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Abstract We present a gradient scheme (which happens to be similar to the MPFA
finite volume O-scheme) for the approximation to the solution of the Perona-
Malik model regularized by a time delay and to the solution of the nonlinear ten-
sor anisotropic diffusion equation. Numerical examples showing properties of the
method and applications in image filtering are discussed.
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1 Introduction

A series of methods for image processing are based on the use of approximate solu-
tions to equations of the type

ut −div (G(u,x, t)∇u) = r(x, t), for a.e. (x, t) ∈ Ω×]0,T [ (1)

with the initial condition

u(x,0) = uini(x), for a.e. x ∈ Ω , (2)
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and the homogeneous Neumann boundary condition

G(u,x, t)∇u(x, t) ·n∂Ω (x) = 0, for a.e. (x, t) ∈ ∂Ω ×R+, (3)

where Ω is an open bounded polyhedron in Rd , d ∈ N⋆, with boundary ∂Ω , T > 0,
uini ∈ L2(Ω), r ∈ L2(Ω×]0,T [), and G is such that, for all v∈ L2(Ω) and a.e. (x, t)∈
Ω×]0,T [, G(v,x, t) is a self-adjoint linear operator with eigenvalues in (λ ,λ ) with
0< λ ≤ λ , and G(v,x, t) is continuous with respect to v and measurable with respect
to x, t. In image processing applications, uini represents an original noisy image, the
solution u(x, t) represents its filtering which depends on scale parameter t and d = 2
for 2D image filtering, d = 3 for 3D image or 2D+time movie filtering and d = 4
for 3D+time filtering of spatio-temporal image sequences.

The image processing methods based on approximations of equation (1) differ by
definition of the function G. The first such model was proposed by Perona-Malik in
1987 [9], and nowadays, its regularization (by spatial convolution) due to Catte, Li-
ons, Morel and Coll [2] is usually used. The regularized equation has the following
form

∂tu−∇.(g(|∇Gσ ∗u|)∇u) = 0 (4)

where g(s) is a Lipschitz continuous decreasing function, g(0)= 1, 0< g(s)→ 0 for
s→∞, Gσ ∈C∞(Rd) is a smoothing kernel, e.g. the Gauss function or mollifier with
a compact support, for which

∫
Rd Gσ (x)dx = 1. Thanks to convolution, the nonlin-

earity in difusion term depends on the unknown function u, opposite to the original
Perona-Malik equation (without convolution) where it depends on the gradient of
solution. For the regularized model, the finite volume scheme were suggested and
convergence and error estimates were proved in [8], [3].

Next interesting image processing model with the structure of equation (1) is the
so-called nonlinear tensor anisotropic diffusion introduced by Weickert [11]. In that
case, the matrix G(u,x, t) represents the so-called diffusion tensor depending on the
eigenvalues and eigenvectors of the (regularized) structure tensor

Jρ(∇ut̃) = Gρ ∗ (∇ut̃∇ut̃
T ), (5)

where
ut̃(x, t) = (Gt̃ ∗u(·, t))(x) (6)

and Gt̃ and Gρ are Gaussian kernels. In computer vision, the matrix Jρ =

(
a b
b c

)
,

which is symmetric and positive semidefinite, is also known as the interest oper-
ator or second moment matrix. If we denote x = (x2,x2) we can write a = Gρ ∗(

∂Gt
∂x1

∗u
)2

, b = Gρ ∗
((

∂Gt
∂x1

∗u
)(

∂Gt
∂x2

∗u
))

and c = Gρ ∗
(

∂Gt
∂x2

∗u
)2

. The orthog-
onal set of eigenvectors (v,w) of Jρ corresponding to its eigenvalues (µ1,µ2), µ1 ≥
µ2, is such that the orientation of the eigenvector w, which corresponds to the
smaller eigenvalue µ2, gives the so-called coherence orientation. This orientation
has the lowest fluctuations in image intensity. The diffusion tensor G in equation
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(1) is then designed to steer a smoothing process such that the filtering is strong
along the coherence direction w and increasing with the coherence defined by differ-
ence of eigenvalues (µ1 −µ2)

2. To that goal, G must possess the same eigenvectors
v = (v1,v2) and w = (−v2,v1) as the structure tensor Jρ(∇ut̃) and the eigenvalues
of G can be chosen as follows

κ1 = α, α ∈ (0,1), α ≪ 1, (7)

κ2 =

{
α , if µ1 = µ2,

α +(1−α)exp
(

−C
(µ1−µ2)2

)
, C > 0 else.

So, the matrix G is finally defined by

G = ABA−1, where A =

(
v1 −v2
v2 v1

)
and B =

(
κ1 0
0 κ2

)
. (8)

By the construction, again thanks to convolutions, we see that diffusion matrix
depends nonlinearly on the solution u and it satisfies smoothness, symmetry and
uniform positive definitness properties. The so-called diamond-cell finite volume
schemes for the nonlinear tensor anisotropic diffusion were suggested and analyzed
in [6, 7].

In this paper, we use a new class of finite volume schemes, the so-called gradient
schemes [5], for solving image processing models based on equation (1). Moreover,
we suggest and study numerically new type of regularization of the classical Perona-
Malik approach by considering the gradient information from delayed time t − t.
We called this model time-delayed Perona-Malik equation, and consider (1) with
uini ∈ H1(Ω), and we define u(x, t) = uini(x) for x ∈ Ω and t < 0 and function G is
defined by

G(u,x, t) = max
(

1
1+ |∇u(x, t − t)|2

,α
)

(9)

where t is a time delay and α > 0 is a parameter. It turns out that for any k ∈ N in
the time interval ]kt,(k+ 1)t[, G is a given function of (x, t) only, which leads to a
construction of efficient linear numerical scheme for this type of problems.

2 Gradient scheme approximation

In order to describe the scheme, we now introduce some notations for the space
discretisation.

1. A rectangular discretisation of Ω is defined by the increasing sequences ai =

x(i)0 < x(i)1 < .. . < x(i)
n(i)

= bi, i = 1, . . . ,d.
2. We denote by
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x(2)
i(2)

x(2)
i(2)+1

p

xp xσ

x(1)
i(1)+1

x(1)
i(1)

σ

dpσ

Kp,y

y

np,σ

Fig. 1 Notations for the meshes

M =
{
]x(1)

i(1)
,x(1)

i(1)+1
[× . . .×]x(d)

i(d)
,x(d)

i(d)+1
[, 0 ≤ i(1) < n(1), . . . , 0 ≤ i(d) < n(d)

}
the set of the control volumes. The elements of M are denoted p,q, . . .. We de-
note by xxxp the centre of p. For any p ∈ M , let ∂ p = p\ p be the boundary of p;
let |p| > 0 denote the measure of p and let hp denote the diameter of p and hD

denote the maximum value of (hp)p∈M .
3. We denote by Ep the set of all the faces of p ∈ M , by E the union of all Ep,

and for all σ ∈ E , we denote by |σ | its (d − 1)-dimensional measure. For any
σ ∈ E , we define the set Mσ = {p ∈ M ,σ ∈ Ep} (which has therefore one or
two elements), we denote by Ep the set of the faces of p∈M (it has 2d elements)
and by xxxσ the centre of σ . We then denote by dpσ = |xxxσ − xxxp| the orthogonal
distance between xxxp and σ ∈ Ep and by np,σ the normal vector to σ , outward to
p.

4. We denote by Vp the set of all the vertices of p ∈ M (it has 2d elements), by V
the union of all Vp, p ∈ M . For y ∈ Vp, we denote by Kp,y the rectangle whose
faces are parallel to those of p, and whose the set of vertices contains xxxp and y.
We denote by Vσ the set of all vertices of σ ∈ E (it has 2d−1 elements), and by
Ep,y the set of all σ ∈ Ep such that y ∈ Vσ (it has d elements).

5. We define the set XD of all u = ((up)p∈M ,(uσ ,y)σ∈E ,y∈Vσ ), where all up and uσ ,y
are real numbers.

6. We denote, for all u ∈ XD , by ΠDu ∈ L2(Ω) the function defined by the constant
value up a.e. in p ∈ M .

7. For u ∈ XD , p ∈ M and y ∈ Vp, we denote by

∇p,yu =
2
|p| ∑

σ∈Ep,y

|σ |(uσ ,y −up)np,σ = ∑
σ∈Ep,y

uσ ,y −up

dpσ
np,σ , (10)

and by ∇Du the function defined a.e. on Ω by ∇p,yu on Kp,y.
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Let T > 0 be given, and τ > 0 such that there exists NT ∈ N with T = NT τ , We
then define XD ,τ = XNT

D = {(un)n=1,...,NT ,u
n ∈ XD}, and we define the mappings

ΠD ,τ : XD ,τ → L2(Ω) and ∇D ,τ : XD ,τ → L2(Ω)d by

ΠD ,τ u(x, t) = ΠDun(x), for a.e. x ∈ Ω , ∀t ∈](n−1)τ,nτ], ∀n = 1, . . . ,NT , (11)

∇D ,τ u(x, t) = ∇Dun(x), for a.e. x ∈ Ω , ∀t ∈](n−1)τ,nτ], ∀n = 1, . . . ,NT . (12)

We then define the following gradient scheme approximation [5] for the discretiza-
tion of Problem (1):

u ∈ XD ,τ , Dτ u(x, t) :=
1
τ
(ΠDu1(x)−uini(x)), for a.e. x ∈ Ω , ∀t ∈]0,τ],

Dτ u(x, t) =
1
τ
(ΠDun(x)−ΠDun−1(x)),

for a.e. x ∈ Ω , ∀t ∈](n−1)τ,nτ],∀n = 2, . . . ,NT ,

(13)

and ∫ T

0

∫
Ω

(
Dτ u ΠD ,τ v+GD ,τ(ΠD ,τ u,x, t)∇D ,τ u ·∇D ,τ v

)
dxdt

=
∫ T

0

∫
Ω

rΠD ,τ vdxdt, ∀v ∈ XD ,τ ,
(14)

where GD ,τ(v,x, t) is a suitable approximation of G(v,x, t). The mathematical prop-
erties of this scheme are studied in [4].

Remark 1. The equations obtained, for a given y ∈ V , defining v ∈ XD for a given
σ ∈ Ey by vσ ,y = 1 and all other degrees of freedom null, constitute a local invertible
linear system, allowing for expressing all (uσ ,y)σ∈Ey with respect to all (up)p∈M .
This leads to a nine-point stencil on rectangular meshes in 2D, 27-point stencil in
3D (this property is the basis of the MPFA O-scheme [1]).

3 Numerical experiments

3.1 Numerical study of the error for the time-delayed
Perona-Malik model

We consider equation (1) in case of G defined by (9) and with a right hand side
computed such that the function u(x,y, t) = ((x2 + y2)/2− (x3 + y3)/3)t is its exact
solution. The domain Ω is square [0,1]× [0,1]. We consider two cases, first, the time
delay t̄ = 0.0625 and the overal time T = 0.625, and then t̄ = 0.625 and T = 1.25.
In both cases we used coupling between space and time step τ ≈ h2, where h = 1

n
is length of the side of finite volume in uniform squared partition of Ω . We observe
the second order convergence in L2 and L∞ norms of solution (denoted by E2 and
E∞) and its gradient (denoted by EG2 and EG∞) in this special example, see Tables
1 and 2.
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Table 1 The errors and EOC for the time-delayed Perona-Malik model, t̄ = 0.0625, T = 0.625.

n τ E2 EOC E∞ EOC EG2 EOC EG∞ EOC
4 0.0625 4.771e-4 - 1.022e-3 - 7.184e-3 - 1.450e-2 -
8 0.015625 1.172e-4 1.429 2.692e-4 1.925 1.707e-3 2.073 3.615e-3 2.004
16 0.00390625 2.913e-5 2.604 6.812e-5 1.982 4.213e-4 2.019 9.031e-4 2.001
32 0.0009765625 7.270e-6 2.002 1.708e-5 1.996 1.050e-4 2.004 2.257e-4 2.000
64 0.000244140625 1.815e-6 2.001 4.273e-6 1.999 2.624e-5 2.000 5.643e-5 1.999

Table 2 The errors and EOC for the time-delayed Perona-Malik model, t̄ = 0.625, T = 1.25.

n τ E2 EOC E∞ EOC EG2 EOC EG∞ EOC
4 0.0625 1.482e-3 - 2.237e-3 - 1.913e-2 - 2.848e-2 -
8 0.015625 3.745e-4 1.985 5.889e-4 1.925 4.651e-3 2.040 7.083e-3 2.007
16 0.00390625 9.379e-5 1.998 1.450e-4 2.022 1.155e-3 2.009 1.768e-3 2.002
32 0.0009765625 2.346e-5 1.999 3.735e-5 1.957 2.881e-4 2.003 4.419e-4 2.000
64 0.000244140625 5.865e-6 2.000 9.343e-6 1.999 7.201e-5 2.003 1.105e-4 2.000

3.2 Image filtering by the time-delayed Perona-Malik model

The example of image filtering by the gradient scheme applied to the time-delayed
Perona-Malik equation is presented in Figure 2. The original clean image can be
seen in Figure 2 left top. It is damaged by 40% additive noise, see Figure 2 right top.
In the bottom raws of Figure 2 we present 5th, 10th and 20th denoising step which
show the reconstruction of the original. In the last step we see the correct shape
reconstruction with the keeping of the edge, with only slighly changed intensity
values inside and outside quatrefoil due to diffusion. The following parameters were
used in computations: n(1) = n(2) = 200, h = 0.0125,τ = 0.01, t̄ = 0.1.

3.3 Image filtering by the nonlinear anisotropic tensor diffusion

In this example we present the image denoising by the nonlinear tensor diffusion
and show improvement of the coherence of the line structures, which is the basic
property of such models. Here, in the evaluation of diffusion matrix we use the
semi-implicit approach, which means that in (6) we use the solution shifted by one
time step backward, ut̃(x, t) = (Gt̃ ∗ u(·, t − τ))(x), cf. also [6]. The original image
with three crackling lines can be seen in Figure 3 left. On the right, one can see
its filtering after 100 time steps which indeed enhance the coherence of those line
structures. In this experiment we used the following parameters: n(1) = n(2) = 250,
h = 0.01, τ = 0.0001, t̃ = 0.0001, ρ = 0.01, α = 0.001, C = 1.
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Fig. 2 Image filtering by the time-delayed Perona-Malik model: the original image (left top), the
noisy image (right top) and the results after 5, 10 and 20 filtering steps.
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Fig. 3 The enhancement of the coherence by the nonlinear anisotropic tensor diffusion, original
image (left) and the result of filtering after 100 time steps (right).
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