [3,4] .

We apply numerical optimization algorithms available in Mathematica ® [48] to search for local maxima of | S | using a very

large number of different initial guesses. Such numerical von Neumann stability analysis is applied to all numerical schemes

studied in this paper including nontrivial two-dimensional schemes later. 

A so-called fully explicit κ-scheme [44,45,47] of the form (3) for a variable advection velocity can be found in [10] . We

describe now the derivation of 2 nd order accurate fully implicit κ-scheme to solve (2) . The accuracy is obtained in space

and time that we do not emphasize furthermore in our description. 

In what follows we use shorter notations for the exact values of derivatives by ∂ t u ∗i := ∂ t u (x i , t 
∗) for ∗ = n or ∗ = n + 1

and so on. An analogous notation with the capital letter U is reserved for numerical approximations of derivatives. An

important role in our derivation will play the following parametric class of approximations ∂ κx U 

∗
i 

≈ ∂ x u ∗i 
2 ∂ κx U 

∗
i := (1 − κ) ∂ −x U 

∗
i + (1 + κ) ∂ + x U 

∗
i , (7)

where 

h ∂ −x U 

∗
i := U 

∗
i − U 

∗
i −1 , h ∂ + x U 

∗
i := U 

∗
i +1 − U 

∗
i , 

and the parameter κ in (7) is free to choose. A natural choice κ ∈ [ −1 , 1] gives a convex combination of the standard one-

sided finite difference approximations. 

Another important tool to derive the scheme is Lax–Wendroff procedure [23] , also quoted as Cauchy–Kowalewski proce-

dure [42] , that consists of replacing all time derivatives of u by the space derivatives of u using the Eq. (2) . We write it in

the form 

∂ t u 

n +1 
i 

= −V i ∂ x u 

n +1 
i 

, (8)

∂ tx u 

n +1 
i 

= −∂ x (V ∂ x u ) n +1 
i 

, (9)



132 P. Frolkovi ̌c, K. Mikula / Applied Mathematics and Computation 329 (2018) 129–142 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

∂ tt u 

n +1 
i 

= −V i ∂ tx u 

n +1 
i 

= V i ∂ x (V ∂ x u ) n +1 
i 

. (10) 

Now using the Taylor series in a backward manner 

u 

n 
i = u 

n +1 
i 

+ 

p ∑ 

m =1 

(−1) m 

m ! 
τ m ∂ m 

t u 

n +1 
i 

+ O(τ p+1 ) (11) 

and the Lax–Wendroff procedure (8) –(10) with (11) for p = 2 one obtains 

u 

n 
i = u 

n +1 
i 

+ τV i ∂ x u 

n +1 
i 

+ 0 . 5 τ 2 V i ∂ x (V ∂ x u ) n +1 
i 

+ O(τ 3 ) . (12) 

The fully implicit κ-scheme to solve (2) is now obtained by applying proper (upwinded) finite difference approximations

in (12) . To reach a truncation error corresponding to 2 nd order accurate schemes, the term multiplied by τ in (12) must be

approximated by a 2 nd order accurate approximation in space, while for the term multiplied by 0.5 τ 2 a first order accurate

approximation in space is sufficient. Having this in mind we apply in (12) the following upwinded approximations 

V i ∂ x u 

n +1 
i 

≈ [ V i ] 
+ ∂ −x (U 

n +1 
i 

+ 0 . 5 h∂ κx U 

n +1 
i 

) + [ V i ] 
−∂ + x (U 

n +1 
i 

− 0 . 5 h∂ κx U 

n +1 
i 

) , (13) 

V i ∂ x (V ∂ x u ) n +1 
i 

≈
(
[ V i ] 

+ ∂ −x + [ V i ] 
−∂ + x 

)
(V i ∂ 

κ
x U 

n +1 
i 

) (14) 

where [ V ] + = max { 0 , V } and [ V ] − = min { 0 , V } . Using (13) and (14) in (12) , the fully implicit κ-scheme is obtained 

U 

n +1 
i 

+ τ [ V i ] 
+ ∂ −x 

(
U 

n +1 
i 

+ 0 . 5(h + τV i ) ∂ 
κ
x U 

n +1 
i 

) 
)

+ τ [ V i ] 
−∂ + x 

(
U 

n +1 
i 

− 0 . 5(h − τV i ) ∂ 
κ
x U 

n +1 
i 

) 
)

= U 

n 
i . (15)

Note that due to the presence of the term ∂ −x 
(
V i ∂ 

κ
x U 

n +1 
i 

)
= 

(
V i ∂ 

κ
x U 

n +1 
i 

− V i −1 ∂ 
κ
x U 

n +1 
i −1 

)
/h, and analogously for ∂ + x 

(
V i ∂ 

κ
x U 

n +1 
i 

)
,

the scheme (15) uses two discrete values of velocity. 

Similarly to the fully explicit κ-scheme [10,15] , the scheme (15) is 2 nd order accurate for an arbitrary value of κ . Analo-

gously to the fully explicit QUICKEST scheme [24,47] , one can prove that the choice 

κ = sign (C)(1 + 2 |C| ) / 3 , C := τV/h (16) 

gives the 3 rd order accurate scheme in space and time in the case of constant velocity V . 

We discuss now the von Neumann stability analysis [20,43,47] for (15) that is realized for locally frozen values of the

velocity V ( x ) ≡ V i . We denote the (signed) grid Courant numbers by 

C i := τV i /h. 

The numerical von Neumann stability analysis shows that for κ ≤ 0 the fully implicit κ-scheme is unconditionally stable for

C i ≥ 0 . In the case C i ≤ 0 the unconditional stability is obtained for κ ≥ 0. These stability conditions are more favorable when

compared to conditions of the fully explicit κ-scheme. The price to pay is that a system of linear algebraic Eqs. (15) has to

be solved in each time step to obtain the values U 

n +1 
i 

. 

Unfortunately, other interesting choices of κ give only restrictive stability conditions. For instance the value κ = 1 / 3 gives

the stability condition 0 ≤ C i ≤ 2 , the 3 rd order accurate choice (16) gives the condition |C i | ≤ 0 . 5 . Moreover, the choice

κ = sign (V i ) results in an unstable scheme for C i ∈ [ −1 , 1] . 

Next we present the semi-implicit variant of κ-scheme. The main idea is to apply the partial Lax–Wendroff procedure by

skipping the replacement of ∂ tx u in (10) . Using (8) and (9) with (11) for p = 2 we obtain 

u 

n 
i = u 

n +1 
i 

+ τV i ∂ x u 

n +1 
i 

− 0 . 5 τ 2 V i ∂ tx u 

n +1 
i 

+ O(τ 3 ) . (17) 

Now using the approximation (13) in (17) for the term containing ∂ x u 
n +1 
i 

and the following approximation for the second

term 

τ ∂ tx u 

n +1 
i 

≈ τ ∂ −t ∂ 
κ
x U 

n +1 
i 

= ∂ κx U 

n +1 
i 

− ∂ κx U 

n 
i , 

one obtains 

U 

n 
i = U 

n +1 
i 

+ τ [ V i ] 
+ (∂ −x U 

n +1 
i 

+ 0 . 5 h∂ −x ∂ 
κ
x U 

n +1 
i 

)
+ τ [ V i ] 

−(
∂ + x U 

n +1 
i 

− 0 . 5 h∂ + x ∂ 
κ
x U 

n +1 
i 

)
− 0 . 5 τV i 

(
∂ κx U 

n +1 
i 

− ∂ κx U 

n 
i 

)
. 

After simple algebraic manipulations the semi-implicit κ-scheme can be written in the form 

U 

n +1 
i 

+ τV i 

(
∂ ∓x U 

n +1 
i 

− 0 . 5 ∂ κx U 

n +1 
i ∓1 

)
= U 

n 
i − 0 . 5 τV i ∂ 

κ
x U 

n 
i , (18) 

where one has to replace ∓ in ∂ ∓x and in i ∓1 with the opposite signs with respect to sign( V i ), i.e. with - if V i > 0 and

with + if V i < 0. Note that opposite to the fully implicit κ-scheme (15) , the semi-implicit variant (18) requires locally only

the single value V i . 

Looking at the truncation error of (18) the scheme is 2 nd order accurate for an arbitrary value of κ . The choice 

κ = sign (C )(1 − |C | ) / 3 (19) 
i i 
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gives in the case of a constant velocity, i.e. C i ≡ C, the 3 rd order accurate scheme in space and time. As we show later in

numerical experiments the choice (19) is advantageous also for the variable velocity case. 

The most important property of semi-implicit κ-scheme is its stability condition. Opposite to the fully implicit κ-scheme

(15) , the semi-implicit κ-scheme (18) exploits only the single value V i , so the stability analysis is valid without locally

freezing the velocity. The numerical von Neumann stability analysis implies unconditional stability for arbitrary κ ≤ 1 if

V i > 0 and for κ ≥ −1 if V i < 0 that is a clear improvement with respect to the fully implicit κ-scheme. 

We present three particular variants of (18) to present them in a more clear way. In fact, the following choices are our

suggestions. As we describe later, the schemes can be used in several dimensions by the standard dimension by dimension

extension for Cartesian grids. 

Firstly, for the choice κ = sign (V i ) the scheme (18) takes the form 

U 

n +1 
i 

+ 0 . 5 |C i | (U 

n +1 
i 

− U 

n +1 
i ∓1 

) = U 

n 
i − 0 . 5 |C i | (U 

n 
i ±1 − U 

n 
i ) , (20)

where the sign in ∓ is chosen opposite to the sign of C i and the sign in ± is identical to the sign of C i . The scheme (20) is

introduced in [31] in a finite volume context in several dimensions, see also [30,32] . The scheme has the smallest stencil

in the implicit part among all particular variants of κ-scheme, therefore we recommend to use it for the grid nodes next

to inflow boundaries. The amplification factor S of this scheme equal to 1 everywhere, so any oscillations in numerical

solutions are not damped, and the method may require a limiting (or a stabilization [32] ) procedure in general, see also

related numerical experiments. 

Secondly, for the choice κ ≡ 0 the scheme (18) turns to 

U 

n +1 
i 

+ 0 . 25 |C i | (3 U 

n +1 
i 

− 4 U 

n +1 
i ∓1 

+ U 

n +1 
i ∓2 

) = U 

n 
i − 0 . 25 C i (U 

n 
i +1 − U 

n 
i −1 ) . (21)

The scheme (21) is introduced in [14] in the finite volume context. The scheme is based on the central difference for the

approximation of ∂ x u in (7) , and it gives for the examples presented in the section on numerical experiments the most

accurate results among all considered constant values of κ parameters. As we discuss later the scheme is not unconditionally

stable in several dimensions when using the dimension by dimension extension, but it has a much less restrictive stability

condition than the analogous fully explicit scheme. 

Finally, for the velocity dependent choice (19) the scheme (18) gets the form 

U 

n +1 
i 

+ 

|C i | 
6 

(
4 U 

n +1 
i 

− 5 U 

n +1 
i ∓1 

+ U 

n +1 
i ∓2 

)
+ 

C 2 
i 

12 

(
U 

n +1 
i 

− 2 U 

n +1 
i ∓1 

+ U 

n +1 
i ∓2 

)
= U 

n 
i − |C i | 

6 

(
2 U 

n 
i ±1 − U 

n 
i − U 

n 
i ∓1 

)
+ 

C 2 
i 

12 

(
U 

n 
i +1 − 2 U 

n 
i + U 

n 
i −1 

)
, (22)

where the signs ± and ∓ are chosen as in (20) . The scheme gives the most accurate results for the chosen examples in the

section on numerical experiments among all considered variants of κ-scheme. As we describe in the next section using the

Corner Transport Upwind extension the scheme is unconditionally stable in two-dimensional case when using its dimension

by dimension extension. 

3. Two-dimensional case 

The representative two-dimensional advection equation takes the form 

∂ t u (x, y, t) + 

�
 V (x, y ) · ∇u (x, y, t) = 0 , u (x, y, 0) = u 

0 (x, y ) , (23)

where � V = (V (x, y ) , W (x, y )) . We restrict ourselves to Cartesian grids that are obtained from the uniform one-dimensional

grids using the standard dimension by dimension extension. We denote the uniform space discretization step by h . Our aim

is to determine the approximate values U 

n 
i j 

≈ u n 
i j 

where u n 
i j 

:= u (x i , y j , t 
n ) . 

An extension of the general 1D scheme (3) for a two-dimensional case can be written in the form 

U 

n +1 
i j 

+ 

2 ∑ 

k = −2 

(
αx 

i jk U 

n +1 
i + k j 

+ αy 

i jk 
U 

n +1 
i j+ k 

)
= U 

n 
i j + 

2 ∑ 

k = −2 

(
βx 

i jk U 

n 
i + k j + βy 

i jk 
U 

n 
i j+ k 

)
, (24)

where we adopt a notation of superscripts x and y to relate the coefficients to a particular space variable. 

Analogously to (7) , the following approximation of gradients (∂ x u n i j 
, ∂ y u n i j 

) is used, 

2 h ∂ κx U 

n 
i j = (1 − κx ) ∂ −x U 

n 
i j + (1 + κx ) ∂ + x U 

n 
i j , (25)

2 h ∂ κy U 

n 
i j = (1 − κy ) ∂ −y U 

n 
i j + (1 + κy ) ∂ + y U 

n 
i j , (26)

where ∂ −x , ∂ 
+ 
x , ∂ 

−
y , and ∂ + y denote the standard finite differences analogously to (7) , and the parameters κx and κy are free

to choose. 
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To provide a stability analysis of (24) , one extends the one-dimensional treatment (4) –(6) by using a grid function εn 
i j 

=
ε(x i , y j , t 

n ) when the amplification factor S takes the form analogous to (6) 

S = 

1 + 

∑ 2 
k = −2 (β

x 
i jk 

exp (ıkx ) + βy 

i jk 
exp (ıky )) 

1 + 

∑ 2 
k = −2 α

x 
i jk 

exp (ıkx ) + 

∑ 2 
k = −2 α

y 

i jk 
exp (ıky ) 

(27) 

and x, y ∈ (−π, π) . 

Before discussing some particular numerical schemes of the form (24) we note that the Lax–Wendroff procedure takes

now more involved form than (8) - (10) in 1D case, as it contains also mixed derivatives, namely 

∂ t u 

n 
i j = −V i j ∂ x u 

n 
i j − W i j ∂ y u 

n 
i j , ∂ tt u 

n 
i j = −V i j ∂ tx u 

n 
i j − W i j ∂ ty u 

n 
i j , (28) 

∂ tx u 

n 
i j = −∂ x (V ∂ x u ) n i j − ∂ x (W ∂ y u ) n i j , ∂ ty u 

n 
i j = −∂ y (V ∂ x u ) n i j − ∂ y (W ∂ y u ) n i j . (29) 

Clearly, when using the full Lax–Wendroff procedure to derive a fully implicit variant of (24) , one has to approximate,

due to (29) , the mixed spatial derivative of u . This can not be done using the stencil prescribed by (24) , consequently the

dimension by dimension extension of the fully implicit 1D scheme (15) is not 2 nd order accurate in space and time as

already well-known from a literature for the fully explicit 1D schemes, see, e.g., [3,26] . 

On the other hand, when using the partial Lax–Wendroff procedure (28) without (29) , the mixed spatial derivative is not

involved. As a consequence the dimension by dimension extension of 1D semi-implicit κ-scheme (18) is 2 nd order accurate

for a variable velocity � V (x, y ) and for arbitrary values of κx and κy in (25) and (26) . 

Similarly to (18) we can write the semi-implicit κ-scheme in the compact (upwind) way 

U 

n +1 
i j 

+ τV i j 

(
∂ ∓x U 

n +1 
i j 

− 0 . 5 ∂ κx U 

n +1 
i ∓1 j 

)
+ τW i j 

(
∂ ∓y U 

n +1 
i j 

− 0 . 5 ∂ κy U 

n +1 
i j∓1 

)
= U 

n 
i − 0 . 5 τ

(
V i j ∂ 

κ
x U 

n 
i j + W i j ∂ 

κ
y U 

n 
i j 

)
, (30) 

where one has to replace ∓ in ∂ ∓x and in i ∓1 with – if V ij > 0 and with + if V ij < 0, compare also with (18) , and analogously

for the cases related to the sign of W ij . Note that the scheme (30) can be easily extended to a higher dimensional case. 

It appears that, opposite to 1D case, the semi-implicit κ-scheme (30) is conditionally stable in general. It is not easy to

characterize the stability condition for (30) as the amplification factor S in (27) depends on six free parameters: x , y , κx , κy 

and two (directional and signed) grid Courant numbers 

C i j = 

τV i j 

h 

, D i j = 

τW i j 

h 

. (31) 

We give here some details about stability conditions for the variants (20) –(22) used in the form (30) . The choice κx =
sign (V i j ) , κ

y = sign (W i j ) gives so-called IIOE scheme (Inflow Implicit / Outflow Explicit) published in a finite volume form in 

[32] . The scheme gives | S| = 1 for all values of C i j , D i j , x, y . Consequently it is unconditionally stable, but it does not damp

any oscillations in numerical solutions, see related numerical experiments later. 

The choice κx = κy = 0 represented by (21) is used in a finite volume form in [14] . The numerical von Neumann stability

analysis gives the stability condition | S | ≤ 1 for |C i j | ≤ 7 . 396 and |D i j | ≤ 7 . 396 that is significantly less restrictive than in the

case of fully explicit schemes. The value | S | can be larger than 1 in general, for instance, the maximal value of | S | is around

1.0 0 013 and 1.04538 for the maximal Courant numbers 8 and 16, respectively. 

Finally, the variable choice (19) of κ represented by (22) is stable for |C i j | ≤ 4 and |D i j | ≤ 4 . In the next section we

extend the semi-implicit κ-scheme in two-dimensional case to such a form for which the unconditional stability is obtained

by numerical von Neumann stability analysis for the dimension by dimension extension of (22) . 

3.1. Corner Transport Upwind extension 

We begin our description with an analysis of the truncation error of (30) for the case of constant velocity � V . We keep

the indexing in the notation ( V ij , W ij ) of discrete velocity values. 

We consider the Taylor series 

u 

n 
i j = u 

n +1 
i j 

+ 

p ∑ 

m =1 

(−1) m 

m ! 
τ m ∂ m 

t u 

n +1 
i j 

+ O(τ p+1 ) , (32) 

for p = 3 and replace the first and second time derivatives in (32) using (28) at t n +1 . The third term can be replaced for the

constant velocity ( V ij , W ij ) by 

∂ t t t u 

n +1 
i j 

= −V i j ∂ t t x u 

n +1 
i j 

− W i j ∂ t t y u 

n +1 
i j 

. (33) 

Furthermore we use in (33) the following relations that are valid for the constant vector ( V ij , W ij ), 

∂ t t x u 

n +1 
i j 

= −V i j ∂ txx u 

n +1 
i j 

− W i j ∂ txy u 

n +1 
i j 

, (34) 

∂ t t y u 

n +1 
i j 

= −V i j ∂ txy u 

n +1 
i j 

− W i j ∂ tyy u 

n +1 
i j 

. (35) 



P. Frolkovi ̌c, K. Mikula / Applied Mathematics and Computation 329 (2018) 129–142 135 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Now one can show that for the choices analogous to (19) 

κx = sign (C i j )(1 − |C i j | ) / 3 , κy = sign (D i j )(1 − |D i j | ) / 3 , (36)

the spatial derivatives ∂ xxx u 
n +1 
i j 

and ∂ yyy u 
n +1 
i j 

are canceled in the truncation error analogously to the 1D case. Nevertheless,

the following third order derivatives term will remain 

τ 2 

12 

V i j W i j 

(
2 τ∂ txy u 

n +1 
i j 

− h∂ xxx u 

n +1 
i j 

− h∂ yyy u 

n +1 
i j 

)
. (37)

In what follows we apply an idea of Corner Transport Upwind (CTU) extension [6] to extend the scheme (30) in a such

way that also the term in (37) will cancel in the truncation error. We follow [26] where it is used to extend the fully explicit

schemes of the form (24) . 

The CTU extension adds an additional discretization term to (30) that contains, additionally to the stencil of (24) , also

the corner (diagonal) values of numerical solution. We do it in a such way that the 2 nd order accuracy of (30) is preserved,

and the scheme (30) with the CTU extension using the variable choice (36) of κ parameters becomes 3 rd order accurate in

the case of a constant velocity � V . 

In fact one can derive a parametric class of the scheme with the CTU extension where its particular variants are different

only in their explicit part, and that can be obtained as a convex combination of two representative schemes, 

U 

n +1 
i j 

+ τV i j 

(
∂ ∓x U 

n +1 
i j 

− 0 . 5 ∂ κx U 

n +1 
i ∓1 j 

)
+ τW i j 

(
∂ ∓y U 

n +1 
i j 

− 0 . 5 ∂ κy U 

n +1 
i j∓1 

)
+ |C i j D i j | / 6 

(
U 

n +1 
i j 

+ U 

n +1 
i ∓1 j∓1 

− U 

n +1 
i ∓1 j 

− U 

n +1 
i j∓1 

)
= U 

n 
i − 0 . 5 τ

(
V i j ∂ 

κ
x U 

n 
i j + W i j ∂ 

κ
y U 

n 
i j 

)
+ |C i j D i j | / 12 

(
2 U 

n 
i j + U 

n 
i ±1 j±1 + U 

n 
i ∓1 j∓1 − U 

n 
i +1 j − U 

n 
i j+1 − U 

n 
i −1 j − U 

n 
i j−1 

)
, (38)

and 

U 

n +1 
i j 

+ τV i j 

(
∂ ∓x U 

n +1 
i j 

− 0 . 5 ∂ κx U 

n +1 
i ∓1 j 

)
+ τW i j 

(
∂ ∓y U 

n +1 
i j 

− 0 . 5 ∂ κy U 

n +1 
i j∓1 

)
+ |C i j D i j | / 6 

(
U 

n +1 
i j 

+ U 

n +1 
i ∓1 j∓1 

− U 

n +1 
i ∓1 j 

− U 

n +1 
i j∓1 

)
= U 

n 
i − 0 . 5 τ

(
V i j ∂ 

κ
x U 

n 
i j + W i j ∂ 

κ
y U 

n 
i j 

)
− |C i j D i j | / 12 

(
2 U 

n 
i j + U 

n 
i ∓1 j±1 + U 

n 
i ±1 j∓1 − U 

n 
i +1 j − U 

n 
i j+1 − U 

n 
i −1 j − U 

n 
i j−1 

)
. (39)

In (38) and (39) the identical convention is used for ∓ and ± as in (30) . 

Concerning the stability property, the numerical von Neumann stability analysis implies that the schemes (38) and

(39) are unconditionally stable for the variable choice (36) of κ parameters. This property is valid for the convex combi-

nation of these two schemes. 

As we show in the section on numerical experiments for the chosen representative examples, the scheme (38) with

(36) gives the most accurate results among all considered semi-implicit schemes. Moreover, the unconditional stability of

this scheme is confirmed by these examples. 

3.2. Implictly given computational domains 

Our main motivation to introduce the unconditionally stable semi-implicit schemes is to solve the advection equation on

computational domains with implicitly given boundaries. The basic idea is to use Cartesian grids even when the computa-

tional domain does not have a rectangular shape. In what follows we adopt an approach of an extrapolation of numerical

solution for the grid nodes next to the implicitly given boundary ∂
 as published in [13,14] . 

In particular, let φ = φ(x, y ) , ( x , y ) ∈ D be a given continuous function and 
 := {( x , y ) ∈ D , φ( x , y ) < 0}. We aim to solve

the advection Eq. (23) for ( x , y ) ∈ 
⊂ D using the Cartesian grid of the rectangular domain D as described at the beginning

of Section 3 . We denote φij := φ( x i , y j ) for ( x i , y j ) ∈ D and search the values U 

n +1 
i j 

only if φij < 0. 

Any scheme of the form (24) can be used with no modifications if φij < 0 and if for all its nonzero coefficients before U 

∗
i + k j

and U 

∗
i j+ l with ∗ = n, n + 1 one has that φi + k j ≤ 0 , resp. φi j+ l ≤ 0 . Analogous considerations are valid for the CTU schemes

(38) or (39) where one has to consider also the required diagonal values of numerical solution. 

If the unmodified scheme (30), (38) , or (39) can not be used because some required neighbor values lie outside of 
, we

exploit the advantage of variable choice for κ parameters, and we use for the grid nodes next to the boundary ∂
 only the

scheme (30) with κx 
i j 

= sign (C i j ) and κy 
i j 

= sign (D i j ) . The motivation is that this scheme has the smallest stencil among all

presented schemes, and it is unconditionally stable for any values of C i j and D i j . The scheme takes the form 

U 

n +1 
i j 

+ 0 . 5 |C i j | (U 

n +1 
i j 

− U 

n +1 
i ∓1 j 

) + 0 . 5 |D i j | (U 

n +1 
i j 

− U 

n +1 
i j∓1 

) = U 

n 
i j − 0 . 5 |C i j | (U 

n 
i ±1 j − U 

n 
i j ) − 0 . 5 |D i j | (U 

n 
i j±1 − U 

n 
i j ) , (40)

where the particular signs in ∓ or ± are chosen according to the signs of C i j and D i j , see (30) . 

The scheme (40) can be used with no modifications if φi ∓1 j ≤ 0, φi ± 1 j ≤ 0, φij ∓1 ≤ 0, and φij ± 1 ≤ 0. We describe how to

modify it if one has φi ∓1 j > 0 or φi ± 1 j > 0, the case φij ∓1 > 0 or φij ± 1 > 0 is treated analogously. 

Let φi +1 j > 0 , the case φi −1 j > 0 is treated analogously. As φij < 0 one has that there exists a point x i + γ ∈ (x i , x i +1 ) , γ ∈ (0,

1) such that x i + γ = γ x i + (1 − γ ) x i +1 and φ(x i + γ , y j ) = 0 . One can determine the value γ from an analytical form of φ or

simply from the linear interpolation of φij and φi +1 j , see also [13,14] . Note that in general the value of γ can be arbitrary

small and x i +1 − x i + γ = γ h, so in a stability analysis the Courant number C i j shall be divided by γ . 

If C i j < 0 then the value U 

n +1 
i +1 j 

is required by (40) . In this case the solution shall be given at the boundary node (x i + γ , y j ) ,

namely u (x i + γ , y j , t 
n +1 ) = u D (x i + γ , y j , t 

n +1 ) , where the function u D is given. It corresponds to the case of inflow boundary
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with Dirichlet boundary conditions. Consequently one can replace the unavailable value U 

n +1 
i +1 j 

in (40) by the substitution 

U 

n +1 
i +1 j 

= 

1 

1 − γ

(
u 

D (x i + γ , y j , t 
n +1 ) − γU 

n +1 
i j 

)
(41) 

that is obtained simply by the linear extrapolation of the values U 

n +1 
i j 

and u D (x i + γ , y j , t 
n +1 ) . 

Furthermore, if C i j > 0 then the value U 

n 
i +1 j 

is required by (40) . This situation corresponds to the outflow boundary, when

we apply the standard linear extrapolation [13,14,26] to use the substitution 

U 

n 
i +1 j = 2 U 

n 
i j − U 

n 
i −1 j . (42) 

In a rare situation when also the value U 

n 
i −1 j 

is not available, we use the constant extrapolations U 

n 
i +1 j 

= U 

n 
i −1 j 

= U 

n 
i j 

. 

4. Numerical experiments 

In what follows we study the properties of semi-implicit κ-schemes for some representative examples. In all exam-

ples the resulting linear algebraic systems are solved by Gauss–Seidel iterations using a strategy of so-called fast sweeping

method where one sweep is given by four Gauss-Seidel iterations in four different orders [13,51] . We use typically 1 or 2

sweeps that we specify for each example. In all examples the domain is D = (−1 , 1) 2 . The discretization steps are h = 2 /M

and τ = T /N where M , T and N will be given. The maximal Courant number is defined as the maximum among all directional

grid Courant numbers |C i j | and |D i j | given in (31) . 

To check the implementation we computed examples with u 0 ( x , y ) being a randomly chosen quadratic function and 

�
 V 

being an arbitrary constant velocity. For all considered numerical schemes the exact solution is reproduced by the numerical

solution up to a machine accuracy for any chosen h and τ . Choosing the initial function as a cubic polynomial, only the

convex combination of CTU schemes (38) and (39) with the variable choice (36) of κ parameters gives numerical solutions

differing from the exact ones purely by rounding errors. 

4.1. Implicitly given computational domain 

To illustrate the advantages of semi-implicit schemes for the applications on implicitly given domains, we solve the

advection Eq. (23) only inside of a circle of radius 1 given implicitly as a zero level set of the function φ(x, y ) = 

√ 

x 2 + y 2 − 1

for ( x , y ) ∈ D following the approach of Section 3.2 . We compute the examples with the advection velocity defined by 

�
 V = (−2 πy , 2 πx ) . (43) 

The exact solution for any initial function u 0 is given by u (x, y, t) = u 0 (x cos (2 πt) + y sin (2 πt) , y cos (2 πt) − x sin (2 πt)) . We

consider T = 1 , so the initial profiles given by u 0 rotate once to return at t = 1 to their initial position. We consider two typ-

ical initial level set functions – the first one representing implicitly a smooth interface (e.g. a circle [12,22,33,36,38,40,46] ),

and the second one representing a piecewise smooth interface [12,33,36,37,40] (e.g. a square). 

To estimate the EOCs we compute the error 

E = h 

2 max 
n =1 ,..,N 

M ∑ 

i, j=1 

| U 

n 
i j − u (x i , y j , t 

n ) | . (44)

We choose in all examples the Cartesian grids with M = 40 , 80 , 160 . The minimal values of γ in (41) for these three Cartesian

grids are roughly 0.079, 0.044, and 0.025, so a certain number of grid points next to the circular boundary has a neighbor

point at the boundary in a distance approximately γ h . Consequently, the local grid Courant numbers C i j or D i j corresponding

to those grid points are multiplied by the values 1/ γ , so they become effectively between 12 and 40 times larger. 

The results are compared for the following choices of κ parameters in the scheme (30) without CTU extension, see also

(20) –(22) , 

κx = sign (C i j ) , κy = sign (D i j ) , (45) 

κx = −sign (C i j ) , κy = −sign (D i j ) , (46) 

κx = κy = 0 , (47) 

κx = sign (C i j )(1 − |C i j ) / 3 , κy = sign (D i j )(1 − |D i j ) / 3 . (48) 

The variable choice (48) is used additionally also with the CTU scheme (38) . 

We begin with the initial function u 0 (x, y ) = 

√ 

x 2 + (y − 0 . 5) 2 being the distance function in Euclidian metric. It can be

viewed as an example of the level set function representing a circular interface [12,22,33,36,38,40,46] (a smooth one). 
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Table 1 

The error (44) (multiplied by 10 3 ) for the rotation of distance function 

in Euclidian metric (the columns with E ci ) and the rotation of distance 

function in maximum metric (the columns with E sq ). The examples are 

computed in the implicitly given circular domain using (30) with (45) 

(the first two columns), (46) –(48) (the last two columns) with N = 5 M/ 4 , 

(the maximal Courant number far from the circular boundary being 2.5). 

Note that the schemes are approaching the 2 nd order accuracy from be- 

low for the smooth case and the 1 st order accuracy from above for the 

non-smooth case. 

M E ci E sq E ci E sq E ci E sq E ci E sq 

40 47.2 120. 27.3 66.4 9.47 47.7 6.54 35.1 

80 15.1 62.3 8.34 32.8 2.78 23.2 1.77 15.0 

160 4.58 31.4 2.46 15.2 .782 9.92 .484 5.82 
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Fig. 1. Numerical solutions for the rotation of distance function in Euclidian metric for M = 80 at t = 1 using (30) with (45) (the first picture), (46) –

(48) (the last picture). The chosen time step corresponds to the maximal Courant number for the grid nodes far from the circular boundary to 2.5. The 

red contour lines represent the exact solution, the black contour lines represent the numerical solutions for values 0.1, 0.2 up to 1.4. Note a shift in the 

position of the contour line 0.2 in the numerical solutions of schemes (45) and (46) that is called a “phase error” [26] in the case of analogous fully explicit 

schemes. (For interpretation of the references to color in this figure, the reader is referred to the web version of this article.) 
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Fig. 2. Numerical solutions for the rotation of distance function in Euclidian metric in the implicitly given circular domain for M = 80 at t = 1 using 

(38) and (48) with the time steps corresponding to the maximal Courant numbers for the grid nodes far from the circular boundary to 10 (the first 

picture), 5, 2.5 and 1.25 (the last picture). The red contour lines represent the exact solution, the black contour lines represent the numerical solutions for 

the values 0.1, 0.2 up to 1.4. (For interpretation of the references to color in this figure, the reader is referred to the web version of this article.) 

 

 

 

 

 

 

 

 

 

 

Firstly, we compute the example with (30) and (45) –(48) using N = 5 M/ 4 (the maximal Courant number far from the

circular boundary being 2.5). The results are summarized in Table 1 and in Fig. 1 . The schemes show the EOC approaching

the 2 nd order accuracy from below in this example. No instabilities in the numerical solutions are observed for the cut cells.

To solve the linear systems one sweep was enough. 

One can observe a so-called “phase error” [26] for this example in the form of a shift for the location of some contour

lines with respect to the exact position when using the schemes (45) and (46) . These schemes are based on the one sided

approximations of gradient in (25) and (26) , whereas the scheme (47) uses the central approximation for which the phase

error is much less visible. The scheme (48) gives the most accurate results for this example. We remind that we use the

scheme (45) locally as described in Section 3.2 for the grid nodes next to the circular boundary. 

Furthermore, we compute the example on the medium grid with M = 80 using the CTU scheme (38) with (48) for N =
25 , 50 , 100 , 200 that corresponds to the maximal Courant numbers far from the circular boundary having the values 10, 5,

2.5, 1.25. The results are presented in Fig. 2 . The error (44) takes the values 12.6, 4.20, 1.74, and 1.04 multiplied by 10 −3 . To

solve the linear systems one sweep was used except for the case N = 25 when two sweeps were used. 
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Fig. 3. Numerical solutions for the rotation of a distance function in the maximum metric for M = 160 at t = 1 using (30) with (45) (the first picture), 

(46) –(48) (the last picture). The chosen time step corresponds to the maximal Courant number for the grid nodes far from the circular boundary to 1.25. 

The red contour lines represent the exact solution, the black contour lines represent the numerical solutions for the values 0.1, 0.2 up to 1.4. Note that 

the schemes (45) and (46) based on the one sided finite difference approximations of gradient are visibly less accurate than the scheme (47) based on the 

central difference approximation. Moreover, the oscillations in numerical solution for (45) are not damped as the amplification factor for this schemes is 1. 

(For interpretation of the references to color in this figure, the reader is referred to the web version of this article.) 
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Fig. 4. Numerical solutions for the rotation of the distance function in the maximum metric in the implicitly given circular domain for M = 160 at t = 1 

using (38) and (48) with the time steps corresponding to the maximal Courant numbers for the grid nodes far from the circular boundary to 10 (the first 

picture), 5, 2.5 and 1.25 (the last picture). The red contour lines represent the exact solution, the black contour lines represent the numerical solutions for 

values 0.1, 0.2 up to 1.4. (For interpretation of the references to color in this figure, the reader is referred to the web version of this article.) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

For the next example we choose u 0 (x, y ) = max {| x + 0 . 5 | , | y |} , i.e. the distance function in the maximum metric. It can

be viewed as an example of the level set function representing a squared interface [12,33,36,37,40] (i.e. a piecewise smooth

interface in this case). We compute the example with (30) and (45) –(48) using N = 5 M/ 4 , see Table 1 , and N = 5 M/ 2 , see

Fig. 3 , i.e. the maximal Courant number for the grid nodes far from the circular boundary being 2.5 and 1.25, respectively.

The schemes show the EOC approaching the 1 st order accuracy from above in this example, i.e for the non-smooth solution.

No instabilities in the numerical solutions are observed for the cut cells and one sweep was enough to solve the linear

systems. 

One can again observe the phase error [26] for this example when using the schemes (45) and (46) that are based

on the one sided approximations of gradient in (25) –(26) . Moreover some oscillations of contour lines for the numerical

solution obtained with (45) are not damped as the amplification factor | S | for this scheme is equal 1 everywhere. The

scheme (48) gives the most accurate results for this example. 

Finally, we compute the example on the finest grid with M = 160 using the CTU scheme (38) with (48) for N =
50 , 100 , 200 , 400 that corresponds to the maximal Courant numbers far from the circular boundary having the values 10, 5,

2.5, 1.25. The results are presented in Fig. 4 . The error (44) takes the values 18.7, 8.01, 4.86, and 3.54 multiplied by 10 −3 .

The linear systems were solved using only one sweep. 

4.2. Example with largely varying velocity 

In the next example we illustrate another advantage of semi-implicit schemes for the solution of advection equation

when the velocity is varying significantly in the computational domain. To do so we choose the velocity varying exponen-

tially in a diagonal direction, 

�
 V = (e 2(y −x ) , e 2(y −x ) ) . (49) 

The initial function u 0 ( x , y ) is given by the Euclidian distance to (−1 , −1) . We fix the values u (x, y, t) = u 0 (x, y ) for the

inflow part of D , namely the east and the south sides of the squared domain D , the other two sides are outflow boundaries.

The exact solution is given by the method of characteristics where the fixed values at inflow boundaries are respected. Note

that the solution has discontinuous first derivatives with respect to x an y . 
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Table 2 

The error (44) (multiplied by 10 3 ) for the example with the exponential 

velocity for the maximal Courant numbers 10.9 and 109 using (30) with 

(45) (the 2 nd - 3 rd columns), (46) (the 4 th and 5 th ones), (47) (the 6 th 

and 7 th ones), and (38) with (48) . Note that the exact solution is not 

smooth, therefore the EOCs of the schemes are approaching the 1 st order 

accuracy from above. 

M E 10.9 E 109. E 10.9 E 109. E 10.9 E 109. E 10.9 E 109. 

40 33.5 99.7 24.7 103. 12.2 97.2 11.8 106. 

80 13.8 44.7 10.1 45.4 4.29 44.1 3.92 51.0 

160 5.67 19.8 4.05 18.7 1.55 18.9 1.34 24.6 
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Fig. 5. Numerical solutions for the example with the exponential velocity for the finest grid M = 160 and the times t = 0 . 1 , 0 . 2 , 0 . 3 (from the second to 

the fourth column) using (30) with (47) . The first row is obtained with N = 160 when the maximal Courant number is 10.9 (the first picture is the solution 

at t = 0 . 01 ), the second row with N = 16 with the maximal Courant number being 109 (the first picture is the initial function u 0 ). The red contour lines 

represent the exact solution, the black contour lines represent the numerical solutions for values 0.0, 0.2 up to 2.4. Note that no instabilities occur in the 

numerical solutions. (For interpretation of the references to color in this figure, the reader is referred to the web version of this article.) 

 

 

 

 

 

 

 

 

 

 

 

 

 

The speed | � V | in the corner (−1 , 1) is about 2981 times larger than in the corner (1 , −1) , so a large variation of � V occurs

in the domain D . The stationary solution for this example is the function | y − x | and these values are approached by the

time dependent solution u ( x , y , t ) very rapidly in the left top corner of the domain. 

We compute the example with the scheme (30) using (45) –(47) and with the CTU scheme (38) using (48) for a medium

Courant number 10.9 and for a large Courant number 109. The results are summarized in Table 2 and in Fig. 5 . Note that

no instabilities occur in the numerical solutions and the accuracy for the large Courant number is still acceptable. Only one

sweep was used to solve the linear algebraic systems. 

4.3. Two benchmark examples 

In the last section on numerical experiments we present two standard benchmark examples for the track-

ing of moving interfaces – the rotation of Zalesak’s disc [12,19,21,22,37,38,40,46] and the single vortex example

[12,19,21,22,33,37,38,40,46] Note that in a standard setting of these examples there is no need to use a implicit or a semi-

implicit scheme, nevertheless we compute these benchmark examples to show a satisfactory accuracy of the proposed semi-

implicit κ-scheme. 

In the first example the initial function u 0 ( x , y ) is a signed distance function to a slotted circle of diameter 0.6 with the

center in (0, 0.5) and with a cut obtained by a rectangle of the lengths 0.1 × 0.5 with the bottom corners at (−0 . 05 , y r ) and

(0.05, y r ) and y r = 0 . 5 −
√ 

0 . 3 2 − 0 . 05 2 ) . The velocity is given in (43) , so the initial profile of u 0 returns after one rotation to

its origin position at t = 1 . 

The EOCs for the scheme (30) with all four variants (45) –(48) are presented in Table 3 , and a visual grid convergence

study for the scheme (30) with (48) is given in Fig. 6 . 
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Table 3 

The error (50) (multiplied by 10 3 ) for the numerical solutions of Zalesak’s 

disc (the columns with E z ) and the single vortex (the columns with E s ) 

that are solved using (30) with (45) (the 2 nd and 3 rd column), (46) –(48) 

(the 8 th and 9 th columns). Note that N = 5 M/ 4 that corresponds to the 

maximal Courant number for the rotation of Zalesak’s disc equal to 2.5 

and for the single vortex example equal to 2. 

M E z E s E z E s E z E s E z E s 

40 57.3 32.9 15.3 15.2 

80 33.2 186. 22.1 160. 7.45 81.4 7.09 80.0 

160 15.6 74.3 12.3 65.0 3.54 30.1 3.21 28.2 

320 25.6 25.4 8.50 7.70 
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Fig. 6. Numerical solutions for the Zalesak’s disc after one rotation computed using the scheme (30) with (48) for the grids with M = 160 (the first picture) 

and M = 320 (the second picture). The red contour lines represent the exact solution, the black contour lines represent the numerical solutions for values 

−0 . 05 , 0.0 up to 0.4. The third picture compares the numerical solutions for the single vortex example at t = 2 . 5 , the red contour line is the zero level set 

obtained with M = 1280 , the black contour line is the zero level set obtained with M = 160 using always the scheme (30) with (48) . (For interpretation of 

the references to color in this figure, the reader is referred to the web version of this article.) 

 

 

 

 

 

 

 

 

 

 

 

 

Next we choose the single vortex example that is characterized by a deformational flow. The velocity � V = (V, W ) is given

by 

V (x, y ) = −4 sin 

2 (π(x + 1) / 2) sin (π(y + 1) / 2) cos (π(y + 1) / 2) , 

W (x, y ) = 4 sin 

2 (π(y + 1) / 2) sin (π(x + 1) / 2) cos (π(x + 1) / 2) . 

for t ∈ [0, 2.5]. The initial function u 0 ( x , y ) is a signed distance function to a circle with the center at (0, 0.5) and the radius

0.3. As � V ≡ 0 at the boundary ∂D , we fix the values of u (x, y, t) = u 0 (x, y ) for ( x , y ) ∈ ∂D and t ∈ [0, 2.5]. 

We present the results at t = 2 . 5 where the largest deformation of initial function can be observed. As the exact solution

at this time is not available, we compute a reference numerical solution 

˜ U 

N 
i j 

obtained with N = 5 M / 4 and M = 1280 and

compare it with numerical solutions for M = 80 , 160 , 320 at N = 5 M/ 4 using 

e = 

4 

M 

2 

M ∑ 

i, j=0 

| U 

5 M/ 4 
i j 

− ˜ U 

5 M / 4 
i M /M jM /M 

| . (50) 

The chosen time step corresponds to the maximal Courant number equal to 2. The results are summarized in Table 3 and a

visual comparison of the zero level set for the numerical solutions obtained with M = 1280 and M = 160 is given in Fig. 6 . 

Finally, we can illustrate for the single vortex example the stability results obtained with the numerical von Neumann

stability analysis. Firstly we compute the example with the scheme (30) with no CTU extension using (48) applying one

large time step such that the maximal Courant number equals 16. In Fig. 7 we present the numerical result obtained after

one sweep where some instabilities can be clearly observed. Computing the example with the identical one large time step

but using the CTU extension (38) with (48) , no instabilities occur, see Fig. 7 . 

5. Conclusions 

In this paper the class of semi-implicit schemes on Cartesian grids for the numerical solution of linear advection equation

is derived. The derivation follows the partial Lax–Wendroff (or Cauchy–Kowalewski) procedure to replace the time deriva-

tives of the exact solution in Taylor series. Opposite to the full form of this procedure when only the space derivatives are

used in the replacement, the partial procedure exploits also the mixed time-space derivatives. 
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Fig. 7. Numerical solutions at t = 0 . 2 with contour lines for values 0.1, 0.3 up to 1.7 for the single vortex example for the coarse grid M = 80 . The first 

picture is obtained using one time step (the maximal Courant number equals 16) with the scheme (30) with (48) and no CTU extension when instabilities 

can be observed. The second picture is obtained using the CTU extension (38) with (48) taking one identical time step when no instabilities occur. For a 

comparison the last picture is obtained using 16 uniform time steps that corresponds to the maximal Courant number being 1 using (30) with (48) . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The one-dimensional semi-implicit κ-scheme (18) is 2 nd order accurate with the unconditional stability for the variable

velocity case and for all considered values of κ . The analogous fully implicit κ-scheme (15) is unconditionally stable only

for a limited range of κ and only for the locally frozen values of advection velocity. 

The dimension by dimension extension (30) of one-dimensional semi-implicit κ-scheme to Cartesian grids in several

dimensions gives the 2 nd order accurate scheme. The analogous extension of fully implicit κ-scheme results only in a first

order accurate scheme. 

We derive the Corner Transport Upwind extension of two-dimensional semi-implicit κ-scheme. The semi-implicit κ-

scheme (38) with the variable choice (36) of κ parameters has all desired properties that are considered in this paper – the

scheme is 2 nd order accurate for the variable advection velocity and unconditionally stable according to the numerical von

Neumann stability analysis. Moreover it is 3 rd order accurate if the velocity is constant. The chosen examples in numerical

experiments confirm these properties. 
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