Semi-implicit co-volume method in 3D image segmentation
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Abstract

We introduce three-dimensional semi-implicit complementary volume numerical
scheme for solving the level set formulation of (Riemannian) mean curvature flow
problem. We apply the scheme to segmentation of objects (with interrupted edges)
in 3D images. The method is unconditionally stable, the study of its experimental
order of convergence on 3D examples shows its accuracy and it is efficient regarding
computational times.

1 Introduction

In this paper we introduce an efficient algorithm for solving the Riemannian mean curva-
ture flow equation

/ Vu
_ 0

in the context of 3D image segmentation. Here, u(¢,z) is an unknown, we call it segmen-
tation function or subjective surface [38, 39, 40], defined in Q7 = [0,7] x Q. Q C IR? is
a bounded domain with a Lipschitz continuous boundary 92, d = 3 in our case of 3D
segmentation, [0, 7] is a time interval, I is a given image and € > 0 is a parameter. The
equation is accompanied either with Dirichlet boundary conditions

(2) u(t,z) =uP in [0,7] x 99,

or Neumann boundary conditions

Q o

where v is unit normal to 02, and with the initial condition

(t,z) =0 in[0,T] x 09,

(4) u(0,z) = u’(z) in Q.

In image segmentation we use Dirichlet boundary conditions and without lost of generality

we may assume u” = 0. The zero Neumann boundary conditions are often used in
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computations of interface motions in free boundary problems (see e.g. [41, 33]) or in the
morphological image smoothing (see e.g. [2, 22]). We use them in testing the accuracy of
our numerical solution when dealing with motion of a particular level set of function wu.

The Perona-Malik function g : IRj — IR" is nonincreasing, g(0) = 1, admitting
g(s) = 0 for s — oo [36]. Usually we use the function g(s) = 1/(1 + Ks?), K > 0.
G, € C®(IR?) is a smoothing kernel, e.g. the Gauss function

1 _I1zl2/40
(5) G, (z) = We z|*/4

which is used in pre-smoothing of image gradients by the convolution

©) VGo 1" = [ VG, (a- P (),
Re

with I° the extension of I° to IR? given by periodic reflection through the boundary of
image domain. The computational domain Q C IR? is usually a subdomain of the image
domain, it should include the segmented object. In fact, in most situations {2 corresponds
to image domain itself. We assume that initial state of the segmentation function is
bounded, i.e. u’ € Lo (). In our approach, the segmentation is an evolutionary process
given by the solution of equation (1) and T represents a time when a segmentation result
is achieved. For shortening notations, we will use abbreviation

(7) 9° = g(IVG, = I°)).

Due to properties of function g and smoothing effect of the convolution we always have
1>6°>v,>016, 23]
The equation (1) is the e-regularization, in the sense of Evans and Spruck,

(8) |Vu| &~ |Vule = /€2 + |Vul?

of the segmentation equation suggested in [8, 9, 25]

C'U/
= |VulVv 0

In [17, 10], the existence of viscosity solution [12] of the curvature driven level set equa-
tion [34], i.e. equation (9) with ¢ = 1, was proven. Analysis of equation (9) and (1),
respectively, were done in [25, 9] and [39, 11]. In [17], the e-regularization (8) was used
as a tool to prove existence of a viscosity solution. Rescaling the motion of graph by
mean curvature by a factor %, and letting € — 0, gives the level set evolution. Using the
e-regularization in equation (9) leads to a mean curvature flow of graphs with respect to
a specific Riemann metric given by the image features, and, € is a modelling parameter -
it can help in completing of interrupted edges, e.g. in case of noisy images [39]. The idea
to use such Riemannian mean curvature flow of graphs to extract the so-called subjective
contours [24] and to segment images with interrupted edges originates in [38, 39, 40], see
also [16, 45]. It is called subjective surfaces method. In spite of other level set techniques
used for segmentation, subjective surfaces method does not move one particular (e.g. zero)
level set to boundary of segmented object, but it moves there all the level sets. The stan-
dard level set methods prevent discontinuity formations in level set function, e.g., by the



reinitialization of front. In spite of that, in the subjective surfaces method, discontinuities
are allowed and are the most important part of the solution. The forming discontinuity
(shock) in evolving graph of the solution is used to detect object boundaries. We will
discuss and illustrate the corresponding ideas in the next section.

In the computational method for solving (1) suggested in this paper we use an efficient,
unconditionally stable, semi-implicit time discretization, and a new 3D co-volume spatial
discretization suitable for image processing applications. Since the motion of graph given
by equation (1) is regularization converging with ¢ — 0 to the level set flow (9), our method
can also be used for efficient solution of equation (9) and for any other 3D curvature driven
level set application, too.

For time discretization of nonlinear diffusion equations there are basically three pos-
sibilities — implicit, semi-implicit or explicit schemes. For spatial discretization usu-
ally finite differences [41, 33], finite volumes [35, 18, 27, 30] or finite element methods
[5, 42, 13, 14, 15, 4, 23] are used. The co-volume technique (called also complementary
volume or finite volume-element method) is a combination of finite element and finite vol-
ume methods. The discrete equations are derived using the finite volume methodology, i.e.
integrating equation in the so-called control (complementary, finite) volume. Very often
the control volumes are constructed as elements of a dual (complementary) grid to a finite
element triangulation (tetrahedral grid in 3D case). Then nonlinear quantities, as diffu-
sion coefficients on faces of co-volumes and/or a capacity function inside every co-volume,
are evaluated using piecewise linear approximation of solution on triangulation employing
thus the methodology of the linear finite element method. Finite volume methodology
brings naturally discrete minimum-maximum principle. The piecewise linear representa-
tion (reconstruction) of segmentation function on the finite element grid yields a fast and
simple evaluation of nonlinearities usually depending on the absolute value of gradients.

Implicit, i.e. nonlinear time discretization and co-volume technique for solution of
the level set equations was first introduced in [43]. The implicit time stepping as in [43],
altough it is unconditionally stable, leads to solution of nonlinear systems in every discrete
time update. For the level-set-like problems there is no efficient nonlinear solver known so
far and simple fixed point like iterations are very slow [43]. The efficient 2D co-volume level
set method based on semi-implicit, i.e. linear, time discretization was given and studied
in [22]. In [22], the method was applied to 2D image smoothing nonlinear diffusion level
set equation [2].

The equation (9) can be rewritten into the advection-diffusion form

Vu

1 =g :
(10 w =" [VulV. (-

) +Vg'.Vau.

Various finite difference schemes [8, 9, 25, 38, 39, 40] are usually based on this form using
up-winding in advection term and explicit time stepping. In spite of that, our co-volume
technique relies on discretization of the basic form (9), or more precisely on its regular-
ization (1), and we use its integral formulation. In such way, the discretization scheme
naturally respects variational structure of the problem and it gives clear and simple deriva-
tion of difference equations. Our semi-implicit discretization in time fulfills unconditionally
discrete minimum-maximum principle (Lq-stability), i.e., no spurious oscillations appear
for any length of discrete time step. This is a main advantage in comparison with explicit
time stepping, where the stability is often achieved only under severe time step restriction.
Since in nonlinear diffusion problems (like the level set equation) the coefficients depend
on the solution itself and thus they must be recomputed in every discrete time update, an



overall computational time for explicit scheme can be tremendous. The explicit scheme
combined with finite differences in space is usually based on formulations like (10) where
moreover all derivatives are expanded to get curvature and advection terms. Then, e.g.
in 2D, equation (1) for £ = 1 is written in the form

0 (1 + u§2)uw1w1 — 2Ug Uy Ugy 3y + (1 + ugzcl)um;m
1 +u2, +u,

w=g + g9, tzy + Go, Us
where us means partial derivative of a function u with respect to a variable s. In this
form, it is not clear (reader may try) which term to take from previous and which one
on the current time level, having in mind the unconditional stability of the method. In
spite of that, the basic formulation (1) leads naturally to convenient semi-implicit time
discretization. Since the implicit time stepping as in [43] is very slow due to necessity to
solve nonlinear systems, the semi-implicit method seems to be optimal regarding stability
and computational efficiency. Let us also recall the usual criterion on numerical schemes
for solving partial differential equations: numerical domain of dependence should contain
physical domain of dependence. In diffusion processes, in spite of advection, a value of
solution at any point is influenced by any other value of solution in a computational
domain. This is naturally fulfilled by the semi-implicit scheme. We solve linear system of
equations at every time step which, at every discrete point, takes into account contribution
of all other discrete values.

In the next section we discuss some related models leading to equation (1). In section
3 we introduce in details our 3D semi-implicit co-volume method. In section 4 we study
its experimental orders of convergence and discuss segmentation experiments. The paper
is finished by conclusions.

2 Related models

The aim of segmentation is to find boundaries of a distinguished object of an image. In
generic situation these boundaries correspond to edges. However, in the presence of noise,
which is intrinsically linked to modern non-invasive acquisition techniques (as ultrasound),
or in images with occlusions or subjective contours (in some psychologically motivated
examples), these edges can be very irregular or even interrupted. Then the image analysis
and segmentation of objects become a difficult task.

In the so-called active contour models [26] an evolving family of curves converging
to edges is constructed. A simple approach (similar to various discrete region growing
algorithms) is to put a small seed, e.g. a small circle in 2D case, or a small ball in 3D
case, inside the object and then evolve this, let us call it segmentation curve or surface, to
find automatically the object boundary. For such moving curves and surfaces, the level set
models have been introduced in the last years. A basic idea in the level set methods [34] is
that the moving curve or surface corresponds to the evolution of a particular level-line or
level-surface of the so called level-set function uw which solves some form of the following
general level set equation u; = F|Vu| in which F represents the normal component of the
velocity of this motion. The level set approach to moving curves or surfaces is robust in
the sense that it can handle changes of topology and track various singularities like corners
etc. On the other hand it is computationally more expensive, because it adds one more
dimension to the original problem.

The first, simple, level set model with the speed of segmentation curve modulated
by g(|VI’(x)|) (or more precisely by g(|VG, * I°|)), where g is a smooth edge detector

4



Figure 1: Left: A graph of the image intensity function I°(z); Middle: Image given by the
intensity I°(z) plotted together with arrows representing the vector field —Vg(|VI°(z)|);
Right: An initial ellipse driven by the vector field —Vg(|VI°(z)|) down to the valley in
the graph g(|VI°(z)|) to find the edge in the image.

Figure 2: The situation is more complicated in case of a "noisy” image (middle); we plot
also a graph of its intensity I°(z) (left) and corresponding surface g(|VI°(z)|) (right).

function, e.g. g(s) = 1/(1+ Ks?), has been given in [7] and [28]. In such model, a ”steady
state” of the segmentation curve corresponds to boundary of segmented object. Due to
the shape of the Perona-Malik function g, the moving curve is strongly slowed down in a
neighbourhood of an edge leading to a segmentation result. However, if an edge is crossed
during evolution (which is not a rare event in noisy images) there is no mechanism to
go back. Moreover, if there is a missing part of the object boundary, the algorithm is
completely unuseful (as any other simple region growing method).

Later on, the curve evolution and the level set models for segmentation have been
significantly improved by introducing a driving force in the form —Vg(|VI°(z)|) [8, 9, 25].
The vector field —Vg(|VI%(z)|) has the important geometric property: it points towards
regions where the norm of the gradient VI° is large (see Figure 1, illustrating 2D situation).
Thus if an initial curve belongs to a neighborhood of an edge, then it is driven towards
this edge by this proper velocity field.

However, as one can see from Figures 2 and 3, the situation is much more complicated in
the case of noisy images. The advection alone is not sufficient. In a noisy environment, the
evolving level set can behave very irregularly, it can be attracted to spurious edges and no
reasonably convergent process can be observed. This phenomenon is documented in the left



Figure 3: The evolution only by advection leads to attracting a curve (initial ellipse) to
spurios edges, the evolution must be stopped without any reasonable segmentation result
(left); by adding regularization term related to curvature of evolving curve the edge is
found smoothly (right).

part of Figure 3. To prevent such situations, one has to regularize the evolution. A helpful
regularization is to add a curvature dependence to the level set flow. If normal velocity of
evolution depends on curvature k, then the sharp curve irregularities are smoothed. Such
motion represents the so-called intrinsic diffusion of the curve [20, 21]. An appropriate
regularization term is given by ¢k, where the amount of curve intrinsic diffusion is small
in the vicinity of an un-spurious edge. In the right part of Figure 3, we present initial
ellipse evolution to successfull segmentation result using such combined advection-intrinsic-
diffusion model computed by the Lagrangean method from [31]. The level set formulation
of such curve evolution is given by the equation (10) which is of course only another form
of equation (9). The same considerations as above, described for curves, hold also for
evolving surfaces in 3D, with the only difference that regularization depends on the mean
curvature of surface.

However, there is still a practical problem with the previous approach. It behaves very
well, if the initial segmentation curve is in a vicinity of the edge. But, if it is not a case,
in general, it is difficult to drive an arbitrary initial segmentation curve there. E.g., if we
start with a small circular seed, it has large curvature and diffusion dominates advection
so the seed disappear (curve shrinks to a point [20, 21]). Then some constant speed must
be added to dominate diffusion at the beginning of the process. But it is not clear at all
when to switch off this driving force to have just the mechanism of the model (9).

An important observation now is, that equation (9) moves not only one particular
level set (segmentation curve or surface) but all the level sets by the above mentioned
advection-intrinsic-diffusion mechanism. So, in spite of the previously mentioned segmen-
tation approaches, one may begin to think not about the evolution of one particular level
set but on evolution of the whole surface composed by those level sets. The idea to look
on the graph evolution is a basis of the subjective surfaces method. Initially, a ”point-of-
view” surface, given by the user chosen fixation point inside the image, is taken as u (see
Figure 4 top right for illustration in 2D situation). Then this initial state of the segmen-
tation function is evolved by equation (1), until the so-called subjective surface arises (see
e.g. Figure 4 bottom right). During the evolution, first, the isolines which are close to the
edge, where the advection term dominates, are attracted from both sides to this edge. A
shock (steep gradient) is formed due to accumulation of these level sets. In the regions



outside edges the advection term is vanishing and ¢° = 1, so only intrinsic diffusion (if we
think about € close to zero) of level sets plays a role. It means that all inside level sets
are shrinking and finally they disappear. Such process is nothing else than a decreasing of
the maximum of the segmentation function until the upper level of the shock is achieved
and in such way the flat region in the profile of segmentation function inside the object is
formed. Outside of the object, the level sets are also shrinking, until they are attracted by
nonzero velocity field and then they contribute to the shock. In the bottom right of Figure
4 we see the shape of segmentation function u after such evolution, and it is very easy to
use one of the level lines, e.g. (max(u) + min(u))/2, to get the boundary of segmented
object. Increasing the value of € can even speed-up diffusion and flattening of this profile
inside and outside the edges. In case of objects with edge interruptions, however, we need
small € to stretch the Riemannian metric and to close the interrupted shocks in the graph
of segmentation function by minimal surfaces.

3 Computational method

We present our method formally in discretization of equation (9), although we always use
its e-regularization (1) with a specific € > 0. The notation is simpler in case of (9) and it
will be clear where regularization appears in the numerical scheme.

3.1 Semi-implicit time discretization

First we choose a uniform discrete time step 7 and a variance o of the smoothing kernel
G,. Then we replace time derivative in (9) by backward difference. The nonlinear terms of
the equation are treated from the previous time step while the linear ones are considered
on the current time level, this means semi-implicitness of the time discretization. By such
approach we get our semi-discrete in time scheme:

Let 7 and o be fized numbers, I be a given image and u® be a given initial segmentation
function. Then, for every discrete time moment t, = n7, n = 1,... N, we look for a
Sfunction u™, solution of the equation

1 u — "t Vau™
11 =V.(¢® —— ).
() Vo] r Y (s \Wn—l\)

3.2 Co-volume spatial discretization in 3D

A 3D digital image is given on a structure of voxels with cubic shape, in general. Since
discrete values of image intensity I° are given in voxels and they influence the model, we
will relate spatially discrete approximations of the segmentation function w also to the
voxel structure, more precisely, to voxel centers. In every discrete time step ¢, of the
method (11) we have to evaluate gradient of the segmentation function at the previous
step |[Vu™!|. To that goal we put 3D tetrahedral grid into the voxel structure and
take a piecewise linear approximation of the segmentation function on such a grid. Such
approach will give a constant value of gradient in tetrahedras (which is the main feature
of the co-volume [43, 22] and linear finite element [13, 14, 15] methods in solving mean
curvature flow in the level set formulation) allowing simple, clear and fast construction of
fully-discrete system of equations.



Figure 4: Subjective surface based segmentation of a "batman” image. In the left column
we plot the black and white image to be segmented together with isolines of the segmen-
tation function. In the right column there is a shape of the segmentation function. The
rows correspond to time steps 0,1 and 10 which gives the final result.



Figure 5: Neighbouring pyramids which are joined together (left); joining these pyramids
and then splitting into four parts give tetrahedron of our 3D grid (middle); intersection of
the tetrahedron with the bottom face of voxel-co-volume (right).

The formal construction of our co-volumes will be given in the next paragraph and
we will see that the co-volume mesh corresponds back to the image voxel structure, what
is reasonable in image processing applications. On the other hand, the construction of
co-volume mesh has to use 3D tetrahedral finite element grid to which it is complemen-
tary. This will be possible using following approach. First, every cubic voxel is splitted
into 6 pyramids with vertex given by the voxel center and base surfaces given by the
voxel boundary faces. The neighbouring pyramids of neighbouring voxels are joined to-
gether to form octahedron which is then splitted into 4 tetrahedras using diagonals of the
voxel boundary face - see Figure 5. In such way we get our 3D tetrahedral grid. Two
nodes of every tetrahedron correspond to centers of neighbouring voxels, and further two
nodes correspond to voxel boundary vertices; every tetrahedron intersects common face of
neighbouring voxels. Let us note that due to our image processing application in mind, we
restrict all further considerations only to this type of grids. In our method, only the centers
of voxels will represent degree of freedom nodes (DF nodes), i.e. solving the equation at
a new time step we update the segmentation function only in these DF nodes. Additional
nodes of tetrahedras will not represent degrees of freedom, we will call them non-degree
of freedom nodes (NDF nodes), and they will be used in piecewise linear representation of
segmentation function. Let a function u be given by discrete values in the voxel centers,
i.e. in DF nodes. Then in NDF nodes we take the average value of the neighbouring DF
nodal values. By such defined values in NDF nodes a piecewise linear approximation wuy
of u on the tetrahedral grid is built.

For the tetrahedral grid 7, given by the previous construction, we construct a co-
volume (dual) mesh. We modify the approach given in [43, 22] in such a way that our
co-volume mesh will consist of cells p associated only with DF nodes p of 7Ty, let say
p=1,..., M. Since there will be one-to-one correspondence between co-volumes and DF
nodes, without any confusion, we use the same notation for them. For each DF node p of 73,
let C, denote the set of all DF nodes g connected to the node p by an edge. This edge will
be denoted by o, and its length by hj,,. Then every co-volume p is bounded by the planes
epq that bisect and are perpendicular to the edges 0,4, 9 € Cp. By this construction, if ey,



intersects oy in its center, the co-volume mesh corresponds exactly to the voxel structure
of the image inside the computational domain {2 where the segmentation is provided. Then
the co-volume boundary faces do cross in NDF nodes. So we can also say that NDF nodes
corresponds to zero-measure co-volumes and thus they do not add additional equations
to discrete model (cf. (13)), they do not represent degrees of freedom in the co-volume
method. We denote by &y, the set of tetrahedras having 0,4 as an edge. In our situation
(see Figure 5) every &, cosists of 4 tetrahedras. For each T' € &y let c be the area of
the portion of e,, that is in T, i.e., cgq = m(epq N T), where m is measure in IR, Let
N, be the set of all tetrahedras that have DF node p as a vertex. Let u; be a piecewise
linear function on 7,. We will denote a constant value of |Vuy| on T € Ty, by |Vur| and
define regularized gradients by

(12) |VUT|E = \/82 + |V’U,T|2.

We will use notation u, = up(xp) where z, is the coordinate of DF node p of 7j,.

With these notations, we are ready to derive co-volume spatial discretization. As it
is usual in finite volume methods [27, 18, 35], we integrate (11) over every co-volume
p,i=1,...,M. We get

1 u® —u ! Vu™
13 dz = / v. ( 0 )d
1) I A
For the right hand side of (13) using divergence theorem we get
0 ou™
O (P T Y = [ o
/ ( [Vun| op [Vun—1] v
0 ou™
= 2 / o s
4€Cy epq |V'U/ | ov

So we have an integral formulation of (11)

TL

1 u — !
14 =
( ) ‘/p|vun—1‘ T dr = Z/ |Vun 1| 8Vd

qEC, * éra

0
¢ [Vur=T]| 61/ ~ds
on the right hand side and ”capacity function” IV#I_\ in the left hand side (see e.g.

expressing a ”local mass balance” in the scheme. Now the exact ”fluxes” f

[27]) will be approximated numerically using piecewise linear reconstruction of 4"~! on
trangulation 7. If we denote g% approximation of ¢° on a tetrahedron T' € 7Ty, then for
the approximation of the right hand side of (14) we get

0 n n
g U, — U
(15) Z CZQ v ;llwfl ! p’
TEEpq |Vuy |

qe Cp hpq

and the left hand side of (14) is approximated by

n n—1

(16) Mym(p) 22

T
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where m(p) is measure in IR? of co-volume p and M), is an approximation of the capacity
function inside the finite volume p. For that goal we use either the averaging of the
gradients proposed by Walkington [43], i.e.

1 - m(T Np) -1
17 M,= ———, |Vu} = ———|Vu |,
( ) p |V’U/g71| | P | TEZ'MP m(p) | T |
or (T ) .
m(l Np
18 M, =
(%) g Tg/;/p m(p) |Vup |

which is close to finite element approximation with the mass lumping. Then the regular-
ization of both approximations of the capacity function is given either by

1
19 ME=——
(19) P Vup .
or by

TN 1
(20) M=y m(T Np)

TEN, m(p) ‘Vu?:l le

and if we define coefficients (where the e-regularization is taken into account)

(21) Bt = Mimip)
1 gO
-1 _ T T
(22) apg = h Z Cpq V]
P4 Ty, Ur e

we get from (15)-(16) our

Fully-discrete semi-implicit co-volume scheme: Let ug, p=1,...,M be given dis-
crete initial values of the segmentation function. Then, for n = 1,...,N we look for
up,p =1,..., M, satisfying

(23) bg_l up, +7 Z aI",q_l(uZ —uy) = bg_l u;‘_l.

qeCp
Theorem. There exists unique solution (ul,...,u7,;) of the scheme (23) for any T > 0,
e > 0 and for every n = 1,...,N. The system matriz is symmetric and diagonally

dominant M-matriz. For any T > 0, € > 0 the following Lo stability estimate holds

" <max u), 1<n<N.

(24) min ©) < min u? o ax.

< max u
p P p P = p

Proof. The system (23) can be rewritten into the form

q€Cy geCyp

(25) (b;“ DY ) wy =T Y apg Uy = by

Applying Dirichlet boundary conditions, it gives the system of linear equations with a
matrix, off diagonal elements of which are symmetric and negative. Diagonal elements are
positive and dominate the sum of absolute values of the nondiagonal elements in every
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Figure 6: By dashed lines we plot the "left oriented” triangulation (left), "right oriented”
triangulation (right) and ”symmetric” triangulation corresponding to our method in 2D.
We plot also the image pixels (blue solid lines) corresponding to co-volume mesh, and DF
nodes (blue round points) corresponding to centers of pixels.

row. Thus, the matrix of the system is symmetric and diagonally dominant M-matrix
which imply that it always has unique solution. The M-matrix property gives us the
minimum-maximum principle, which can be seen by the following simple trick. We may
temporary rewrite (23) into the equivalent form

T -1 _ ,n—1
(26 w3 ) =

P qeCy
and let max(u?,...,u},) be achieved in the node p. Then the whole second term on the left
hand side is nonnegative and thus max(u?,...,ul;) = ul <u ! < max(uf . ul ).

In the same way we can prove the relation for minimum and together we have

|
In
E

(27) min ug in ug < max ug < max ugfl, 1<n<N
D p p p

which by recursion imply the desired stability estimate (24).

The evaluation of g% included in coefficients (22) can be done in several ways. First,
we may replace the convolution by the weighted average to get I0 := G, * I° (see e.g. [30])
and then relate discrete values of 12 to voxel centers. Then, as above, we may construct
its piecewise linear representation on grid and get constant value of g% = g(|VI?|) on
every tetrahedron T € T,. Another possibility is to solve numerically linear heat equation
for time ¢ corresponding to variance ¢ with initial datum given by I° (see e.g. [4]) by
the same method as above. The convolution represents a preliminary smoothing of the
data. It is also a theoretical tool to have bounded gradients and thus a strictly positive
weighting coefficient g°. In practice, the evaluation of gradients on fixed discrete grid (e.g.
described above) gives always bounded values. So, working on fixed grid, one can also
avoid the convolution, especially if preliminary denoising is not needed or not desirable.
Then it is possible to work directly with gradients of piecewise linear representation of I°
in evaluation of g:Or.
Remark on corresponding discretization in 2D. Previously studied co-volume al-
gorithms [43, 22| for the level-set-like problems have used either ”left oriented” or ”right
oriented” triangulations and no NDF nodes (see Figure 6). But, then the level set curve
or surface evolution is influenced by the grid effect. Of course this effect is satisfactory
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weakened by refining the grid (e.g. in interface motion computations, cf. [22]). In image
processing we work with fixed given pixel/voxel structure, and we do not refine this struc-
ture, so we want to remove this "non-symmetry” of the method. This can be done by
averaging of two, ”left” and ”right” solutions, or implicitly by taking the combination of
triangulations as plotted in the middle part of Figure 6. Our 3D tetrahedral and co-volume
grid constructions transfer such ”symetry” of the method into 3D case. In this sense we
improve co-volume techniques used for the level set computations.

Usage of such "symmetric” triangulation can be accompanied also by the linear finite
element method of Deckelnick and Dziuk [14, 15], considering also NDF nodes as degrees
of freedom. But this would increase the number of unknowns by factor 2, which can be
critical in case of image processing applications, usually with huge number of pixels/voxels
given. Moreover, NDF nodes are not included in the given image intensity information.

Without any construction of 3D tetrahedral grid, we could also use a tri-linear repre-
sentation of the segmentation function on finite elements corresponding to image voxels
and build tensor-product finite element method. But then we would face a problem of
non-constant gradients in evaluation of nonlinearities. The same problem would arise
considering co-volume method given by mesh corresponding to voxels and by tri-linear
representation of the segmentation function on the cubic grid formed by centers of voxels.
Again, such technique would require the evaluation and integration of absolute value of
gradient of bi-linear functions on the voxel faces. From the above points of view, our
method gives the smallest possible number of unknowns and the most simple (piecewise
constant) nonlinear coefficients evaluation. In this paper we concentrate mainly on algo-
rithmic and computational aspects of the method. The experiments in the next section
show the experimental orders of convergence for the method on nontrivial examples of the
level set evolution and thus its reliability in simulations. A full theoretical convergence
analysis is not a simple task, and it is out of scope of this paper; however, it is a subject
of our current research.

Scheme in the finite difference notation. The co-volume scheme introduced in this
paper is designed for the specific mesh given by the cubic voxel structure of 3D image.
For simplicity of implementation and for reader convenience we will write the co-volume
scheme (23) in a ”finite-difference notation”. As it is usual for 3D rectangular grids, we
associate co-volume p and its center (DF node) with a triple (4, 4, k), 7 representing index
in x-direction, j in y-direction and k in z-direction. If 2 is a rectangular subdomain of the
image domain where ni, no, n3 are numbers of voxels of €2 in x,y,z-directions and if we
consider Dirichlet boundary conditions then ¢ =1,...,my, j=1,...,mo, k =1,...,m3,
m1 <nip—2, my <ng—2, mg <ng—2and M =m; my mz. The unknown value ug can
then be denoted by uj’; ,. For every co-volume p, the set C; = {w,e,s,n,b,t} consisting
of 6 neighbours, west Ui—1,5,k> east Ui4-1,5,k> south Ug,5—1,k» north Uj, 541,k bottom Usj,j,k—15
top u; jk+1, and the set NV, consists of 24 tetrahedras.

In every discrete time step n = 1,..., N and for every 4, j, kK we compute absolute value
of gradient |Vu%71| on these 24 tetrahedras. We denote by ij,k,l =1,...,4,z € Cp the
square of the gradient on tetrahedras crossing the west, east, south, north, bottom and
top co-volume faces. If we define (omitting upper index n — 1)

Sighk = (Uigk + Uim1gk + Uij—1k + Uim1j-1k +

+ Ui k-1 F Ui k1 F Ui i1 k-1 F Uit j—1k—1)/8,
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the value at left-south-bottom NDF node of co-volume, then for the west face

2 2
wl _ (Wigk — i1k Sijk+1 — Sijk
2
(Um, kTt Uim1k — Sigk+1l — Si,j,k>
h
2
w,2 Uik — Ui,k uz 1,k + Sig Lkl = Sigkt1)”
1,5,k h
2
(S GALEHL T Sijktl — Uik — uz’—l,j,k)
h
2 2
GW,?’ Usg,k — Ui—1,j5,k uZ 1,5,k + Sij+1Lk+1 — Sij+1,k +
1,5,k h
2
(5 JHLk+1 F Sigrik = Uigk — Ui—l,j,k)
h
. 2 . . 2
w,4 Usg.k — Ui—1,5,k “Z Lik ) 4 Sij+1,k — Sijk +
ijok —n

(Ui,j,k + U156 —

2
Sij+1,k — Si,j,k>
h

and correspondingly for further co-volume faces.
In the same way, but only once, in the beginning of algorithm we compute values

GY Jzkl,l ..,4,z € C, , changing u by I? in the previous expressions. Then for every

1,7,k we construct (west, east, south, north, bottom and top) coefficients

4 o,w,l 4 o,e,l
1< 9(VGiik) 1< 9(yGy ',k)
Wi,jk = TZ E e i,k — T 2l

Sigk =TT D e, Mgk =T Y e
el €2+ Gy =Ry G’ch

LS WG s G

bijk = 2 Z b bijk =T3 i
=1 V +Gy) i,k V +G3 B9,k

and we use either (cf. (17))

,.p

1
Mijk = - >
e+ (5, 550
2€Cp =1

r (cf. (18))
1 4

M i = —
1,5,k 24 Zech lzzl /62 + Gz’]l’

to define diagonal coefficients

2
Cijjk = Wik + €ijk + Sijk + Nije + bijk + ik + mijkh”.
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If we define right hand sides at the nth discrete time step by

-1

.. — .. 2 n
Tigk = Mijkh™u; 5,

then for DF node corresponding to triple (4, j, k) we get equation

(28) Clﬂykul,],k wz,_],kuz—]_,],k; ez,‘],kuz_{_lu’k Sl,j,kuz’]—l,k

Mg kWi g1k — ik Wij—1 — bigjkUig k1 = Tijik-

Collecting these equations for all DF nodes and taking into account Dirichlet boundary
conditions we get the linear system to be solved.

Solution of the linear systems. We can solve the system (28) by any efficient pre-
conditioned linear iterative solver suitable for sparse, symmetric, diagonally dominant
M-matrices. If the spectral properties of the matrix are good (they are influenced by
a time step 7 and regularization parameter ¢), then a choice of a stationary iterative
method is probably an optimal approach (see e.g. [37]). E.g., if the so-called SOR (Suc-
cessive Over Relaxation) method is used, then our semi-implicit co-volume method can
be implemented in tens of lines. At the nth discrete time step we start the iterations by

. n(0) n—1 - . . . .
setting u, ;= U, 1, 1 = 1,...,m1, g = 1,...,m9, k=1,...,m3. Then in every iteration
I=1,...and foreveryi=1,...,m1,j=1,...,mq, k =1,...,mg the following two step
procedure is used:

_ n(l) n(l) n(l-1)
Y = (Wijkt; 7kt €ijklisijp T Sigktij_1x +

n(l—1) n(l—1) n(l—1)
Mg kWi 511k gk j k1 + tigkUi j k1 T Tigik)/Cijk

n() _

U; 5 w4 w(Y — un(-lfl)).

1,5,k 1,5,k
We define squared Lo-norm of residuum at current SOR iteration by
RO = 3" (cipuflh — wiguui ), = eqgrufiy o —
2,5,k
Si KU = T 1k Dig kU k1 = b kU k1 = i)
The iterative process is stopped if R < TOL R(©). The relaxation parameter w is chosen
by user to improve convergence rate of the method.

Of course, the number of iterations in SOR depends on the chosen precision TOL,
length of time step 7, and a value of the regularization parameter ¢ also plays a role. If one
wants to weaken these dependences, more sofisticated approaches can be recommended. A
fast solution of the large linear system (28) can be done by the preconditioned conjugate
gradient (PCG) method. Incomplete Cholesky factorization (ICF) is an effective tool to
construct efficient preconditioners for symmetric positive definite M-matrices. Satisfactory
results have been documented in [22] for solving level-set-like PDEs in 2D image processing
and curve evolution. A key issue in ICF is to choose a sparsity pattern S. The first ICF,
proposed by Meijerink and van der Vorst [29], kept the sparsity pattern of the original
matrix. Another popular ICF method is based on the drop tolerance approach, in which
nonzeros are included in the incomplete factor, when they are larger than some threshold
parameter. Therefore, the memory requirements are unpredictable. Many variants and
detailed descriptions of the algorithms can be found in Saad’s book [37] . In [22], we

15



ln | R | Error, e = h* | EOC || Error, e = h | EOC | Error, e = 107° [ EOC |

10 | 0.25 2.9208e-2 6.5190e-2 2.4936e-2

20 |0.125 9.5133e-3 2.40 || 2.0893e-2 1.64 | 5.2251e-3 2.25
40 | 0.0625 1.3106e-3 2.07 || 5.4823e-3 1.93 || 1.2939e-3 2.01
80 | 0.03125 3.2371e-4 2.01 1.3679e-3 2.00 || 3.2270e-4 2.00
160 | 0.015625 || 8.0548e-5 2.00 || 3.4086e-4 2.00 || 8.0485e-5 2.00

Table 1: Errors in Lo ((0,7), L2(S2))-norm, and EOC comparing numerical and exact
solution (29).

have implemented the idea of Lin and Moré, that allows memory saving. The incomplete
factor is calculated column by column. After a column is obtained, only the p largest
(in magnitude) elements are stored back to the factor. The same idea is applied here for
solving the system (28). Our experience is that, with the same TOL, the PCG and SOR
are similarly fast for time steps in a range h? — 10 x h?, while for a larger time steps the
PCQG is faster.

The so-called AOS schemes [44] are also often used in image processing applications.
They are semi-implicit, and a basic idea is to solve the system (28) not exactly, but
by splitting its solution into three substeps and then collecting the partial results in an
additive way. The structure of our scheme allows to use also the AOS approach, but, in
order not to deal with a splitting error, we do not apply it in this paper.

4 Discussion On Numerical Results

In this section we study experimental order of convergence of the method in case of mean
curvature driven level set flow (i.e. for equation (1) with ¢ = 1 and ¢ — 0), and then we
present some 3D segmentation examples. The comparison with nontrivial exact solutions
show the second order accuracy for smooth (or mildly singular) solutions and the first order
accuracy for highly singular solutions (i.e. when gradient is vanishing on a large subset of a
domain and discontinuity set of the gradient field is nontrivial). It means that the method
is accurate in computing interface motions, and it is reliable also for computing evolutions
including flat regions as arising in subjective surfaces based segmentation method.

4.1 Experimental order of convergence

In the first example we test the method using the exact solution [32]

(29) u(z,y,z,t) = (2 + > + 22 — 1) /4 + ¢

of the level set equation

(30) up = [Vl V(L)
RN

and we consider Dirichlet boundary conditions given by this exact solution.

This problem, and all further computed examples in this subsection, are solved in the
spatial domain = [-1.25,1.25]> and in the time interval 7 = 0.16. We have taken
subsequent grid refinement with M = n3 co-volumes (DF nodes), n = 10,20, 40, 80, 160.
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‘ n ‘ h H Error, £ = h? ‘ EOC H Error, ¢ = 1075 ‘

10 | 0.25 5.2252e-2 0.9114e-6
20 | 0.125 1.5088e-3 1.79 || 1.0309e-6
40 | 0.0625 4.0474e-3 1.89 || 1.0648e-6
80 | 0.03125 || 1.0118e-3 2.00 | 1.0473e-6

Table 2: Errors in Ly ((0,7), Ly(2))-norm, and EOC comparing numerical and exact
solution (32).

So the grid size is h = 2.5/n. The time step 7 is chosen proportionally to h? what is
natural for testing the schemes for solving parabolic problems. For the convergence of the
iterative scheme we use TOL=107%, and we measure errors in L, ((0,T), L2(f2))-norm.

Let us assume that the error of the scheme in some norm is proportial to some power
of the grid size, i.e. Error(h) = Ch®, with a constant C. Then halving the grid size we
have Error(h/2) = C(h/2)® from where we can simply extract

(31) a = logy(Error(h)/Error(h/2)).

The « is called the ezperimental order of convergence (EOC) and it can be determined by
comparing numerical solutions and exact solution on subsequently refined grids.

In Table 4.1 we report errors in Lo, ((0,7), L2(€2))-norm for refined grids and for several
choices of €. In all cases we observe a = 2, the coupling € ~ h? seems optimal (see also
other examples), but as one can see, choosing ¢ even smaller can get even smaller errors
on coarse grids.

Next interesting example comes from [15] and is given by (see Figure 7)

(32) u(z,y,2,t) = z4+0.5, £ < -0.5
— 0, —05<z<0.5
= z—05, x>0.5

The level sets of u are planes, with zero mean curvature, so the solution remains unaltered
by the flow. There is also a large part of the solution where gradient is vanishing, however
the set of discontinuity in gradient is relatively simple (two planes) regarding to a possible
orientation of our grid (we can make it parallel). Mathematically, it is a trivial example,
but it is a good test for a numerical scheme. One can observe (see Table 4.1) that the
error of the scheme in this example is proportional just to regularization parameter €, and
thus it can be made as small as desirable. This is a simple consequence of the consistency
of our scheme in the sense, that it gives exact solution for any linear initial function and
for any choice of regularization parameter €, any grid size h and any size of time step 7.
Such property can be checked by inspection of the scheme (23). For the linear function,
the gradients in all tetrahedras are the same, so we get the system with the same structure
as given by the backward Euler scheme for solving linear diffusion equation with constant
coefficients, and such scheme does not alter a steady state.

In the next example we compare our numerical solution with the highly singular solu-
tion given by
(33) u(z,y, z,t) = min((z? + y% + 22 — 1)/4 + t,0).
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Figure 7: Exact solution (32) remaining unchanged under mean curvature flow (plot at
z=0).

‘ n ‘ h H Error, € = h? ‘ EOC H
10 | 0.25 6.9571e-2
20 | 0.125 4.2686e-2 0.70
40 | 0.0625 2.2049e-2 0.95
80 | 0.03125 1.1030e-2 0.99
160 | 0.015625 || 5.5544e-3 0.99

Table 3: Errors in Ly ((0,7), Ly(2))-norm, and EOC comparing numerical and exact
solution (33).

The initial function and numerical result at 7' = 0.16 are plotted in Figure 8. We see only
slight smoothing in numerical solution along singularity, numerical solution converges to
viscosity solution with a = 1.

In the last example we test experimental order of convergence comparing the numerical
and exact evolution of one particular level set. Namely, we use the exact solution given
by shrinking sphere with exact radius r(t) = /r(0) — 4¢, starting with r(0) = 1. Our
initial level set function is a 3D cone (signed distance function) having zero value on the
unit sphere. We consider zero Neumann boundary conditions, so we do not know the
exact solution for evolution of the whole level set function. At every time step we evaluate
Ly(S?)-norm of error, where S? is the unit sphere, comparing the exact shrinking sphere
and the numerical zero level set and then we take Lo ((0,T), L2(S?))-norm for the overall
error in time interval 7" = 0.16. Figure 9 represents the initial sphere and the numerical
zero level set at T' = 0.16. Table 4.1 documents the higher order rate of convergence,
where again the coupling € = h? is used. Similarly to the first example, different couplings
or choice of a fixed small ¢ give the similar errors and convergence rates.

4.2 Segmentation examples

Here we present two 3D segmentation examples. The first one is simple, in the image
with resolution 40 voxels is an object - cube with two holes (see Figure 10 left), the holes
are in front and back faces. Figure 10 gives reconstructed surface with the hole filling.
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Figure 8: Numerical solution corresponding to exact solution (33) plotted at times ¢ = 0
(left) and ¢ = 0.16 and for z = 0.
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Figure 9: Numerical solution corresponding to exact shrinking sphere with radius r(t) =
r(0) — 4t, r(0) = 1, plotted at times ¢t = 0 (left) and ¢ = 0.16.

in |h | Error, e = h* | EOC |
10 | 0.25 7.7228e-2
20 0.125 2.8732e-2 1.42
40 | 0.0625 7.8269e-3 1.87
80 | 0.03125 4.7901e-4 4.03
160 | 0.015625 || 9.9568e-5 2.26

Table 4: Errors in Lo ((0,T), L2(S?))-norm, and EOC comparing numerical zero level sets
and the exact shrinking sphere.
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Figure 10: Segmentation (right) of a 3D cube with two holes (left).

Segmentation of the object of this size takes few seconds (on 2.4GHz PC). Usually we take
K=1,TOL=0.01 and h = n% Then the optimal time step for semi-implicit scheme is
around 10 x h?, and one needs few tens of time steps to find the result (one step is about
0.15 sec). In this example the maximum of the initial segmentation function, cf. setion 2,
is taken in the image center.

The second example is given by 3D echocardiography of the size 81 x 87 x 166. As one
can see from volume rendering visualization (Figure 11 left), the 3D image is very noisy,
however the surface of the ventricle is observable. How noisy is the image intensity, can
be seen also from Figure 12 where we plot intensity and its graph in one 2D slice. Now we
start the segmentation process with few ”points of view” inside the object of interest, i.e.
the initial segmentation function has several maxima, and let it evolve until the difference
in Ly-norm of two subsequent time steps is less than prescribed threshold. Then we look
to a 2D slice with relatively good boundary edges (Figure 13), where we see accumulation
of level sets along the inner boundary of the ventricle (Figure 13 left). The largest gap
in the histogram (Figure 13 middle) indicates the shock in the segmentation function, so
we choose one level inside the gap, and plot it inside the slice (Figure 13 right). We can
check how this level set looks like in other noisy slices (Figure 14), and then make a 3D
isosurface visualization (Figure 11 right) which gives realistic representation of the left
ventricle.

The computation of one time step takes 3 seconds on 2.4GHz one processor PC and
it takes 200 steps to finish segmentation, so the overal computing time for this size of
images is in a range of few minutes. The MPI parallel implementation [3] of our 3D
segmentation scheme has been built under the support of the Project HPC-EUROPA at
CINECA SuperComputing Center, Bologna, so the segmentation time is even speeding
up in dependence on the number of available processors (e.g. in Linux cluster). The MPI
parallelization of our algorithm is straightforward, because it uses classical structures
of scientific computing methodology for solving partial differential equations and linear
algebra problems (see e.g. [3]).

Acknowledgement. This work was supported by NATO Collaborative Linkage
Grant No. PST.CLG.979123, by grants VEGA 1/0313/03 and APVT-20-040902. We
thank to Roberto Gori from CINECA for help with 3D visualizations.
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Figure 11: Volume rendering of original 3D data set (left) and segmentation of the ventricle
(right).

Figure 12: Plot of image intensity in the slice & = 130 (left), and its 3D graphical view
(right).

Figure 13: Plot of accumulated level sets in the slice & = 130 (left); the histogram of
the segmentation function in this slice (middle); image intensity with level set u = 0.052
(right). Visualization of 3D surface in Figure 11 is done with the same level set.
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Figure 14: Plot of image intensity together with level line 0.052 in two other slices k£ = 100
(left), and j = 40 (right).
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