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3D BEM APPLICATION TO NEUMANN GEODETIC BVP USING

THE COLLOCATION WITH LINEAR BASIS FUNCTIONS

R. ČUNDERLÍK , K. MIKULA∗, AND M. MOJZEŠ†

Abstract. This paper presents improved numerical solution of Neumann geodetic boundary
value problem (NGBVP) applying boundary element method (BEM). NGBVP is an exterior oblique
derivative problem for Laplace equation. First numerical experiments were presented in [4]. Now
the collocation with linear basis functions is applied for deriving the system of linear equations from
boundary integral equations. With respect to a giant size of the Earth and in order to get accuracy
as high as possible a computing on high-speed parallel computers is necessary.

In first experiment the Earth’s surface is approximated by 44 378 nodes and 88 752 triangles.
A global quasigeoid model as a result of the BEM application to NGBVP is compared with Earth
geopotential model EGM-96 that is computed by spherical harmonics and geopotential coefficients.
Local refinement in Europe is presented in second experiment.

1. Introduction. The determination of gravity field is usually formulated in
terms of BVP for Laplace equation [8,12]. In the previous article [4] we formulated
NGBVP

∆T (x) = 0, x ∈ R3 − Ω ,

〈∇T (x),ne(x)〉 = δg(x), x ∈ Γ ,(1)

T (x) → 0 for x → ∞

where T (x) is the disturbing potential (a difference between the actual W and normal
U gravity potentials), δg(x) is the absolute value of the surface gravity disturbance,
i.e. |∇W − ∇U | which is a measurable quantity, and ne(x) is the normal to the
geocentric equipotential ellipsoid of revolution [6]. 〈., .〉 represents the scalar product
of vectors. Equations (1) represent the exterior oblique derivative BVP for the Laplace
equation with the Neumann boundary condition (BC). The domain Ω represents the
body of the Earth and the boundary surface Γ is the Earth’s surface. The normal to
the Earth’s surface Γ doesn’t coincide with the normal to ellipsoid ne.

BEM as a numerical method based on variational formulation of PDE is suit-
able for solving exterior BVPs. The collocation is one of the simplest techniques for
deriving the linear system of equations from boundary integral equations. Thanks
its simplicity this method is very popular in engineer applications while it has some
drawbacks [10]. In great majority of applications constant basis functions are used
for approximating boundary functions on each panel of the boundary surface. In our
experiments we decided to use linear basis functions. Main reasons were:

• Discretizing the Earth’s surface in the way described later a number of tri-
angles is equal to 2(N − 2) where N is a number of triangulation nodes. It
means that the assembly of the linear system of equations using constant ba-
sis functions needs about 4 times more memory storage than applying linear
basis functions.
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• The Earth’s surface is approximated by the triangulation of the topography
with input data in vertices of triangles. In case of constant basis functions
the nodes (collocation points) are in centres of triangles and further approx-
imations are necessary.

• In case of linear basis functions nodes lie in vertices of triangles. It seems to
be better for computing singular elements.

Although the assemble of the linear system of equations applying linear basis functions
is more complicated and takes more time a numerical solution leads to more precise
results using the same internal memory storage.

2. Direct BEM formulation and C1 collocation method. In the direct
BEM formulation a boundary integral equation is derived from Laplace equation (1)
through application of Green’s second theorem [3]. In 3D it has the following form

4πT (p) +

∫
Γ

∂G

∂nq
(p, q)T (q) dΓq =

∫
Γ

G(p, q)
∂T

∂nq
(q) dΓq , p, q ∈ Γ(2)

where nq is a normal to the boundary Γ. A kernel function G represents the funda-
mental solution of the Laplace equation

G(p, q) =
1

4π|p− q|
, p, q ∈ R3 .(3)

Since the directions of ∇T and ne are almost identical we can approximate
〈∇T (x),nq(x)〉 by δg(x) cosα where α is an angle 6 (nq ,ne). Thus we can replace
∂T/∂nq in (2) by these corresponding quantities. In this way the oblique derivative
BC (1) is incorporated into BEM formulation (2).

The collocation method with linear basis functions is used for deriving the linear
system of equations from the boundary integral equation (2). The Earth’s surface
as a boundary surface is approximated by the triangulation of the topography –
expressed as a set of panels ∆Γj . Vertices xi, . . . , xN of triangles represent the nodes
– collocation points. The C1 collocation method involves representing the boundary
function by a linear function on each triangle panel using linear basis functions

{ψ1, ψ2, . . . , ψN} ψj(xi) = 1 xi = xj ∈ R3

ψj(xi) = 0 xi 6= xj(4)

where N is a number of nodes. It allows to reduce the boundary integral equation (2)
to a discrete form for each collocation point i

ciTiψi +

N∑
j=1

∫
supp ψj

∂Gij
∂nq

Tjψj dΓj =

N∑
j=1

∫
supp ψj

GijδgjψjdΓj , i = 1 . . .N(5)

where suppψj is a support of the j-th basis function. The function ci represents
“spatial angle” bounded by the panels joined in the node i [1]. In case of linear basis
functions
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ci =

L∑
l=1

ϕil
4π

(1 − cosφil)(6)

where ϕil is an angle between two planes intersecting in ne in node i and which create
two edges of the l-th triangle of the suppψi and φil is an angle between ne and the
l-th triangle. L represents a number of triangles in the suppψi. Equations (5) can be
written in the matrix-vector form

MT = Qδg .(7)

Coefficients of matrices M ,Q represent the approximations of integrals in (5) in the
collocation points. Regular integrals can be approximated by the Gaussian quadrature
rules for a triangle

Mij =
1

4π

L∑
l=1

Ajlkijl

K∑
k=1

1

l3ikl

ψkwk ,(8)

Qij =
1

4π

L∑
l=1

Ajl cosαjl

K∑
k=1

1

likl

ψkwk i 6= j

where Ajl is the area of the l-th triangle of the suppψj , kijl is a perpendicular from
node i to this triangle and wk are weights. L represents a number of triangles in
the suppψj and K is a number of used points for the Gaussian quadrature. cosαjl
represents a projection of ne in the node j to the normal nq of the l-th triangle. Then
the j-th component of the vector δg in (7) represents the input value of measured
gravity disturbance δg in the node j.

Non-regular integrals (singular elements) that arise because of the singularity of
the kernel function (3) need a special treatment. Thanks the orthogonality of the
normal to its triangle the kernel functions in integrals on the left hand side in (5) are
equal to zero and

Mi,i = ci(9)

Diagonal coefficients Qi,i can be evaluated analytically using the software Math-

ematica r© [16].
In case of Neumann BC a known vector on the right hand side in (7) is given.

Solving this linear system of equations we obtain values of the unknown disturb-
ing potential in collocation points. Then the disturbing potential is transformed to
quasigeoidal heights above the ellipsoid using the Bruns formula in an iterative way
described in [4].

3. First numerical experiment. Global Quasigeoid Model. In the first
numerical experiment we approximated the Earth’s surface by 44 378 nodes and 88 752
triangles (latitude interval: ∆B = 1.0227˚). A triangulation of the topography is
based on a subdivision of triangular faces of a “12-hedron”. Each triangle is subdivided
into 4 congruent sub-triangles by halving the sides until required level (fig.1).
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Fig. 1. The triangulation of the topography

To obtain ellipsoidal heights as vertical information of nodes positions we used
Global Digital Elevation Model GTOPO-30 [5] and Earth Geopotential Model EGM-
96. EGM-96 is formulated as the spherical harmonics with geopotential coefficients
determined from satellite, altimetric and gravimetric measurements [13]. EGM-96
allows to generate input surface gravity disturbances in our nodes.

STATISTICS
Nodes 44 378
Mean 0.026 m
Max 6.161 m
Min -15.147 m
St.dev. 0.710 m

Table 1

“residuals = EGM-96 – BEM”.

Computing was accomplished at ICM Warsaw on high-speed parallel computer
TAJFUN: CRAY SV1-1/32 with 32 processors and 32 GB internal (shared) mem-
ory. The sparse linear system of equations was solved by non-stationary iterative
method BiConjugate Gradient Stabilized (BiCGSTAB) [2] without preconditioning.
Computing used about 17 GB of the internal memory. 16 BiCGSTAB iterations were
necessary to keep error lower than the prescribed tolerance in absolute residual error.
Iterations took only several seconds while the matrices assembly several hours. Total
CPU time took 25 169.30 s. The Global Quasigeoid model as a result of the 3D BEM
application to NGBVP is presented in fig.2.
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The Global Quasigeoid Model is compared with EGM-96 (BEM application versus
spherical harmonics). Residuals are presented in fig.3 and statistic characteristics in
tab.1.

4. Second numerical experiment. Local refinement in Europe. A possi-
bility of the local refinement depicted the second experiment. The Earth’s surface is
approximated by 43 733 nodes; 38 402 from the global triangulation (∆B = 1.125˚)
and 5331 in the local refinement (∆B = 0.28125˚) (fig.4). Computing on TAJFUN
used about 16.5 GB of the internal memory. 17 BiCGSTAB iterations were necessary
to keep error lower than the prescribed tolerance in absolute residual error. Total
CPU time took 24 592.52 s.

STATISTICS
(only local refinement)
Nodes 5 764
Mean 0.006 m
Max 1.530 m
Min -1.035 m
St.dev. 0.195 m

Table 2

The European Quasigeoid Model (fig.5) as a result of the local refinement is
compared with EGM-96 (fig.6). Statistic characteristics are presented in tab.2.

5. Conclusions and perspectives for geodesy. A definition of Neumann BC
in form of surface gravity disturbances and the BEM application to NGBVP represents
a new approach in the gravity field modelling. Numerical results show the evident
correlation and agreement with EGM96 (spherical harmonics). A main perspective
of this approach is in the global gravity field modelling. Increasing a number of nodes
the numerical solutions can yield to more precise results. Inputting real gravity data
a solution will become independent from EGM-96 and it can be a suitable test based
on the different mathematical background.

A need of gigantic internal memory storage is the main disadvantage of this
method. Therefore a possibility of local refinement that leads to a precise local grav-
ity field modelling is limited. Nevertheless second numerical experiment confirms a
possibility to apply BEM for a local modelling. To reduce differences in extreme zones
(in Alps) another local refinements would be necessary.
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Fig. 2. Global Quasigeoid Model - 3D BEM application to Neumann geodetic BVP



274 R. ČUNDERLÍK, K. MIKULA AND M.MOJZEŠ

Fig. 3. The comparison between the Global Quasigeoid Model and EGM-96

Fig. 4. The local refinement in Europe
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Fig. 5. The European Quasigeoid Model Fig.6. The comparison with EGM-96
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