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ABSTRACT. The use of balloon models to address the problems of “snakes”
based models was introduced by Laurent D. Cohen. This paper presents a ge-
odesic active contours model with a modified external force term that includes
a balloon model. This balloon model makes the segmentation surface to behave

like a balloon inflated by the external forces. In this paper, we show an auto-
matic way to control the behaviour of the external force with respect to the seg-
mentation evolution. The external forces, comprised of edge and inflation terms,
push the segmentation surface to edges, while curvature regularizes the evolution.
As segmentation evolves, the influence of the applied inflation force is determined

by how close we are to the edges. With this setup, the initial segmentation does
not need to be close to the object’s edges, instead it is inflated by the balloon
model towards the edges. Closer to the edges, the influence of the inflation force is
adjusted accordingly. The force’s influence is completely turned off when the evo-
lution is stable (reached the edges), then only the curvature and edge information
is used to evolve the segmentation.

This approach solves the issues associated with inclusion of balloon model.
These issues are that the inflation force can overpower forces from weak edges,
or they can cause the contour to be slightly larger than the actual minima.
We present examples of the improved model for segmentation of human bladder
images. Weak edges are more prevalent in medical images, and the automated
handling of the inflation forces gives promising results for this kind of images.

© 2021 Mathematical Institute, Slovak Academy of Sciences.

2010 Mathemat i c s Sub j e c t C l a s s i f i c a t i on: 65K10, 35Q68, 65Y05, 65Y20.
Keywords: geodesic active contours, balloon model, estimation, curve fitting, curve
smoothing.
We thank TatraMed Software s.r.o. for technical support and to ImageInLife for funding - This
project has received funding from the European Union’s Horizon 2020 research and innovation
programme under the Marie Sklodowska-Curie grant agreement No. 721537. The third author
was also supported by the grants APVV-19–0460 and VEGA 1/0436/20.

Licensed under the Creative Commons BY-NC-ND4.0 International Public License.

119



OMONDI POLYCARP OKOCK—JOZEF URBÁN—KAROL MIKULA

1. Introduction

We introduce a new segmentation model for Geodesic active contours, which
significantly improves detection for noisy images. The model was used for auto-
matic segmentation of noisy CT bladder images in 3D. We present the features
of this new model with promising experimental results.

Kass et al. [7] developed an active contours segmentation model, and called
it the snake model. The snake model is an energy minimizing spline guided
by external constraint forces and influenced by image forces that pull it toward
features such as lines and edges. The problem of using such active contours is
that they do not have the information on how to fill in the gaps in the object or
they do not become stationary at the object boundary if the boundary is noisy,
blurred or of low contrast. Proposals to address these challenges have been made
by researchers including the following. The use of balloon models to address the
problems of “snakes” based models was introduced by Laurent D. Cohen [3].
Caselles et al. [2] proposed a segmentation scheme based on relation between
active contours and minimal distance curves. Their scheme segments an image
by evolving the active contours controlled by a scaling function.

We have defined a level-set based Geodesic active contours model, similar
to [10]. The model is placed inside the image, and subject to influence of “ex-
ternal forces” which move and deform it from initial position and drawn to the
image edges until it fits the best. We are interested in improving the model be-
haviour, more so when segmenting images with weak edges, noisy or have missing
boundary information. To achieve this, we are proposing an automatic approach
for managing the model’s external forces influence. Usually, this force pushes the
model towards the image edges. For images with weak edges or noisy or having
missing boundary information, the forces can overpower the weak edges or cause
the contour to be slightly larger than the actual minima. We modify it such that
the external forces influence is reduced as the model gets closer to the edges and
completely turned off when the model reaches the image edges.

The external forces are composed of a balloon model and edge detection terms.
Both of these components have been defined from the image data properties.
This model presents the following advantages:

• Suitable for segmenting noisy, weak edges images, e.g. medical images.

• Minimal user input needed to fine tune model parameters.

• More stable numerical results.

In the next section, we introduce the model and present its main ideas. We give
the experimental results after applying the model to automatic bladder detection
from CT pelvis images.
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2. Segmentation model with an inflation term

The described general segmentation model is similar to [10]. Let u(x, t) be the
level-set function, where x(t) = [x(t), y(t), z(t)] denotes the position vector
of a surface Γ, at time t. The evolution of u(x, t) is such that at each time t
the surface Γ represents the same isosurface of u(x, t) as follows

u(x, t) = c, (1)

where c is a constant. The total differential of the level-set function becomes

du(x(t), t)

dt
=

du(x(t), y(t), z(t), t)

dt
= 0, (2)

∂u(x, t)

∂t
+

∂u(x, t)

∂x

∂x(t)

∂t
+

∂u(x, t)

∂y

∂y(t)

∂t
+

∂u(x, t)

∂z

∂z(t)

∂t
= 0, (3)

which can be rewritten in the form

∂u(x, t)

∂t
+

dx(t)

dt
· ∇u(x, t) = 0, (4)

u(x, 0) = u0(x), for x ∈ D,

where u0(x) is an initial condition. Let

V(x, t) = dx(t)
dt

be the force term. Then eq. (4) has the form

∂u(x, t)

∂t
+V(x, t) · ∇u(x, t) = 0. (5)

The force term controls the evolution of the level-set function. It is composed
of the external force and the curvature terms, see Figure 1.

Figure 1. The composition of the force terms in the segmentation model.
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Similar to [10], it is defined as

V(x, t) = μ1

(
(1− λ)g2N− λ∇g1

)
+ μ2g1κN, (6)

where μ1, μ2 and λ are parameters, N= ∇u
|∇u| is the outer unit normal vector,

κ=−∇ · ∇u
|∇u| is curvature, g1=g1(|∇Gσ � I|)= 1

1+k1|∇Gσ�I|2 and g2 defined as

g2 = g2(I, ρ, k2) =
1

1 + k2(I − ρ)2
. (7)

Both g1 and g2 are scaling functions, where g1 is an edge detector function,
g2 is an inflation term, with k2 > 0 a parameter, ρ is the average value com-
puted from voxels inside the initial segmentation surface and I is voxel value.
Both ρ and I can be a reasonably chosen value, characterizing color, intensity
or texture of segmented object in the image.

This model evolves segmentation function towards the image edges, level sets
are expanded in normal direction by the inflation term and evolution is regu-
larized by curvature. Since there is an inflation force, if the edge is too weak,
the segmentation function can pass through this edge if it is singularity with the
rest of the surface being inflated. The regularization effect with the help of in-
flation force then removes discontinuity created at that point and segmentation
function passes through the curve.

3. Discretization of the model

The full form of eq. (5) is

ut +

(
μ1

(
(1− λ)g2

∇u

|∇u| − λ∇g1
)) · ∇u− μ2g1∇ ·

( ∇u

|∇u|
) ∇u

|∇u| · ∇u = 0, (8)

and simplified to

ut + μ1ν · ∇u− μ2g1|∇u|∇ ·
( ∇u

|∇u|
)

= 0, (9)

where ν = (1− λ)g2
∇u

|∇u| − λ∇g1.

3.1. Time discretization

In order to discretize eq. (9) in time, we apply the semi-implicit approach
that guarantees unconditional stability with respect to the diffusion term. Let us
suppose that the equation in time interval I = [0, T ] and in N equal time steps.
The time step is denoted as τ = T

N . The time discretization is then as follows

un+1 − un

τ
+ μ1ν

n · ∇un − μ2g1|∇un|∇ ·
(∇un+1

|∇un|
)

= 0. (10)
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3.2. Space discretization

To discretize eq. (10) in space, we apply the so-called flux-based level set finite
volume [6] method. Consider the product rule as follows

∇ · (unνn) = un∇ · νn + νn∇ · un,

we can express νn · ∇un = ∇ · (unνn) − un∇ · νn and replace in eq. (10).
We integrate eq. (10) over a finite volume p∫
p

un+1−un

τ
dx+μ1

∫
p

∇·(unνn) dx−μ1

∫
p

un∇·νndx−μ2

∫
p

g1|∇un|∇·
(∇un+1

|∇un|
)
dx.

(11)
Integrating ∫

p

un+1 − un

τ
dx

becomes ∫
p

un+1 − un

τ
dx = m(p)

un+1
p − un

p

τ
, (12)

where m(p) is the measure of finite volume p.

For the advection part,

μ1

∫
p

∇ · (unνn) dx− μ1

∫
p

un∇ · νndx,

we use divergence theorem in both terms and constant representation of solution
in finite volume p in the second term, we obtain

≈ μ1

∫
∂p

(unνn) · n∂pdS − μ1u
n
p

∫
∂p

νn · n∂pdS. (13)

Using integral fluxes [6, 8, 9], we define inflows and outflows through the voxel
sides as

νinpq = min
(
νnpq, 0

)
, νoutpq = max

(
νnpq, 0

)
,

where νnpq is define as

νnpq =

∫
∂p

νn · n∂pdS

=

∫
epq

(1− λ)g2
∇un

|∇un| − λ∇g1 · n∂pdS (14)

≈ m(epq)

m(σpq)

[
(1− λ)g2

un
q − un

p

|∇ un
pq|

− λ∇g1

]
,
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where epq denotes the edge between finite volumes p and q, n∂p is the normal
vector to epq from p to q, m(epq) is the measure of edge between finite volumes
p and q, andm(σpq) denotes the measure of line between centres of finite volumes
p and q.

We define an approximate gradient ∇g1 in the finite volume p using central
differences [9]

∇g1p
= (Gpe, Gpn, Gpt) = (−Gpw,−Gps,−Gpb) ,

where

−Gpw = Gpe ≈ ge − gw
2h

,

−Gps = Gpn ≈ gn − gs
2h

,

−Gpb = Gpt ≈ gt − gb
2h

,

h is the edge size and gq is the neighbouring cell value of the gp such that q ∈ Np.
For g2 function, we approximate the average of neighbouring points as follows

g2 =
g2p

+ g2q

2
.

Substituting these in eq. (15), we get νnpq defined as

νnpq =
m(epq)

m(σpq)

[
(1− λ)

g2p
+ g2q

2

un
q − un

p

|∇ un
pq|

− λGpq

]
. (15)

We can then approximate eq. (13) by using upwind principle as in [6,9] to ob-
tain the following

μ1

∫
∂p

(unν) · n∂pdS − μ1u
n
p

∫
∂p

ν · n∂pdS ≈

μ1

∑
q∈Np

νinpqu
n
q + μ1

∑
q∈Np

νoutpq un
p − μ1

∑
q∈Np

νinpqu
n
p − μ1

∑
q∈Np

νoutpq un
p =

μ1

∑
q∈Np

νinpq
(
un
q − un

p

)
, (16)

where Np is an index set containing all the neighbouring finite volumes q to p.

For discretization of the diffusion term, we consider |∇ un| as a constant on
finite volume p to become |∇ un

p |. Then we apply the divergence theorem, approx-

imating the derivative, ∇un+1 ≈ un+1
q −un+1

p

m(σpq)
and |∇ un| on the edges, denoted

as |∇ un
pq| using the diamond cell scheme [4,8]. This is similar to approximating
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the mean curvature term as done in [5]

μ2

∫
p

g1|∇un|∇ ·
(∇un+1

|∇un|
)
dx ≈ μ2g1|∇ un

p |
∑
q∈Np

m(epq)

m(σpq)

un+1
q − un+1

p

|∇ un
pq|

. (17)

Combining eq. (12), (16), (17), we can obtain discrete form of (11) and making
un
p the subject as

un
p = un+1

p + μ1
τ

m(p)

∑
q∈Np

νinpq
(
un
q − un

p

)

− μ2
τ

m(p)
g1|∇ un

p |
∑
q∈Np

m(epq)

m(σpq)

un+1
q − un+1

p

|∇ un
pq|

.

(18)

The solution of eq. (18) is then obtained by using Gaus-Seidel iterative method.
For boundary values, we impose the Neumann boundary condition.

4. Improving the model behaviour

For images with weak or missing edge information or noisy images, the in-
flation force from the proposed model can overpower the weak forces, see [3].
We have proposed to regulate the influence of this term. When the segmenta-
tion function is far away from the edge, we inflate it towards the edge using
the inflation force. As it gets closer to the edges, we propose to reduce the
influence of the inflation and use the edge forces to evolve the segmentation.
And finally, when the segmentation function has reached the edge (stable),
we turn off the influence completely and we use the edge forces and curvature
terms. To regulate the inflation term, g2, we modified eq. (6) by adding two more
parameters η and ζ as shown in eq. (19). In this way, we can control influence
of edges and inflation term independently. g2 influence is regulated by varying ζ.

μ1

(
(1− λ)ζ g2N− ηλ∇g1

)
. (19)

For monitoring the segmentation evolution, we calculate the L2-norm differ-
ence between current and previous segmentation. The goal is to find the specific
iteration to reduce or turn off g2. Our proposal will use curve’s extrema in-
formation to determine the iterations. It is difficult to determine the extrema
of the curve of the differences between current un+1

p and previous un
p segmenta-

tion’s while the segmentation is still running. To solve this, we built an estimate
function that estimates the next � differences from the currently calculated dif-
ference values. We refer to � as the offset value. The estimation starts only after
the number of iterations during the segmentation process is greater than �.
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Let y be a discrete curve of values calculated from L2-norm of the difference
between un+1

p and un
p at each iteration n. It is defined as follows

yn+1 =
1

N

N∑
p=1

(
un+1
p − un

p

)2
, (20)

where N is the total number of points in their level set presentation. The y
curve values are noisy as seen in Figures 5, 6, 7 and 8. To remove this noise, we
perform curve fitting by constructing a smoothing function to approximately fit
the data. Let ysmooth be the curve fitted by applying moving average of order m
as follows

ynsmooth =
1

m

k∑
i=−k

yn+i, (21)

where m = 2k + 1.

The smoothed curve will be used as an input to the estimating function
instead of the original noisy curve data. In addition, the smooth curve will help
in capturing the curve’s extrema. We also define a function, ydiff as follows

yndiff = yn+1
smooth − ynsmooth. (22)

With the above definitions, we define function to estimate, denoted as yest.

dndiff smooth =
1

ξ

k∑
i=−k

yn+i
diff ,

ynest = ynsmooth +�dndiff smooth. (23)

We have set ξ = 2k + 1 and � is the offset. For our setup, we used k = 2 or
ξ = 5.

With the above setup, we find the first iteration n to turn off g2, such that
ynest becomes non-positive. The estimate corresponds to the global minima of the
estimated curve. The advantage of this approach is that we don’t have to wait
for the segmentation process to finish then determine the global minima from
the calculated values.

After determining what iteration to turn off g2, we try to determine the
iteration to automatically reduce its influence. From early experiments, see Fig-
ures 5, 6, 7 and 8, we observed our initial choice was approximately close to the
curve’s global maximum. From our experience, the global maximum is not the
best measure for choosing the iteration to reduce the influence. This is because
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in some experiments, this can be in the first early steps, which we found too
early to reduce or turn off g2 influence. Instead, we have chosen to base the
iteration to reduce the influence on the mid-area of the curve y.

The n + � estimated values are copied from yest to y. Then we use the
Trapezoid rule [1] to calculate the area under the new curve. Then we calculate
the mid-area and find the closest iteration to this mid-area. At this iteration,
we set to reduce g2 influence. In the next subsection, we show results from
applying the novel automatic approach to handle g2.

5. Numerical experiments

In our experimental setup, we tested on noisy synthetic bladder images. The
exact dimensions for each bladder image was 100× 100× 40 voxels. We created
artificial noisy bladder images by adding varying high level of noise to the exact
images. We chose salt and pepper where 75% and 85% of the images were
affected with the noise. From our experiments with different types of noise and
associating levels, salt and pepper noise levels >= 75% segmentation failed.
In the Figures 2, 3, 4, are the artificial bladder images with 75% and 85% noise
levels slice views. In our setup, we used a set of 3 bladders.

(a) The exact bladder.
(b) The slice view

of exact bladder. (c) 75% noisy bladder.

(d) 85% noisy bladder.

Figure 2. The first bladder image.
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(a) The exact bladder.
(b) The slice view

of exact bladder. (c) 75% noisy bladder.

(d) 85% noisy bladder.

Figure 3. The second bladder image.

(a) The exact bladder.
(b) The slice view

of exact bladder. (c) 75% noisy bladder.

(d) 85% noisy bladder.

Figure 4. The third bladder image.
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Since we also had the precise bladder region of interest, ROI, we were able
to test how well the segmentation performed by comparing the final results
with the precise data. At 75% noise level, we made the following observations
for segmentation, summarized in the Table 1. The error values are the L2-norm
of difference between the final segmentation and the exact results.

Table 1. L2-norm after segmenting 75% noisy images.

Bladder 1 2 3

L2-norm 16.8316 10.0207 0.63506

In addition, we calculated the L2-norm of difference between the current, un+1
p

and previous segmentation, un
p . These results are shown in Figure 5. From Ta-

ble 1, L2-norm results, bladder 1 & 2 segmentation were not successful when
compared to patient 3.

Figure 5. L2-norm between current and previous segmentation at 75%
noise level.

5.1. Results of manual selections of reduce and turn off
steps for g2 function

Before applying the proposed approach to automatically handle the inflation
term, we manually first identified the iteration before the segmentation results
overflowed the exact result, see Table 2.
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Table 2. Selected iterations to turn off g2.

Bladder 1 2 3

Iteration 20 15 11

From our observation, these chosen numbers of iterations were close to the
curves’ maxima (see Figure 5). At these iterations, g2 influence was turned off
(setting λ = 1). The results after this attempt are shown in Table 3 and Figure 6.
Comparing the results in Table 1 versus 3 and Figure 5 versus 6, there was
a significant improvement in the first approach to improve and build on the
g2 function.

Table 3. L2-norm after segmenting 75% noisy images.

Bladder 1 2 3

L2-norm 0.4147 0.5200 0.0724

Figure 6. L2-norm between current and previous segmentation at 75%
noise level after skipping g2 at selected iterations.

We proceeded to test the same approach on the 85% noisy images. The seg-
mentation results are shown in Table 4 and Figure 7. We also observe segmen-
tation failing to segment the bladders. As before, we identified the iteration just
before the segmentation overflowed the exact shape. Segmentation is assumed
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to have reached equilibrium if it is not changing (evolving). This can be inter-
preted when the difference from the previous segmentation is approximately zero.
As a result, we also identified the iteration with L2-norm closest to the minima
of the three curves.

Table 4. L2-norm after segmenting 85% noisy images.

Bladder 1 2 3

L2-norm 36.7712 67.3418 45.0444

Figure 7. L2-norm between current and previous segmentation at 85%
noise level. Vertical lines represent the iteration to reduce or turn off g2
influence.

In the second approach, we want to reduce g2 gradually by 50% then turn it
off completely at the iteration closest to their minima’s. To simplify the process,
we set the same iterations for the three bladders, i.e. in iteration 15 g2 influence is
reduced and from iteration 35 onward it’s skipped. They are represented by the
vertical lines in Figure 7.

The results after applying the above mentioned modifications are summarized
in Table 5 and Figure 8. Compared to the results in Table 4, there were signifi-
cant improvements observed in all the datasets. From these results, reducing or
skipping of g2 has a significant improvement on the segmentation results.
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Table 5. L2-norm after segmenting 85% noisy images with both reduction
and skipping of g2.

Bladder 1 2 3

L2-norm 1.1380 6.2533 0.2299

Figure 8. L2-norm between current and previous segmentation at 85%
noise level with both reduction and skipping of g2.

In real data problems, the exact object to be segmented is rarely known
in advance and so our two first approaches of setting the iterations to reduce
or turn off g2 by checking for overflow are not realistic for a real solution.
In addition, determining a curve’s extrema is not possible if the segmentation is
still running. With the mentioned limitations, we apply our proposed approach
in the next section.

5.2. Results of automatic selections of reduce and turn off
steps for g2 function

In this section, we present the results for the automatically selected iterations
for skipping and skipping g2 influence. In Table 6, we show the found values
versus our hand-picked values in our original attempt for the 85% noisy images.
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Table 6. Comparison of manual versus automatic selection of iterations
to reduce and turn off g2 influence.

(a) Manually selected iterations.

Bladder 1 2 3

Reduce iteration 15 15 15

Turn off iteration 35 35 35

(b) Automatically calculated iterations.

Bladder 1 2 3

Reduce iteration 15 15 14

Turn off iteration 37 38 32

In Table 5, we showed results after our manual set iterations to reduce and
skip. In Table 7, we show new results of segmentation with the automatic han-
dling of g2. In the setup, after the first estimated zero has been found and
mid-area determined, the segmentation process is restarted automatically from
the initial iteration. Once the segmentation process reaches the found iterations,
automatic reduction and skipping of g2 is applied without any user intervention.

Table 7. Comparison of segmentation L2-norm results for 85% noisy
image between manual and automatic handling of g2.

(a) Iterations set manually.

Bladder 1 2 3

L2-norm 1.1380 6.2533 0.2299

(b) Iterations calculated automatically.

Bladder 1 2 3

L2-norm 1.2245 5.2651 0.1906

6. Conclusion

We presented a level-set based Geodesic active contours model that solves
some of the problems encountered when balloon models are introduced to ‘ac-
tive models’. We modified the definition and behaviour of the external force,
specifically the inflation term. We automatically controlled its influence on the
segmentation during the evolution. This was based on a simple estimation algo-
rithm to estimate differences of the current and previous segmentation to deter-
mine at what iteration to change the inflation term influence.

We presented promising experiment 3D results, showing the advantages of the
approach, specifically for very noisy images. The challenge with finding the cor-
rect set of parameters for segmentation have been made simpler by the proposed
approach to automatically handle the inflation term influence.
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[5] EYMARD, R.—HANDLOVIČOVÁ, A.—MIKULA, K.: Study of a finite volume scheme
for the regularized mean curvature flow level set equation, IMA J. Numer. Anal. 31 (2011),
no. 3, 813–846.
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