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Martin Ambroz1 — Michal Kollár1 — Balázs Kósa1 —

Mai Nguyen-Chi2 — Georges Lutfalla2 — Karol Mikula1

1Department of Mathematics and Descriptive Geometry, Slovak University of Technology in
Bratislava, SLOVAKIA

2DIMNP, CNRS, Univ. Montpellier, Montpellier, FRANCE

ABSTRACT. We introduce two level-set method approaches to segmentation of
2D macrophage images. The first one is based on the Otsu thresholding and the
second one on the information entropy thresholding, both followed by the classical

subjective surface (SUBSURF) method. Results of both methods are compared
with the semi-automatic Lagrangian method in which the segmentation curve
evolves along the edge of the macrophage and it is controlled by an expert user.
We present the comparison of all three methods with respect to the Hausdorff
distance of resulting segmentation curves and we compare also their perimeter

and enclosed area. We show that accuracy of the automatic SUBSURF method
is comparable to the results of the semi-automatic Lagrangian segmentation.

1. Introduction

Macrophage is a type of motile white blood cell that plays a critical role
in immune protection and homeostasis. However, chronic insults can subvert
macrophage response, which becomes pathogenic and contributes to disease
progression such as inflammatory diseases and cancer [6, 7, 13]. Macrophage
changes its shape as it moves toward a wound. This shape change occurs as
macrophages interact with surrounding cells and move between various tissue
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cells and extracellular matrix. While the image segmentation of macrophages
can help to understand such interactions between macrophages and surrounding
cells, it is also a challenging task due to their irregular shapes. In this paper,
the cytoplasm of a macrophage in the transparent zebrafish is segmented from
two-dimensional (2D) microscopy data. First, we use a 3 days old transgenic
zebrafish larva (Tg(mpeg1:Gal4/UAS:Kaede)) in which green fluorescent protein
Kaede is expressed under the control of macrophage-specific promoter mpeg1,
so that macrophages produce the green fluorescent protein in their cytoplasm.
After wounding of its caudal fin, migrating macrophages are imaged for 5 hours
with a time step of 4 minutes and a z step of 4 μm using a Spinning disk Confocal
microscope. Afterwards the three-dimensional (3D) images are projected onto a
plane with the maximum intensity of 3D dataset overlap selected. The videos
of the data are available on Zenodo (https://doi.org/10.5281/zenodo.3267228).
We focus on the segmentation of a single macrophage in the resulting 2D image
data, which is implemented by using two different approaches: automatic and
semi-automatic (driven by an expert user).

The automatic approach is a combination of thresholding and the classi-
cal subjective surface segmentation (SUBSURF) method. The initial functions
of the SUBSURF method are derived from two different thresholding techniques.
The first one is the Otsu method [10], and the second one originates from the
information entropy considering co-occurrence matrices [1,3]. Thresholds are au-
tomatically calculated for each image, and the images are simply modified into
the foreground (above the threshold) and the background (under the thresh-
old). These modified images are used for the initial condition of the SUBSURF

method [11]. At the same time, the semi-automatic method based on the La-
grangian approach is used [9]. In this case, an initial point at the boundary
of the macrophage is manually chosen, from which the segmentation curve
evolves along the macrophage boundary. This process is repeated until the
curve is closed and accurate segmentation is achieved. In this paper, this semi-
automatic segmentation approach acts as a criterion for evaluating the perfor-
mance of the automatic segmentation approach, because the former basically
depends on expert judgement. We measure the Hausdorff distance between two
curves from the semi-automatic and automatic methods to examine the accu-
racy of the curves matching [2]. Finally, the perimeter and area are calculated,
allowing us to further evaluate the differences between the two approaches.

The paper is organized as follows. In section 2, we introduce two thresholding
methods and the numerical discretization of the classical SUBSURF equation.
Section 3 presents numerical results of the automatic segmentation and its com-
parison with the semi-automatic method. Lastly, we summarize and conclude
briefly the results in section 4.
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2. Mathematical Models and Numerical Methods

The classical SUBSURF method is a powerful segmentation method in such
cases where an object has missing boundaries or contains background noise,
such as the salt&pepper type [11]. However, it is known that quality of results
depends on initial condition choice. Because the boundaries of most macrophages
are complicated, it is expectable that the SUBSURF method would not work
properly if the initial functions are arbitrary and do not consider at all the
macrophage shape. On the other hand, the SUBSURF method can effectively
complete missing parts of boundary, join adjacent level-lines, as well as rapidly
remove a noise. To fully realize these benefits, it is important to set appropriate
initial condition. In this work, macrophage images are binarized in order to get
the initial condition for SUBSURF method by using two different thresholding
methods: the Otsu method and the maximization of entropy-based functions.

2.1. Otsu thresholding

The Otsu method is a method to find a threshold that separates image into
the object and the background in an automatic manner. The basic idea behind
the Otsu method is to find the threshold such that the variability in each class
(object, background) is as small as possible. It can be shown that this problem
can be changed into maximizing between-class variance and can be solved very
efficiently in a recursive fashion [10]. Therefore, if the histogram is bi-modal,
the method can segment an object almost perfectly. In addition, the method is
computationally cheap if only a single threshold is needed. The optimal thresh-
old (k∗) from the Otsu method can be represented by

σ2
B(k

∗) = max
1≤k<L

σ2
B(k), (1)

where σB denotes the variance between the foreground and background in the
histogram, and L is the maximum intensity of the image. The Otsu threshold-
ing method is able to properly distinguish several macrophage data when the
intensity of the macrophage is quite clear compared to the background, even
if it has either a thin or high-curvature structure. However, when the intensity
inside the macrophage is comparable with the background noise, segmentation
disconnects the object or loses parts of the macrophage since the Otsu method
only considers the image intensity. Therefore, to more correctly segment such
data, not only image intensity but also other factors have to be considered.

2.2. Entropy-based function with co-occurrence matrices

The image data we deal with in this paper represents a single macrophage.
Therefore, it is reasonable that any dim part situated around bright parts can
be considered as a part of the macrophage. In other words, adding spatial
information can be helpful to calculate the threshold. This kind of approach has
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previously been employed in several medical imaging studies [4,12]. To add the
spatial information of an image, a co-occurrence matrix is constructed [1], with
which a certain intensity value maximizes the information entropy [3]. The max-
imum value of information entropy in terms of an image means that the image
has the clearest bi-modal distribution of its histogram. Therefore, in principle,
information entropy maximization is a similar approach to the Otsu method;
however, the entropy method is more convenient when co-occurrence matrices
are considered. The two required variables for the calculation of information
entropy are the number of neighbours in the co-occurrence matrix and the im-
age intensity. In [3], to get the spatial information just one pixel to the right
and one pixel downward are explored, but in [12], q neighbours are inspected.
The co-occurrence matrix, T = {tij} for a N ×N image can be described by

tij =

N∑
l=0

N∑
k=0

δq(l, k), (2)

δq(l, k) = 1

⎧⎪⎪⎨
⎪⎪⎩

f(l, k) = i, f(l + q, k) = j,

and/or

f(l, k) = i, f(l, k + q) = j,

otherwise, δq(l, k) = 0, (3)

where q is changing from 1 to N − 1 (number of inspected neighbours in our
algorithm), i and j denote values of image intensity and f(l, k) represents the
gray level of the pixel at the spatial location (l, k).
With a particular threshold (t′), the co-occurrence matrix can be partitioned
into four quadrants. The cell probabilities of each quadrant are calculated as

pAij(q
′) =

t′ij(q
′)

∑t′
i=0

∑t′
j=0 t′ij(q′)

,

pBij(q
′) =

t′ij(q
′)

∑
t′
i=0

∑L−1

j=t′+1
t′ij(q′)

,

pCij(q
′) =

t′ij(q
′)

∑L−1

i=t′+1

∑L−1

j=t′+1
t′ij(q

′)
,

pDij(q
′) =

t′ij(q
′)

∑L−1

i=t′+1

∑t′
j=0 t′ij(q′)

,

(4)

where L is the maximum intensity of the image.

Here, pBij(q
′) and pDij(q

′) are used for the entropy-based function, which is the

so-called joint entropy [3]:

H(q′, t′) = −1

2

⎡
⎣ t′∑

i=0

L−1∑
j=t′+1

pBij log p
B
ij +

L−1∑
i=t′+1

t′∑
j=0

pDij log p
D
ij

⎤
⎦ . (5)
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For every t′, the optimal number of neighbours (q∗) maximizing the joint entropy
is calculated, and then the optimal threshold (t∗) maximizing Hjoint(q

∗, t′) is
found.

2.3. Classical SUBSURF equation

2.3.1. Numerical Discretization

The classical SUBSURF method is described by

ut = |∇u|∇ ·
(
g
∇u

|∇u|
)
, (6)

where u is the evolving level function. The function g is the so-called edge
detector. We use

g(s) =
1

1 +Ks2
, K > 0, (7)

where

s = |∇Gσ ∗ I0|, I0

being either original or thresholded image and Gσ is the Gaussian kernel, see
also (13).

The time discretization of Eq. (6) is implemented with a semi-implicit scheme:

un+1 − un

τ
= |∇un|ε∇ ·

(
g
∇un+1

|∇un|ε

)
, (8)

where τ is a uniform time step. Here, |∇un| is regularized using the Evans-
-Sprucks approach as

|∇un|ε ≈
√
(∇un)2 + ε2,

where ε is a small arbitrary constant.

The space is discretized by a finite volume square grid with a volume (pixel)
size h. For a pth pixel, the equation (6) is integrated, and by using Green’s
formula we get

∫
p

1

|∇un|ε
un+1 − un

τ
dx =

∫
∂p

g
∇un+1

|∇un|ε · npqdS, (9)

where npq is the normal vector between the pth pixel and a neighbouring qth
pixel.
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Let us denote the center of the pth pixel as (i, j), where

i = 1, . . . , N and j = 1, . . . , N.

With the set of all neighbours (k, l), such that k, l ∈ {−1, 0, 1}, |k| + |l| = 1,
the gradient of u on pixel edges can be represented by:

∇k0un
ij = 1

h

(
un
i+k,j − un

ij, u
k,1
ij − uk,−1

ij

)
,

∇0lun
ij = 1

h

(
un
i,j+l − un

ij, u
1,l
ij − u−1,l

ij

)
,

uk,±1
ij = 1

4

(
un
ij + un

i,j±1 + un
i+k,j + un

i+k,j±1

)
,

u±1,l
ij = 1

4

(
un
ij + un

i±1,j + un
i,j+l + un

i±1,j+l

)
.

(10)

Now we define
Qkl;n

ij =
√
ε2 + |∇klun

ij|2,

Q̄kl;n
ij =

√√√√ε2 +
1

4

∑
|k|+|l|=1

|∇klun
ij|2. (11)

Therefore, the final discritized form of Eq. (6) is given by [8]

un+1
ij − un

ij =
τ

h2
Q̄kl;n

ij

∑
|k|+|l|=1

gkl,σij

un+1
i+k,j+l − un+1

ij

Qkl;n
ij

, (12)

where h2 is an area of pixel. Here, the edge detector function gkl,σij , is calcu-
lated by combining the gradients of the two types of pre-smoothed images, i.e.,
the original image (uori) and the binary image (uthr) from each thresholding
method, as

gkl,σij =

(
Cori

1 +K|∇uori;σ|2 +
Cthr

1 +K|∇uthr;σ|2
)
, (13)

where σ is the variance of the Gaussian filter. The Cori and Cthr are coefficient
of the edge detector for the original and binarized image, respectively.

3. Results

Segmentation is performed on a series of 75 images capturing a single macro-
phage. The solution of equation (12) is accompanied by the zero Dirichlet
boundary condition, and the calculation is stopped when the following condition
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is fulfilled: N∑
i=1

N∑
j=1

|un+1
ij − un

ij| < δ.

The final segmentation results were scaled into the interval [0,1] and the iso-
line 0.5 was selected as the boundary of macro-phage. The parameters used
in the computations were

τ = 1, h = 1, K = 1000,
σ = 10−3, ε2 = 10−10, Cori = 0.2,

Cthr = 0.8 and δ = 0.5.

Hereafter, the combination of the Otsu and classical SUBSURF methods is
called the ”O-SUBSURF” method, and likewise the SUBSURF method with
co-occurrence matrices and information entropy is called the ”E-SUBSURF”
method.

3.1. Visual comparison of automatic and semi-automatic
segmentation

In Figure 1–6, five images are selected. In the Figure 1, the left column shows
the original images, and the middle and right columns show the binarized images
resulting from the two thresholding methods. The Otsu thresholding method in
the middle column well detects the macrophage when its intensity is (generally)
uniformly distributed inside the macrophage and distinguishable from the back-
ground noise [(2)-O, (3)-O]. In most cases, this phenomenon appears when the
macrophage squeezes itself. On the other hand, parts of the macrophage tend
to have weak intensity when it stretches itself, in which case Otsu thresholding
cannot well resolve the structure ((1)-O, (4)-O). On the other hand, as it is seen
in the right column of the figure, the co-occurrence matrices with information
entropy maximization can well detect such dim parts of the images ((1)-E, (4)-E)
because the thresholds are lower than those of the Otsu method. The reason
is that when the structures are close to each other, the weights of the struc-
tures in the co-occurrence matrix are increased, regardless of if it is background
noise or the macrophage. Because of this feature, the macrophage is detected
to be thicker than those of the Otsu method, and also the background noise
can be easily captured ((1)-E, (2)-E, (4)-E). The Figure 2–6 show segmenta-
tion results obtained using different methods. The top-left panels of Figure 2-
-6 (yellow lines) denote segmentation results by the semi-automatic method.
The top-right and bottom-left represent segmented boundaries from O-SUBSURF

and E-SUBSURF methods and are denoted by blue and green lines, respectively.
If the captured background noise occupies a small portion, it is rapidly removed
by the SUBSURF method without losing macrophage shape because the small
noise has a large curvature, as it is seen in Figure 1 (4)-E and in Figure 5.
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(1)

(2)

(3)

(4)

(1)-O

(2)-O

(3)-O

(4)-O

(1)-E

(2)-E

(3)-E

(4)-E

(5) (5)-O (5)-E

Figure 1. Five different time moments of image series. The first column
shows the original macrophage images, and the second and third columns
show binarized images from Otsu thresholding ((#)-O) and entropy thresh-
olding ((#)-E), respectively.
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Table 1. Differences of perimeters (ΔP ) and areas (ΔA) between the semi-
automatic and automatic methods for uc.

Time ΔP ΔA Time ΔP ΔA Time ΔP ΔA Time ΔP ΔA

0 1.20 32.93 18 2.68 18.45 36 10.38 39.56 54 10.39 27.74

1 1.13 16.10 19 0.56 13.63 37 5.64 29.90 55 10.91 32.07

2 5.77 23.78 20 4.89 23.41 38 0.45 32.25 56 11.32 11.77

3 0.41 16.06 21 2.87 16.62 39 5.82 43.61 57 5.39 12.25

4 4.03 21.14 22 1.39 30.09 40 11.10 34.83 58 0.27 32.57

5 6.18 26.43 23 0.68 23.95 41 3.57 30.28 59 16.07 13.48

6 13.37 11.82 24 5.41 33.99 42 7.28 44.54 60 14.48 27.59

7 18.30 0.27 25 3.93 9.45 43 2.08 14.76 61 7.07 8.39

8 0.21 7.63 26 22.15 8.30 44 2.83 23.80 62 14.06 3.07

9 0.36 15.14 27 16.51 14.65 45 6.17 3.03 63 0.04 26.50

10 1.50 23.89 28 14.46 11.86 46 4.54 9.65 64 9.50 7.34

11 0.37 10.40 29 2.33 0.56 47 4.26 24.17 65 9.56 30.17

12 0.61 9.39 30 21.50 8.44 48 5.54 16.92 66 4.51 26.66

13 4.25 17.29 31 1.06 26.38 49 21.36 1.67 67 8.80 5.42

14 2.69 21.37 32 5.38 7.30 50 4.79 3.89 68 2.04 49.64

15 0.06 21.27 33 1.22 3.47 51 10.50 11.20 69 10.17 54.62

16 2.02 25.74 34 7.79 1.92 52 0.73 33.09 70 4.36 35.03

17 3.94 27.44 35 8.47 9.19 53 5.18 11.91 71 7.85 28.80

72 3.64 43.53

73 4.86 9.36

74 9.48 24.79

AVG 6.22 20.13

SD 5.46 12.38

However, if the noise intensity is comparable with the macrophage one, SUBSURF

cannot easily get rid of the noise, as in Figure 2 (1)-E. Comparison indicates
that the segmentation shapes given by the O-SUBSURF method tend to be
more narrow (blue lines) while those of the E-SUBSURF method tend to be
more broad (green lines) than the results from the semi-automatic method.
To utilize the benefits and improve the drawbacks of the two automatic methods,
we combine the final solutions with certain weight factors.
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(1)-S (1)-O

(1)-E (1)-C

Figure 2. The 7th image in whole sequence: Segmentation results from
the thresholding methods (the first row of Figure 1) and SUBSURF

method. The yellow lines come from the semi-automatic segmentation re-
sults ((1) − S). The blue and green lines are the final results from the
O-SUBSURF ((1)-O) and E-SUBSURF methods ((1)-E), respectively.
In the bottom-right panel, the red lines describe uc, combination of both
methods ((1)-C). The coloured version of the article can be found on the
journal web-site, http://tatra.mat.savba.sk(publishedvolume).

By setting the solution from O-SUBSURF as uO and that from E-SUBSURF as
uE , then both solutions are combined and level line of 0.5 is selected. The com-
bined solution (uc) is described as uc = ωOuO + ωEuE . In this implementation,
ωO=0.4 and ωE=0.6 were used; results are presented as red lines in Figure 2–6.
Although uc fails to detect the dim parts in the bottom-right panel of Figure 2,
the rest of the results are very close to those from the semi-automatic method.
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(2)-O(2)-S

(2)-E (2)-C

Figure 3. The 8th image in whole sequence: Segmentation results from
the thresholding methods (the second row of Figure 1) and SUBSURF
method. The yellow lines come from the semi-automatic segmentation re-

sults ((2) − S). The blue and green lines are the final results from the
O-SUBSURF ((2)-O) and E-SUBSURF methods ((2)-E), respectively.
In the bottom-right panel, the red lines describe uc, combination of both
methods ((2)-C). The coloured version of the article can be found on the
journal web-site, http://tatra.mat.savba.sk(publishedvolume).
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(3)-O(3)-S

(3)-E (3)-C

Figure 4. The 49th image in whole sequence: Segmentation results from
the thresholding methods (the third row of Figure 1) and SUBSURF
method. The yellow lines come from the semi-automatic segmentation re-

sults ((3) − S). The blue and green lines are the final results from the
O-SUBSURF ((3)-O) and E-SUBSURF methods ((3)-E), respectively.
In the bottom-right panel, the red lines describe uc, combination of both
methods ((3)-C). The coloured version of the article can be found on the
journal web-site, http://tatra.mat.savba.sk(publishedvolume).
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(4)-O(4)-S

(4)-E (4)-C

Figure 5. The 67th image in whole sequence: Segmentation results from
the thresholding methods (the fourth row of Figure 1) and SUBSURF
method. The yellow lines come from the semi-automatic segmentation

results ((4)-S). The blue and green lines are the final results from the
O-SUBSURF ((4)-O) and E-SUBSURF methods ((4)-E), respectively.
In the bottom-right panel, the red lines describe uc, combination of both
methods ((4)-C). The coloured version of the article can be found on the
journal web-site, http://tatra.mat.savba.sk(publishedvolume).
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(5)-O(5)-S

(5)-E (5)-C

Figure 6. The 35th image in whole sequence: Segmentation results from
the thresholding methods ((the fifth row of Figure 1)) and SUBSURF
method. The yellow lines come from the semi-automatic segmentation

results ((5)-S). The blue and green lines are the final results from the
O-SUBSURF ((5)-O) and E-SUBSURF methods ((5)-E), respectively.
In the bottom-right panel, the red lines describe uc, combination of both
methods ((5)-C). The coloured version of the article can be found on the
journal web-site, http://tatra.mat.savba.sk(publishedvolume).
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3.2. Quantitative comparison between automatic and semi-automatic
segmentation

In this section, the automatic segmentation results are compared to those from
the semi-automatic method using the Hausdorff distance [5] and the perimeter
and area of the macrophage. The perimeters are calculated by summing all the
distances between two adjacent points of the isoline, and the areas are calculated
via Gauss’s area formula. If the boundary from the automatic method has more
than a single isoline, the calculations are implemented independently to each
closed isoline and summed from all outcomes. In the real scale, the pixel size on
the images is corresponding to 0.326 μm. Therefore, the unit of the calculated re-
sults in Figure 7, Figure 8 and Table 1 is 0.326 μm. Figure 7 shows the Hausdorff
distances. As it is seen in Figure 7, several values of the Hausdorff distance in the
results from the E-SUBSURF method are high. The reason is that those final re-
sults contain boundaries of the background noise, and the noise is relatively far
from the macrophages. Whereas, in case of the O-SUBSURF method, the large
values of the Hausdorff distance are due to missing parts of the macrophages.
For example, the largest Hausdorff distance from the O-SUBSURF method is
35th image (the bottom images in Figure 1 and Figure 6), and its perimeter and
area also show the biggest difference from those of the semi-automatic method.
Contrarily, data with big Hausdorff distances in the E-SUBSURF method do
not show striking differences from the perimeter and area of the semi-automatic
method (Figure 8). To indicate how big the Hausdorff distances are in terms
of macrophage size, the ratio of the Hausdorff distances and the perimeters is
measured. The median of dH/dP from the O-SUBSURF, E-SUBSURF methods
and combined solution are approximately 0.032, 0.02 and 0.022, respectively.
This indicates that mismatching O-SUBSURF, E-SUBSURF and combined meth-
ods from the semi-automatic segmentation i s roughly represented by 3.2%, 2%
and 2.2%, respectively. As shown in Figure 8, most areas from O-SUBSURF are
smaller than the semi-automatic results, whereas most areas from E-SUBSURF

are larger than the semi-automatic method because of the co-occurrence ma-
trices. The combined result, uc, not only has small values of Hausdorff dis-
tances but is also relatively similar to the perimeters and areas of the semi-
automatic method (red lines in Figure 7 and 8). In the results of the combined
level-lines, there is no more captured background noise and no substantial miss-
ing parts; however, there are still small missing parts and a hole inside the
macrophage (Figure 4). Because the split part from the Otsu method (top-right
panel in Figure 4) has similar intensity with neighbours, the semi-automatic
method evolves the curve by covering this part. In the contrast to the semi-
automatic method result, all results from automatic methods distinguish the
hole inside the macrophage. Therefore, the hole from the automatic method
leads to a big difference in the Hausdorff distance. To figure out which result is
correct, it may need to discuss it from a biological point of view.
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Quantitative perimeter and area difference information for all data is pre-
sented in Table 1. In this calculation, ΔP and ΔA are the absolute deviations
of the perimeter and area, respectively. AVG and SD are average and standard
deviation of ΔP and ΔA, defined as:

AVG =
1

75

i=74∑
i=0

Δxi, SD =

√√√√ 1

75

i=74∑
i=0

(Δxi −AVG(x))2,

where x is either perimeter or area, i denotes image sequence and 75 is the to-
tal number of images. Since AVG in Table 1 is the standard deviation of the
differences between semi-automatic and automatic methods, AVG can be con-
sidered as an error for automatic segmentation. Hence, the errors of proposed
auto-segmentation method can be represented as 6.22± 5.46 and 20.13± 12.38
for the perimeter and area, respectively.

4. Conclusion

The segmentation of a single macrophage from 2D data was achieved via au-
tomatic and semi-automatic methods. In the former, two types of thresholding
techniques were carried out and used as the initial functions of the classical
SUBSURF method, while in the latter, the Lagrangian method was utilized as
the gold standard for examining the automatic segmentation method. The final
segmentation functions from the classical SUBSURF method were scaled into
interval [0, 1] with the selected middle value. The performance of automatic seg-
mentation was measured with the Hausdorff distances in a view of matching the
boundary shapes with those from the semi-automatic method. In addition, geo-
metric information (perimeter, area) and its difference between the two methods
was calculated. Based on these measurements, the combination of the level-lines
from O-SUBSURF and E-SUBSURF gave reasonable results when compared to the
semi-automatic segmentation.
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