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A b s t r a c t : The Neumann geodetic boundary value problem (NGBVP) represents an

exterior oblique derivative problem for the Laplace equation. The Neumann boundary

conditions in the form of surface gravity disturbances correspond to derivatives of the

unknown disturbing potential. The boundary element method (BEM) as a numerical

method based on the variational formulation of the Laplace equation is applied to NGBVP.

This approach gives a variational (approximate) solution directly on the Earth’s surface,

where the classical solution could be hardly found.

This paper discusses the 3D BEM application to NGBVP. It represents a new approach

to the global quasigeoid modelling. The collocation technique with linear basis functions

is applied for deriving the linear system from the boundary integral equations. With

respect to a giant size of the Earth and in order to get accuracy as high as possible,

computing on high-speed parallel computers is necessary. The Global Quasigeoid Models

as the numerical results for two input data sets are compared with the geopotential model

EGM-96.
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1. Introduction

A determination of the external gravity field is usually formulated in
terms of the geodetic boundary value problem for the Laplace equation.
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The present concepts use the fundamental gravimetric equation with in-
put gravity anomalies as a boundary condition (BC), i.e. the Newton BC.
A combination of gravimetric and satellite measurements allows to define
the Neumann BC in the form of surface gravity disturbances that corre-
spond to derivatives of the unknown disturbing potential. A formulation of
the Neumann geodetic boundary value problem (NGBVP) is theoretically
known for a long time but its practical solution for the real Earth’s surface
is still an open problem.

The boundary element method (BEM) as a numerical method based
on the variational formulation of the partial differential equation (PDE)
is suitable for solving exterior boundary value problems. The advantage
of BEM arises from the fact that only the boundary of a solution domain
requires a subdivision to elements. Thus the dimension of the problem is
effectively reduced by one. The reformulation of PDE consists of surface
integral equations defined on the boundary. They are transformed to the
linear system of equations by an appropriate numerical technique, e.g. by
the collocation method. Thanks to its simplicity this method is very popular
in engineer applications. In great majority of applications constant basis
functions are used for approximating boundary functions on each panel of
the boundary surface.

The 3D BEM application to NGBVP gives a variational (approximate)
solution directly on the Earth’s surface, where the classical solution can be
hardly found. It represents a new approach to the solution of the geodetic
boundary value problem, i.e. to the global gravity field modelling. With
respect to a giant size of the Earth and in order to get accuracy as high as
possible, computing on high-speed parallel computers is necessary. In order
to reduce requirements for the memory storage the collocation method with
linear basis functions is applied in the presented numerical experiments.

2. The Neumann geodetic boundary value problem

The Earth as a spinning physical body generates the actual gravity po-
tential. The disturbing potential T is defined as the difference between the
actual gravity potential W and the normal gravity potential U in a point x

T (x) = W (x) − U(x), x ∈ R3. (1)
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The normal gravity potential is generated by a normal body. In order to
keep its average difference from the actual gravity potential as small as pos-
sible, the normal body is defined as the “massive” biaxial geocentric and
equipotential ellipsoid of revolution. This equipotential ellipsoid is com-
pletely determined by four parameters derived from the actual Earth; the
semi-major axis a, the geopotential coefficient J2,0, the geocentric gravita-
tional constant GM and the spin angular velocity ω (Geodetic Reference
System GRS-80 (Moritz, 1992)). Its minor axis coincides with the Earth’s
polar principal axis of inertia. As the spin angular velocity is the same
for the Earth and the normal body, their centrifugal components are equal.
Then the disturbing potential is a harmonic function outside the Earth
(neglecting the atmosphere) and it satisfies the Laplace equation (geodetic
boundary value problem).

A combination of gravimetric and satellite measurements allows to define
the Neumann boundary conditions in the form of surface gravity distur-
bances that correspond to derivatives of the unknown disturbing potential.
The surface gravity disturbance δg compares the actual gravity g and the
normal gravity γ in the same point x

δg(x) = g(x) − γ(x), x ∈ R3. (2)

Let us apply the operator gradient to the definition of disturbing potential
(1)

∇T (x) = ∇W (x) −∇U(x) = g(x) − γ(x), x ∈ R3. (3)

Gradients of the actual and normal gravity potential have different direc-
tions. The spatial angle between them is negligibly small. In addition,
directions of both vectors are very close to the opposite direction of the
outer normal ne to the geocentric equipotential ellipsoid. Neglecting these
small angles (less than minute) we project the actual and normal gravity
vectors to the normal ne

〈∇T (x),ne(x)〉 = 〈g(x),ne(x)〉 − 〈γ(x),ne(x)〉 ≈

≈ −g(x) + γ(x) = −δg(x), x ∈ R3. (4)

where 〈 , 〉 represents the scalar product of vectors.
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The equation (4) defines Neumann boundary conditions for the Laplace
equation. So we can formulate NGBVP

∆T (x) = 0, x ∈ R3 − Ω, (5a)

〈∇T (x),ne(x)〉 = −δg(x), x ∈ Γ, (5b)

T (x) → 0 for x → ∞. (5c)

The domain Ω represents the body of the Earth. The boundary surface Γ
is the Earth’s surface. Equations (5) represent the exterior oblique deriva-
tive boundary value problem for the Laplace equation with the Neumann
boundary conditions. The oblique derivative problem arises from the fact
that the normal to the Earth’s surface Γ doesn’t coincide with the normal
to ellipsoid ne.

The proposed NGBVP has an obvious advantage that input surface grav-
ity disturbances do not require sea level heights. Ellipsoidal (geodetic)
heights obtained from satellite observations are sufficient vertical informa-
tion. Levelling is not needed in this case.

3. BEM applied to the Laplace equation

In the direct BEM formulation a boundary integral equation is derived
from the weak (integral) formulation of the Laplace equation (5a) through
the application of Green’s second theorem (Brebbia et al., 1984). In 3D it
has the following form

4πT (x) +

∫

Γ

T (y)
∂G

∂nΓ

(x,y) dy =

∫

Γ

∂T

∂nΓ

(y)G(x,y) dy, x ∈ Γ. (6)

where nΓ is a normal to the boundary Γ. The kernel function G is known
as the Green’s function and it represents the fundamental solution of the
Laplace equation.

G(x,y) =
1

4π |x− y|
, x,y ∈ R3. (7)

Since the directions of ∇T (x) and ne(x) are almost identical (neglecting the
deflection of vertical), we can approximate the term 〈∇T (x), nΓ(x)〉 by a
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projection of input surface gravity disturbances δg(x) to the vector nΓ(x),
i.e. by δg(x) cosα(x), where α(x) is an angle 6 (nΓ(x),ne(x)). Thus we
can replace the term ∂T/∂nΓ in (6) by these corresponding quantities in
any point x ∈ Γ. In this way the oblique derivative BC (5b) is incorporated
into the BEM formulation (6).

The collocation method with linear basis functions (the C1 collocation) is
used for deriving the linear system of equations from the boundary integral
equation (6). The Earth’s surface as a boundary surface is approximated
by the triangulation of the topography – expressed as a set of panels ∆Γj.
Vertices xi, . . . , xN of triangles represent the nodes – collocation points. The
C1 collocation involves approximating the boundary functions by a linear
function on each triangular panel using linear basis functions (Brebbia et
al., 1984), i.e.,

T (x) ≈
3∑
k=1

Tkψk(x), x ∈ ∆Γj , (8a)

δg(x) ≈
3∑

k=1

δgkψk(x), x ∈ ∆Γj, (8b)

where Tk and δgk for k = 1, 2, 3 represent values of the boundary func-
tions at vertices of the triangular panel ∆Γj. The linear basis functions
{ψ1, ψ2, . . . , ψN} are given by

ψj(xi) = 1, xi = xj,

ψj(xi) = 0, xi 6= xj, i = 1, . . . , N ; j = 1, . . . , N, (9)

where N is the number of collocation points. These approximations allow
to reduce the boundary integral equation (6) to a discrete form for each
collocation point i

ciTiψi +
N∑
j=1

∫

supψj

∂Gij
∂nΓ

Tjψj dΓj =
N∑
j=1

∫

supψj

Gijδgjψj dΓj, i = 1, . . . , N, (10)

where supp ψj is the support of the j-th basis function. The function ci
represents “the spatial segment” bounded by panels joined in the node i. In
case of linear basis functions it can be evaluated by the expression (Balaš
et al., 1985)
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ci =
S∑
s=1

ϕis
4π

(1 − cosφis), (11)

where ϕis is the angle between two planes intersecting in ne(xi) and creating
two edges of the s-th triangle of the supp ψi and φis is the angle between
ne(xi) and the s-th triangle. S represents the number of triangles in the
supp ψi. Equations (6.6) represent the system of approximations that can
be rewritten in the matrix-vector form

M T = L δg (12)

where T = (T1, . . . , TN ) and δg = (δg1, . . . , δgN ). Coefficients of the ma-
trices M and L represent integrals that need to be computed using an
appropriate disctretization of the integral operators in (10).

The discretization of the integral operators is influenced by a singularity
of the kernel functions. The integrals with regular integrands, that repre-
sent non-diagonal coefficients, are approximated by the Gaussian quadrature
rules defined on a triangle (Laursen and Gellert, 1978). Their discrete form
is given by

Lij =
1

4π
Aj

K∑
k=1

wk
rik

i 6= j, (13a)

Mij =
1

4π
Ajkij

K∑
k=1

wk
r3ik

i 6= j, (13b)

where Aj – the area of the j-th planar triangular element,
kij – the perpendicular from the collocation point i to the j-th ele-

ment,
K – the number of points used for the Gaussian quadrature,
wk – corresponding weights,
rik – the distance from the i-th collocation point to the j-th quad-

rature point in the triangle Γj.

The non-regular integrals (singular elements) arise only for the diagonal
components of the linear system. They require special evaluation techniques
in order to handle the singularity of the kernel function. Thanks to the
diagonal component ci and the orthogonality of the normal to its triangle,
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the kernel function in integrals on the left hand side in (10) are regular
(Balaš et al., 1985). Then we obtain

Mii = ci. (14)

Diagonal coefficients Lii can be evaluated analytically using the software
Mathematica r© (Wolfram, 1996).

In case of the pure Neumann BC, the right hand side of the system (12)
can be replaced by a known vector. Solving this linear system of equations
we obtain values of the unknown disturbing potential in collocation points.
As the disturbing potential is known on the Earth’s surface and we have at
disposal only surface gravity data, it is more natural to use a strategy of
the Molodenskij concept (Molodenskij et al. 1962). Hence, the disturbing
potential is transformed to the height anomalies (quasigeoidal heights) using
the modified Bruns formula (Moritz, 1980). However, there is a problem of
unknown sea level heights. Thanks to a small value of the normal gravity
gradient we can overcome this problem in an iterative way symbolically
written by the expression

ζi+1 (B,L) =
T (B,L,H)

γ (B,H − ζi)
, (15)

where B,L,H – the ellipsoidal (geodetic) coordinates of the collocation
point,

ζi(B,L) – the height anomaly of the i-th iteration,
T (B,L,H) – the disturbing potential at the collocation point,
γ(B,H − ζi) – the normal gravity on the “iterative” telluroid.

Note: In order to obtain a convergence it is practically sufficient to use two
or three iterations. In the 0−th iteration the height anomalies equal to zero.
Then the “0−th iterative” telluroid is identical with the Earth surface.

4. Numerical experiments

The numerical experiments deal with the global quasigeoid modelling.
The Earth’s surface is approximated by an approximately homogenous tri-
angulation of the topography based on a subdivision of triangular faces of
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a “12-hedron”. Each triangle is subdivided into 4 congruent sub-triangles
by halving the sides until a required level (Fig.1). The vertices of trian-
gles represent the collocation points. The developed algorithm generates
their horizontal positions. Vertical components, i.e. ellipsoidal (geodetic)
heights, are obtained approximately by adding an appropriate terrain model
determined by sea level heights to the geopotential model EGM-96. Such
approach involves three approximations:

• The approximate expression that the sea level height plus the geoidal
height equals to the ellipsoidal (geodetic) height.

• Sea level heights are approximated by DTM.

• Geoidal heights are approximated by EGM-96, i.e. they provide only
long-wavelength part and not true geoidal heights.

Fig. 1. The triangulation of the topography.

Input surface gravity disturbances need to be generated from available re-
sources. We use two alternative data sets for preparing input data:

• Set A: Gravity disturbances generated from EGM-96

In the first alternative we use the available Fortran program f477b writ-
ten by prof. Rapp (Rapp, 1994). This program is able to evaluate gravity
disturbances at the collocation points inserting their ellipsoidal coordinates.
Program f477b is based on the strategy of geopotential models determined
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by spherical harmonics and geopotential coefficients. We use the geopo-
tential coefficients of EGM-96 (Lemoine et al., 1996), parameters of the
reference ellipsoid defined by GRS-80 (Moritz, 1992) and the Global Digi-
tal Elevation Model GTOPO-30 (EROS Data Centre).

The gravity disturbances generated by this alternative are dependent on
the geopotential coefficients of EGM-96. Therefore numerical results in this
case should converge to EGM-96. This fact will confirm a mathematical
reliability of the variational solution.

• Set B: Gravity disturbances generated from available gravity

anomaly data

In the second alternative we use available gravity anomaly data that were
used in the development of EGM-96 (Pavllis et al., 1996). This database
provides a regular grid of points (grid size: ∆B×∆L = 0.5◦×0.5◦) all over
the Earth’s surface (except 2.3% that is an uncovered area) containing the
Molodenskij free-air gravity anomalies defined on the Earth’s surface. The
sea level heights h used for the construction of this database were derived
from the JGP95E global topographic database.

The surface gravity disturbances δg are generated from the Molodenskij
free-air gravity anomalies ∆g using an appropriate transformation (Fig.2).
The ellipsoidal (geodetic) heights are obtained as a sum of the sea level
heights from the available database and the geopotential model EGM-96.

With respect to a giant size of the Earth and in order to get accuracy
as high as possible, computing on parallel computers is required. The fi-
nal large scale computations were accomplished on the high-speed parallel
computer TAJFUN: CRAY SV1-1/32 with 32 processors and 32 GB of the
internal (shared) memory at ICM Warsaw (Acknowledgement). We approx-
imated the Earth’s surface by 44 378 collocation points and 88 752 triangles
(latitude interval: ∆ B = 1.0227◦) using all 17 GB of the user disposable
limit. The large nonsymetric linear system of equations was solved by non-
stationary iterative method BiConjugate Gradient Stabilized (BiCGSTAB)
(Barrett et al., 1994). Only several iterations of Bi-CGSTAB were necessary
to keep an error lower than the prescribed tolerance ε in absolute residual
error, i.e. 16 iterations (Set A) and 17 iterations (Set B). There was no need
for preconditioning thanks to the properties of the matrix M, especially due

217
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Fig. 2. Surface gravity disturbances generated from the available gravity anomalies.

to the strict diagonal dominance. Iterations took only several minutes while
the matrices assembly several hours. Total CPU time took about 7 hours.

The Global Quasigeoid Models as the numerical results of the BEM ap-
plication to NGBVP for both input data sets represent the variational (ap-
proximate) solutions of the geodetic boundary value problem. Instead of
a complicated estimation of the theoretical accuracy for the achieved solu-
tions, we compare our numerical results with EGM-96, i.e. with the geopo-
tential model determined by a completely different mathematical approach
based on the strategy of spherical harmonics and the Legendre polynomials
(Rapp, 1994).

• Set A: Gravity disturbances generated from EGM-96

While the gravity disturbances generated by this alternative depend on
the geopotential coefficients of EGM-96, the numerical solution should agree

218



Contributions to Geophysics and Geodesy Vol. 34/3, 2004

with EGM-96. The comparison shows an evident correlation and agreement
with EGM-96. This fact confirms a mathematical reliability of the proposed
solution. Tab. 1 and Fig. 3 contains the basic statistical characteristics for
residuals between EGM-96 and the Global Quasigeoid Model (set A). Their
surface layout on the reference ellipsoid is depicted in Fig. 4.

Tab. 1.

Fig. 3. Histogram of residuals (∗ Tab.1).
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The comparison shows high accuracy of the achieved variational (approx-
imate) solution. It demonstrates the obvious perspective of the proposed
approach. Statistical parameters for partial regions (Tab. 1) show that the
solution is more precise in regions of oceans and seas, while high residuals
in Antarctica negatively affect accuracy on continents. Striking negative
residuals in Himalayas correlate with the mountain range. They are proba-
bly due to a horizontal shift in the region of maximal deflections of vertical.
Striking positive, but also negative, residuals in Antarctica may reflect a
problem of ice sheet coverage that implies a problem of the Earth’s surface
determination as well as an influence of the ice sheet to gravity data.

Fig. 4. Residuals between EGM-96 and the Global Quasigeoid Model (set A) (44 378
collocation points).

Further refining of the global triangulation could bring more precise nu-
merical results but the problem of increasing requirements for the memory
storage needs to be overcome. Tab. 2 shows how the accuracy of our solution
increases with respect to the mesh size, i.e. to the number of collocation
points. For a visual comparison, Fig. 5 depicts corresponding profiles along
the parallel of latitude N30◦.

• Set B: Gravity disturbances generated from available gravity

anomaly data

The gravity disturbances generated by this alternative are fully inde-
pendent of the geopotential coefficients of EGM-96. Therefore the Global
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Tab. 2.

Fig. 5. Comparison with EGM-96 (profiles along the parallel of latitude N30◦).
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Quasigeoid Model (set B) as the numerical result of the BEM application to
NGBVP is also fully independent of EGM-96. The comparison with EGM-
96 is depicted in Fig. 6. The basic statistical characteristics for arisen resid-
uals are presented in Tab. 3 including the histogram of residuals (Fig. 7).

It is evident from depicted residuals (Fig. 6 + Tab. 3 + Fig. 7) that this
solution (set B) is in less accordance with EGM-96 than the previous case
(set A). It is due to the fact that both the input gravity data as well as the
mathematical strategy are different from EGM-96 (spherical harmonics)
and its geopotential coefficients. EGM-96 is involved only for generating
ellipsoidal heights from available sea level heights.

Fig. 6. Residuals between EGM-96 and the Global Quasigeoid Model (set B) (44 378 col-
location points).

Tab. 3.
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Fig. 7. Histogram of residuals (∗ Tab.3).

5. Conclusions

The boundary element method applied to the Neumann geodetic bound-
ary value problem leads to the variational solution of the external Laplace
problem on the Earth’s surface. Although it is an approximate solution,
the numerical results of the practical experiments and their comparison
with the geopotential model EGM-96 show evident perspectives. The pro-
posed approach represents an alternative method for the global gravity field
modelling.

The use of surface gravity disturbances as the Neumann boundary con-
ditions has obvious advantages with respect to gravimetric measurements.
Ellipsoidal (geodetic) heights obtained from satellite observations represent
sufficient vertical information. Economic and time demanding levelling is
not needed in this case. These advantages are striking mainly in mountain-
ous areas.

BEM using the collocation with linear basis functions appears to be
very suitable and efficient numerical method for the solution of NGBVP. It
provides solution on the Earth’s surface where the classical solution can be
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hardly obtained. The variational solution by BEM involves several kinds
of approximations. An error of approximations is theoretically known and
can be reduced in order to get more precise numerical results, e.g. by using
the higher-order interpolation functions or increasing an order of Gaussian
quadrature.

The numerical results of the practical experiments (the Global Quasi-
geoid Models) show relatively high accuracy. They confirm the numerical
reliability of the proposed approach. The developed computational algo-
rithm is applicable for further investigation provided that the high-speed
parallel computers will be at disposal.
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