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Abstract
In this paper, we introduce and study a novel segmentation method for 4D images 
based on surface evolution governed by a nonlinear partial differential equation, 
the generalized subjective surface equation. The new method uses 4D digital image 
information and information from a thresholded 4D image in a local neighborhood. 
Thus, the 4D image segmentation is accomplished by defining the edge detec-
tor function’s input as the weighted sum of the norm of gradients of presmoothed 
4D image and norm of presmoothed thresholded 4D image in a local neighbor-
hood. Additionally, we design and study a numerical method based on the finite 
volume approach for solving the new model. The reduced diamond cell approach 
is used for approximating the gradient of the solution. We use a semi-implicit 
finite volume scheme for the numerical discretization and show that our numeri-
cal scheme is unconditionally stable. The new 4D method was tested on artificial 
data and applied to real data representing 3D+time microscopy images of cell nuclei 
within the zebrafish pectoral fin and hind-brain. In a real application, processing 
3D+time microscopy images amounts to solving a linear system with several billion 
unknowns and requires over 1000 GB of memory; thus, it may not be possible to 
process these images on a serial machine without parallel implementation utilizing 
the MPI. Consequently, we develop and present in the paper OpenMP and MPI par-
allel implementation of designed algorithms. Finally, we include cell tracking results 
to show how our new method serves as a basis for finding trajectories of cells during 
embryogenesis.
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1  Introduction

In image processing and computer vision, it is well known that image segmentation 
is one of the fundamental and most studied problems. Consequently, there are sev-
eral approaches to image segmentation in literature [8, 11–13, 16, 27, 31, 34], and 
[38]. However, in this paper, we will study and use the level set method for image 
segmentation. The idea of following the interfaces in immiscible fluid flow by the 
Eulerian approach was proposed by Dervieux and Thomasset [6, 7], and Osher and 
Sethian [26] then introduced the general level set methodology. The level set method 
is the evolution of curves and surfaces by means of a dynamical embedding func-
tion (often referred to as the level set function). In other words, the level set method 
is the implicit representation of boundaries, curves (or surfaces). Furthermore, in 
the level set formulation, the subjective surface (SUBSURF) method for image seg-
mentation will be the focus of this paper. This method, in the context of image pro-
cessing, was introduced in [32] and [33], studied and applied in several biomedical 
research [5, 18, 19, 24, 32], and [33]. The following works, [4, 9, 14], and [29], rep-
resent recent developments and applications of the SUBSURF method. This method 
is used in Bioemergences workflow [14] (http://​bioem​ergen​ces.​iscpif.​fr/​workf​low/). 
SUBSURF segmentation method is based on the idea of evolution of segmentation 
function governed by a nonlinear diffusion equation [5, 32, 33, 40], which can be 
understood as an advection–diffusion model. Hence, a segmentation seed (the start-
ing point that determines the approximate position of an object in the image) is usu-
ally needed to segment an object. Then an initial segmentation function u0(x) is con-
structed with reference to the segmentation seed. Finally, this segmentation function 
is allowed to evolve to the final state following the SUBSURF model. Ideally, the 
evolution process ends up with a function whose isosurfaces all have the object’s 
shape that is intended to be segmented.

In this paper, we introduce a generalization of the classical SUBSURF model. 
This generalization is due to the fact that in real applications where the object 
intended to be segmented possesses internal structures or edges, it is usually chal-
lenging to obtain optimal results using the classical SUBSURF segmentation 
approach. The reason is that this approach works with edge information throughout 
the segmentation process. Hence, edges within the internal structures in an object 
of interest are also respected during segmentation. To overcome the effect of the 
internal structures or edges, we introduced thresholding of image intensity values 
within a ball of appropriate radius around the object center. This local threshold-
ing serves to eliminate the internal structures or edges. Additionally, we combined 
the information obtained from thresholding and original image intensities to get an 
accurate final segmentation result. Unlike the works in [19, 23, 24], on the numeri-
cal approximation of the subjective surface method, we utilized the rescaling of val-
ues of the segmentation function at each segmentation step to the interval [0, 1], 

http://bioemergences.iscpif.fr/workflow/
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which makes the final decision on segmentation contour much easier and automatic. 
The computation task involving 4D microscopy images requires solving a linear sys-
tem with several billion unknowns. This 4D high-scale computing problem requires 
over 1000 GB of memory and may not be possible to be solved on a serial machine 
without parallel implementation utilizing the MPI. Thus, we developed the paral-
lelization of the 4D numerical method, which was not done anywhere before, and 
showed its properties like unconditional stability and experimental order of conver-
gence. Finally, we developed an efficient parallel implementation of the method for 
the generalized model in the case of 4D images.

The remaining part of this work is organized as follows: Section 2 provides an 
overview of the SUBSURF method and some numerical examples of the application 
of the SUBSURF segmentation method to artificial and real data. Section 3 contains 
the details of the proposed generalization of the classical method. It contains the 
studied model combining thresholded image information and original image data, 
the numerical scheme for solving the model, the stability of the numerical scheme, 
experimental order of convergence, an overview of the computer implementation, 
and parallel implementation using OpenMP and MPI. Furthermore, the application 
of the new segmentation algorithm to 4D image segmentation was presented in Sec-
tion 4. Finally, cell tracking based on the result of the new segmentation algorithm 
was presented in Section 5.

2 � The SUBSURF segmentation method

The SUBSURF segmentation method is based on the idea of evolution of segmenta-
tion function, which is governed by an advection–diffusion model. The SUBSURF 
model was proposed by Sarti, Malladi, and Sethian [33] and is given by

where u(t, x) is the unknown segmentation function, g0 = g(|▿G� ∗ I0|) , I0 is image 
to be segmented, and G� is a smoothing kernel. g ∶ ℝ

+
0
→ ℝ

+ is a smooth nonin-
creasing function such that g(0) = 1 and 0 < g(s) → 0 as s → ∞ . The function g was 
introduced by Perona and Malik in [30] and has the following typical example:

Equation (1) is accompanied by Dirichlet boundary conditions

or Neumann boundary conditions

(1)
�u

�t
= |▿u|▿ ⋅

(
g0

▿u

|▿u|

)
in (0, T] ×�,

(2)g(s) =
1

1 + Ks2
, K ≥ 0.

(3)u(t, x) = uD on [0, T] × ��,

(4)
�u

�n
(t, x) = 0 on [0, T] × ��,
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where n is unit normal to �� , and with the initial condition

Dirichlet boundary condition is used in the image segmentation, and without loss 
of generality uD = 0 may be assumed. The zero Neumann boundary conditions are 
used, e.g., in morphological image smoothing (see, e.g., [5] and references therein).

In computations involving model (1), one possible choice of initial segmentation 
function, u0 , is the following function

where s corresponds to the focus point, and 1
v
 gives a maximum of u0 whose peak is 

centered in a “focus point” inside the segmented object [24]. This function can also 
be considered only at a circle with center s and radius R. Outside this circle, the 
value of u0 is taken to be 1

R+v
 . If (1) is accompanied by zero Dirichlet boundary con-

dition, then finally 1

R+v
 is subtracted from such peak-like profile. In the case of small 

objects, a smaller choice of value for R can be used to speed up computations. Also, 
u0(x) = 1 −

|x−s|
R

 is another possible choice of initial segmentation function.
We now present some numerical and illustrative examples to demonstrate the 

application of the SUBSURF model to image segmentation. The model (1) for sur-
face reconstruction was tested on artificial examples and applied to real data repre-
senting 3D microscopy images of cell nuclei. For the first numerical experiment, a 
sphere and a sphere with holes were generated, as can be seen in the first column of 
Fig. 1. Afterward, model (1) was used to reconstruct the shapes of these spheres, 
and the results obtained after reconstruction are shown in the second column of 
Fig. 1. In the second experiment, the model (1) was applied to real data representing 
3D microscopy images of cell nuclei and membrane. In the first column of Figs. 2, 
3, and 4, 3D image of these microscopy images are shown, whereas, in the second 
column of Figs. 2, 3, and 4 the results obtained after application of model (1) are 
shown and colored in black.

3 � 4D image segmentation algorithm

In the previous section, we presented the SUBSURF segmentation method and some 
of its successful applications. However, in many real applications where the object 
to be segmented has internal structures or edges, it is usually challenging to obtain 
optimal results using the SUBSURF segmentation approach (see, e.g., Figs.  5, 6, 
and 7). The reason is that this approach works with edge information throughout 
the segmentation process. Hence, edges within the internal structures in an object of 
interest are also respected during segmentation. For instance, Figs. 5, 6, and 7 show 
the results of segmentation using the classical SUBSURF approach for 3D images 

(5)u(0, x) = u0(x) in �.

(6)u0(x) =
1

|s − x| + v
,
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of zebrafish cell nuclei, cell membrane, and mouse embryo cell nuclei, respectively. 
The results of segmentation in these figures are colored in black, and the shapes of 
interest are located approximately at the center of each image.

Fig. 1   First column shows a solid sphere and sphere with six symmetric holes, whereas the second col-
umn shows results of the segmentation after the application of the model (1)

Fig. 2   First column of this figure shows the 3D microscopy image of cell membrane to be segmented, 
whereas the second column shows the result after application of the model (1); the cell membrane of 
interest and its corresponding result after segmentation (which are depicted in black) is located approxi-
mately at the center of each picture
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In this section, to overcome the effect of the internal structures or edges, we intro-
duce the thresholding of values within a ball of appropriate radius around the object 
center. This local thresholding serves to eliminate the internal structures or edges. 
Finally, we combine the information given by thresholding and original image 

Fig. 3   First column of this figure shows the 3D microscopy image of cell nuclei together with approxi-
mate cell centers (these are points marked in red color), whereas the second column shows the 3D image 
of microscopy image of cell nuclei after application of (1) to the cells with centers marked in red color

Fig. 4   First column of this figure shows the 3D microscopy images of cell nuclei to be segmented, 
whereas the second column shows the result after application of the model (1); the cell nuclei of inter-
est and their corresponding results after segmentation (which are depicted in black) are located approxi-
mately at the center of each picture
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intensities to get a segmentation result. For example, in 3D segmentation (see also 
[36] and [37]) of nuclei and membranes images shown in Figs. 5, 6 and 7 using this 
approach, we obtained the results presented in Figs. 8, 9 and 10, which is clearly 
much more accurate compared to the results, shown in Figs. 5, 6, and 7, obtained 
using the classical method.

Fig. 5   This figure shows the 
3D microscopy image of mouse 
embryo cell nuclei segmentation 
result using classical SUBSURF 
approach

Fig. 6   First column of this figure shows the 3D microscopy images of cell nuclei to be segmented, 
whereas the second column shows the result of segmentation using the classical SUBSURF approach
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In [20], the first numerical scheme for 4D image segmentation based on a 
generalized SUBSURF model was introduced. In this paper, we introduce and 
study a 4D numerical scheme for the solution of the new 4D segmentation 
model (7) presented in the next section. This numerical method is based on the 
finite volume approach. The stability of the numerical scheme is also presented. 
Additionally, we introduced the local rescaling of the values of the segmenta-
tion function at each segmentation step to the interval [0,  1]. Furthermore, the 

Fig. 7   First row of this figure shows the 3D microscopy images of cell membranes to be segmented, 
while the second row shows the result of segmentation using the classical SUBSURF approach

Fig. 8   This figure shows the 3D microscopy image of mouse embryo cell nuclei
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application of the studied model to 3D and 4D image segmentation is studied. 
OpenMP and MPI parallelizations are employed for efficient computer implemen-
tation. For example, in the real application presented in the fifth and sixth experi-
ments of Sect.  4, to process the 3D+time microscopy images, with dimensions 
567 × 577 × 147 × 70 , 1012 GB of memory was needed. This clearly shows that it 
may not be possible to process these images on a serial machine without parallel 
implementation utilizing the MPI.

3.1 � Mathematical model

Let I0 ∶ 𝕆 ⊂ ℝ
4
⟶ ℝ , be the intensity function of a 4D image where 

� = � × [0, �F] , 𝛺 ⊂ ℝ
3 , and �F represents the final real video time. For each real 

video time � ∈ [0, �F] , let C� = {c�
m
}
N�

m=1
 denote the set of “centers,” where c�

m
 and N� 

represent the mth center and the total number of centers, respectively, at time � . Further-
more, for each c�

m
∈ C� and � ∈ [0, �F] , let ��

m
= min

y ∈ B�
m
(c�

m
,r)
I0(y, �) , 

��
m
= max

y ∈ B�
m
(c�

m
,r)
I0(y, �) , where B�

m
(c�

m
, r) is the mth ball at time � with radius r centered 

at c�
m
 , a given point (“center”) inside the object to be segmented. Then the threshold 

value (which is used for local thresholding) may be chosen as TH�

m
= � ��

m
+ (1 − �) ��

m
 , 

Fig. 9   In this figure, first row shows the 3D microscopy images of four different cell nuclei; second row 
shows segmentation result using thresholded image intensity information and original image intensity 
information in 3D case of (7). That is, the result after application of the 3D case of (7) with � = 0.5 and 
� = 0.5
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� ∈ [0, 1] and the ball radius may be chosen with respect to the approximate size of the 
object to be segmented. So, the idea (of local thresholding) is to set all intensity values 
in the local neighborhood of center c�

m
 to ��

m
 if they are above TH�

m
 and ��

m
 otherwise. 

Hence, the 4D image intensity of the thresholded image within a ball of radius r is 
defined by

where y ∈ B�
m
(c�

m
, r).

Our new method is based on solution of the following generalized SUBSURF 
equation

ITH(y, �) =

{
��
m
, I0(y, �) ≥ TH�

m
,

��
m
, otherwise,

(7)
�u

�t
= |∇u|∇ ⋅

(
G0 ∇u

|∇u|

)
in (0, T] ×�,

Fig. 10   First column of this figure shows the 3D microscopy images of cell membrane to be segmented. 
The second, third, and fourth columns show the result after the application of (7) in 3D with � = 0.8 and 
� = 0.2 , � = 0.7 and � = 0.3 , and � = 0.6 and � = 0.4 , respectively



119

1 3

4D segmentation algorithm with application...

where u(t, x) is the unknown segmentation function, x ∈ � , t ∈ [0, T] is a “segmen-
tation time,” G0 = g(�|∇G� ∗ I0| + �|∇G� ∗ ITH|) , g is the function introduced by 
Perona and Malik in [30] (see, e.g., Eq. (2)), �, � ∈ [0, 1] determine the influence 
of information obtained from thresholded and original image intensities, G� is the 
smoothing kernel, e.g., the Gaussian function, ▿G� ∗ I0 and ▿G� ∗ ITH are pres-
moothing of I0 and ITH by convolution with G� , respectively. It is well known, see 
e.g., [39] and [17], that the convolution with Gaussian function G� is equivalent to 
solving the linear heat equation (LHE) obtained by setting G0 ≡ 1 in equation (7), 
with t = 1

2
�2 . Thus, the presmoothing of I0 and ITH by convolution with Gaussian 

function is realized by solving the LHE. Equation (7) is accompanied by Dirichlet 
boundary conditions

and with the initial condition

Without loss of generality, uD = 0 is assumed. The initial condition in 4D is con-
structed using Eq. (6), where x ∈ �.

3.2 � Numerical discretization

In this section, the details of time and space discretization is presented.

3.2.1 � Time discretization

For time discretization of (7), semi-implicit approach which guarantees uncondi-
tional stability is used. Suppose that the (7)–(5) is solved in time interval I = [0, T] 
and N equal number of time steps. If � =

T

N
 denotes the time step, then the time dis-

cretization of (7) is given by

where � is the regularization factor (Evans–Spruck [10]), u0 is given initial segmen-
tation function, and un , n = 1,⋯ ,N is the solution of the model in segmentation 
time step n.

3.2.2 � Space discretization

For space discretization, we start with introduction of some notations which will be 
used subsequently. We have adopted similar notations as those used in [19]. Let Th 
denote finite volume mesh containing the doxels of 4D image, while Vijkl , 
i = 1,… ,N1 , j = 1,… ,N2 , k = 1,… ,N3 , l = 1,… ,N4 denote each finite volume. 
For each Vijkl ∈ Th , let h1 , h2 , h3 , h4 be the size of the volumes in x1 , x2 , x3 , x4 direc-
tion. Let the volume of Vijkl and its barycenter be denoted by m(Vijkl) and cijkl , 

(8)u(t, x) = uD on [0, T] × ��,

(9)u(0, x) = u0(x) in �.

(10)
1√

�2 + �∇un−1�2
un − un−1

�
= ∇ ⋅

�
G0 ∇un√

�2 + �∇un−1�2

�
,
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respectively. Let the approximate value of un in cijkl be denoted by un
ijkl

 . For every 
Vijkl ∈ Th , we have the following definitions:

–	 Nijkl = {(p, q, r, s) ∶ p, q, r, s ∈ {−1, 0, 1}, |p| + |q| + |r| + |s| = 1}

–	 Pijkl = {(p, q, r, s) ∶ p, q, r, s ∈ {−1, 0, 1}, |p| + |q| + |r| + |s| = 2}

For each (p, q, r, s) ∈ Nijkl , denote the line connecting the center of Vijkl and the 
center of its neighbor Vi+p,j+q,k+r,l+s by �pqrs

ijkl
 and its length m(�pqrs

ijkl
) . We denote the 

sides, its measure, and normal in coordinate directions of the finite volume Vijkl by 
e
pqrs

ijkl
 , m(epqrs

ijkl
) , and �pqrs

ijkl
 , respectively. Furthermore, for each (p, q, r, s) ∈ Pijkl , y

pqrs

ijkl
 is 

defined by

The approximate value of un−1 in ypqrs
ijkl

 , with (p, q, r, s) ∈ Pijkl , is denoted by upqrs
ijkl

 ; the 
time index is omitted because only the values from the time level n − 1 will be 
needed at these points.

With these notations, integration of (10) over finite volume Vijkl yields

Let the average value of A� =
√
�2 + �∇un−1�2 in finite volume Vijkl be denoted by 

Ān−1
𝜀,ijkl

 . If we consider the fact that un and un−1 are asummed to be piecewise constant 
over the finite volume mesh on the left hand side of (11) and using the divergence 
theorem on the right hand side of (11), we obtain

where beneath the summation sign, we used just Nijkl instead of (p, q, r, s) ∈ Nijkl to 
simplify notation. If we approximate normal derivative ∇un ⋅ �

pqrs

ijkl
 by 

y
pq00

ijkl
=
1

4

(
cijkl + ci+p,j,k,l + ci,j+q,k,l + ci+p,j+q,k,l

)
,

y
0qr0

ijkl
=
1

4

(
cijkl + ci,j+q,k,l + ci,j,k+r,l + ci,j+q,k+r,l

)
,

y00rs
ijkl

=
1

4

(
cijkl + ci,j,k+r,l + ci,j,k,l+s + ci,j,k+r,l+s

)
,

y
p0r0

ijkl
=
1

4

(
cijkl + ci+p,j,k,l + ci,j,k+r,l + ci+p,j,k+r,l

)
,

y
p00s

ijkl
=
1

4

(
cijkl + ci+p,j,k,l + ci,j,k,l+s + ci+p,j,k,l+s

)
,

y
0q0s

ijkl
=
1

4

(
cijkl + ci,j+q,k,l + ci,j,k,l+s + ci,j+q,k,l+s

)
.

(11)∫
Vijkl

1√
�2 + �∇un−1�2

un − un−1

�
dx = ∫

Vijkl

∇ ⋅

�
G0 ∇un√

�2 + �∇un−1�2

�
dx.

(12)
m(Vijkl)

Ān−1
𝜀,ijkl

un
ijkl

− un−1
ijkl

𝜏
=
�

Nijkl

∫
e
pqrs

ijkl

G0 ∇un√
𝜀2 + �∇un−1�2

⋅ 𝜈
pqrs

ijkl
dS,
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(un
i+p,j+q,k+r,l+s

− un
ijkl
)∕m(�

pqrs

ijkl
) and define Apqrs;n−1

�,ijkl
 and Gpqrs

ijkl
 to be the average of A� 

and G0 on epqrs
ijkl

 then (12) reduces to

Equation (13) can be rewritten as

which can be written in the form of system of equations

i = 1,⋯ ,N1 , j = 1,⋯ ,N2 , k = 1,⋯ ,N3 , and l = 1,⋯ ,N4 . The average values Gpqrs

ijkl
 , 

A
pqrs;n−1

�,ijkl
 , and Ān−1

𝜀,ijkl
 either in doxels or on doxel sides are determined using the 

reduced diamond cell strategy (see [19]) adapted to 4D.
In the sense of this reduced diamond cell approach, the approximate values of un−1 

are obtained in the points ypqrs
ijkl

 . These values are defined for each (p, q, r, s) ∈ Pijkl by

The components of the averaged gradient on epqrs
ijkl

 , (p, q, r, s) ∈ Nijkl , are approxi-
mated by 2D diamond cell approach which use the values upqrs

ijkl
 given above (see also 

[19]). Additionally, approximation of the gradient on the face epqrs
ijkl

 is denoted by 
∇pqrsun−1

ijkl
 . This implies that

(13)m(Vijkl)
un
ijkl

− un−1
ijkl

𝜏
= Ān−1

𝜀,ijkl

∑

Nijkl

m(e
pqrs

ijkl
)G

pqrs

ijkl

un
i+p,j+q,k+r,l+s

− un
ijkl

A
pqrs; n−1

𝜀,ijkl
m(𝜎

pqrs

ijkl
)
.

(14)un
ijkl

= un−1
ijkl

+
𝜏

m(Vijkl)
Ān−1
𝜀,ijkl

∑

Nijkl

m(e
pqrs

ijkl
)G

pqrs

ijkl

un
i+p,j+q,k+r,l+s

− un
ijkl

A
pqrs; n−1

𝜀,ijkl
m(𝜎

pqrs

ijkl
)
,

(15)

(
1 +

𝜏

m(Vijkl)
Ān−1
𝜀,ijkl

∑

Nijkl

G
pqrs

ijkl

m(e
pqrs

ijkl
)

A
pqrs; n−1

𝜀,ijkl
m(𝜎

pqrs

ijkl
)

)
un
ijkl

−
𝜏

m(Vijkl)
Ān−1
𝜀,ijkl

∑

Nijkl

G
pqrs

ijkl

m(e
pqrs

ijkl
)

A
pqrs; n−1

𝜀,ijkl
m(𝜎

pqrs

ijkl
)
un
i+p,j+q,k+r,l+s

= un−1
ijkl

,

u
pq00

ijkl
=
1

4

(
un−1
ijkl

+ un−1
i+p,j,k,l

+ un−1
i,j+q,k,l

+ un−1
i+p,j+q,k,l

)
,

u
0qr0

ijkl
=
1

4

(
un−1
ijkl

+ un−1
i,j+q,k,l

+ un−1
i,j,k+r,l

+ un−1
i,j+q,k+r,l

)
,

u00rs
ijkl

=
1

4

(
un−1
ijkl

+ un−1
i,j,k+r,l

+ un−1
i,j,k,l+s

+ un−1
i,j,k+r,l+s

)
,

u
p0r0

ijkl
=
1

4

(
un−1
ijkl

+ un−1
i+p,j,k,l

+ un−1
i,j,k+r,l

+ un−1
i+p,j,k+r,l
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If the same approach for computation of gradients of image intensities is used, then 
the following approximation of Gpqrs

ijkl
 in (15) is obtained

where I0
�
= G� ∗ I0 , I0

�;ijkl
 is the value of I0

�
 in doxel Vijkl , and ITH

�
= G� ∗ ITH , ITH

�;ijkl
 is 

the value of ITH
�

 in doxel Vijkl . Finally, incorporating �−regularization, we obtain the 
following remaining terms in (15)

Equation (15) accompanied by the zero Dirichlet boundary condition, represent a 
linear system of equations which can be solved efficiently, e.g., using the Successive 
Overrelaxation (SOR) method.

Remark 1  (Local rescaling) For each segmentation time step n, and l = 1,⋯ ,N4 , let 
Cl = {cl

m
}
Nl

m=1
 denote the set of centers, where cl

m
 and Nl represent the mth center and 

the total number of centers, respectively for each l. Let Bl
m
(cl

m
, r) be a ball with 

radius r and center cl
m
 ( cl

m
 is a given point inside the object to be segmented), 

�l
m
= min

Bl
m
(cl

m
,r)
un
ijkl

 and �l
m
= max

Bl
m
(cl

m
,r)
un
ijkl

 . Then the locally rescaled version of un
ijkl

 given 

by (15) within the ball Bl
m
(cl

m
, r) is obtained by the following relation
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Consequently, we have that for each time step n, rescaled version uresc;n
ijkl

∈ [0, 1] and 
it is used instead of un−1

ijkl
 in (15) in the next segmentation time step. So in each segmen-

tation step we solve the following system of equations representing the final formula-
tion of our method:

i = 1,… ,N1 , j = 1,… ,N2 , k = 1,… ,N3 , and l = 1,… ,N4 . The coefficients of (19) 
are computed using uresc;n−1

ijkl
 instead of un−1

ijkl
.

Finally, we note that if h = h1 = h2 = h3 = h4 , then m(Vijkl) = h4 , m(epqrs
ijkl

) = h3 , 
and m(�pqrs

ijkl
) = h , and the Eq. (19) simplifies to

Since in our implementation we used common h, in the sequel, we deal with the 
properties of the system (20). All derived properties are simply adopted also to the 
system (19).

The solution of the linear system given by equations (20) is obtained by the succes-
sive overrelaxation (SOR) method as follows:

where

(18)u
resc; n

ijkl
=

1

�l
m
− �l

m

(un
ijkl

− �l
m
).

(19)

(
1 +

𝜏

m(Vijkl)
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denotes a Gauss-Seidel iterate and � is the relaxation parameter; N1
ijkl

 is the set of 
neighbors whose new values are already known and N2

ijkl
 is the set of neighbors 

whose new values are not yet known.
Furthermore, the RED-BLACK SOR method [2, 23, 25] can be used to overcome 

the inherent serial difficulty of the classic SOR. The RED-BLACK SOR divides the 
domain into an alternating RED and BLACK elements so that for any i,  j, k,  l, if 
(i + j + k + l) % 2 == 0 , the element is RED and if (i + j + k + l) % 2 == 1 , the ele-
ment is BLACK. Updating the BLACK element’s solution requires the knowledge 
of adjacent RED elements and vice versa. Consequently, the entire computation is 
divided into two phases: RED and BLACK elements’ update. All RED elements are 
updated simultaneously in the first phase, and the same algorithm can be applied to 
the calculation of BLACK elements in the second phase. Thus, the solution of the 
linear system given by Eq. (20) can be obtained by the RED-BLACK SOR method 
as follows:

–	 First phase: If (i + j + k + l) % 2 == 0 i.e., if i + j + k + l is even, then update all 
RED elements in Eq. (21) simultaneously using BLACK elements’ values from 
the previous iteration;

–	 Second phase: If (i + j + k + l) % 2 == 1 i.e., if i + j + k + l is odd, then update 
all BLACK elements in Eq. (21) simultaneously using RED elements’ values 
from first phase.

3.3 � Stability of the numerical scheme

In this section, we present a short proof that the linear system given by Eq. (20) has 
a unique solution and that numerical scheme employed is unconditionally stable. 
The method or technique of proof presented in [24] and [15] has been adopted.

Definition 3.1  The semi-implicit finite volume scheme given by Eq. (20) for solving 
Eq. (7) is unconditionally stable if for each 𝜖 > 0 , 𝜏 > 0 and n ∈ {1,… ,N} , the fol-
lowing inequality (the discrete minimum–maximum principle) holds

Theorem 3.2  The linear scheme given by Eq. (20) has a unique solution un
ijkl

 and is 
unconditionally stable for each 𝜖 > 0 , 𝜏 > 0 and n ∈ {1,… ,N}.

Proof  The equation (20) together with Dirichlet boundary condition is a system of 
linear equations with square matrix whose off diagonal elements are given by

Also, the diagonal elements given by

(22)min
Vijkl ∈ Th

u
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Vijkl ∈ Th
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Vijkl ∈ Th
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, (p, q, r, s) ∈ Nijkl .
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are non-negative and dominate the sum of absolute value of the nondiagonal ele-
ments in each row. Hence, the matrix of the linear system (20) is a strictly diago-
nally dominant M-matrix. Consequently, the existence of a unique solution of (20) 
is guaranteed [3, 35]. Next, we show that the scheme is unconditionally stable. For 
this, it is enough to show that Eq. (20) satisfies (22). Clearly, equation (20) is same 
as

Let

Then from (25) we have that

Hence,

Using similar arguments, we have that

Equations (26) and (27) implies that

which yield Eq. (22). Hence, the numerical scheme given by Eq. (20) is uncondi-
tionally stable. 	�  ◻

3.4 � Experimental order of convergence

Assuming that the error of a scheme in some given norm is proportional to some 
power, � , of the grid size h. Then we have that Err(h) = Ch� where C is a con-
tant of proportionality. If half of the grid size is considered, i.e., h ∶=

h

2
 then 

Err(
h

2
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h
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The � is called the experimental order of convergence (EOC) and is determined by 
comparing numerical solutions and exact solutions on subsequently refined grids 
[5].

We now test our method using the exact solution (see also [5])

of the level set equation

and consider Dirichlet boundary conditions given by this exact solution.
This problem is solved in the spatial domain � = [−1.25, 1.25]4 and in 

the time interval T = 0.0625 . We have taken subsequent grid refinement 
N1 = N2 = N3 = N4 = 10, 20, 40, 80, 160 and considered number of discrete 
time steps 1,   4,   16,   64,   256 respectively. The time step � is chosen proportion-
ally to h2 and we measure errors in L2((0, T), L2(�))−norm. Table 1 shows errors in 
L2((0, T), L2(�))−norm for refined grids and � = h2.

We observe that � ≈ 2 as the grids get more refined, implying that the method 
converges with an order of almost two. Thus, we can conclude that the scheme is 
reliable and can be used in practical applications.

3.5 � Brief overview of computer implementation

The following steps provide an overview of the implementation steps for the new 4D 
model.

–	 Read input 3D+time image together with the corresponding centers of cells.
–	 Using the input centers, generate initial segmentation function (or initial condi-

tion).
–	 Locally rescale the initial segmentation function to interval [0, 1].
–	 Using the input centers, perform local thresholding of 4D image. 

(29)� = log2

(
Err(h)

Err(
h

2
)

)
.

(30)u(x1, x2, x3, x4, t) =
x2
1
+ x2

2
+ x2

3
+ x2

4
− 1

6
+ t.

(31)ut = |∇u|∇ ⋅
∇u

|∇u|

Table 1   Errors in 
L
2
((0,T),L

2
(�))−norm, and 

EOC comparing numerical and 
exact solution (30)

n h final step Error ( � = h
2) EOC

10 0.25 1 1.680403e − 2

20 0.125 4 4.653133e − 3 1.852533
40 0.0625 16 1.208771e − 3 1.944661
80 0.03125 64 3.029600e − 4 1.996342
160 0.015625 256 8.340820e − 5 1.860866
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1.	 Compute the coefficients Gpqrs

ijkl
 , Apqrs; n−1

�,ijkl
 , and Ān−1

𝜀,ijkl
 either in doxels or on doxel 

sides using the locally rescaled segmentation function.
2.	 Solve the linear system given by (20).
3.	 Locally rescale the computed segmentation function to interval [0, 1].

–	 Repeat steps 1, 2, and 3 until the total number of segmentation steps is reached.
–	 Output the result of segmentation

For complete serial and parallel implementation in C programming language, see 
https://​github.​com/​88MAR​K08/​4D-​image-​segme​ntati​on-​algor​ithm.

3.6 � Parallel implementation using OpenMP

OpenMP is a multi-threading implementation. In C/C++, omp.h header file includes 
all OpenMP functions. In our implementation of the new 4D model, #pragma omp 
parallel private{⋯} is used to instruct the OpenMP system to divide tasks among the 
working threads. In the for loops, the first loop is the loop for the real-time length 
� . In other words, we split a series of 3D volumes among working threads. Further-
more, #pragma omp parallel for private{⋯} reduction(operator:variable) is used 
to accomplish reduction operations. For instance, reduction (operator: variable) is 
used to specify that the operation given by the “operator” should be performed on 
the values of the “variable” from all threads at the end of the parallel construct. 
Finally, to measure CPU time in parallel implementation, omp_get_wtime() function 
is used.

In Table 2, we present a comparison of CPU times with OpenMP parallel imple-
mentation and serial implementation. In this experiment, a PC with 8192 MB RAM 
and processor: Intel(R) Core(TM) i7-7700HQ CPU @ 2.80 GHz (8 CPUs), ∼ 2.8 
GHz was used.

3.7 � Parallel implementation using MPI

The two main goals of parallel program implementation are handling huge amounts 
of data that cannot be placed in the memory of a single serial computer and the 
shortest possible program execution time. Assuming that in terms of execution time, 
a fraction P of a program can be parallelized. In an ideal case, while executing a par-
allel program on np processors, the execution time will be 1 − P +

P

np
 . Furthermore, 

the theoretical speed-up according to the Amdahl’s law [1] is given by 1

(1−P) +
P

np

 . 

Table 2   Computing times and 
speed-up of OpenMP parallel 
program for computing the EOC 
in Sect. 3.4, with n = 40

# threads 1 2 4 8

time (secs) 225.8700 119.0000 71.9270 42.3050
speed-up 0 1.898 3.140 5.339

https://github.com/88MARK08/4D-image-segmentation-algorithm
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Consequently, if only 90% of the program can be parallelized, for example, then 
with infinitely many processors the maximal speed-up (estimated from Amdahl’s 
law by 1

1−P
 ) cannot exceed 10. To minimize the time spent on communication, it is 

necessary to require that the data transmitted (e.g., multidimensional arrays) be con-
tiguous in memory. This is to ensure that data are exchanged directly among pro-
cesses in one message using only one call of MPI send and receive subroutines. In 
this section, discrete 4D image is represented by a four-dimensional array indexed 
by i, j, k, l, with i = 1 , … , N1 , j = 1 , … , N2 , k = 1 , … , N3 , l = 1 , … , N4 . The discrete 
computational domain including the boundary conditions is given by i = 0 , … , 
N1 + 1 , j = 0 , … , N2 + 1 , k = 0 , … , N3 + 1 , l = 0 , … , N4 + 1 . The boundary posi-
tions, in the computational domain, with i = 0 , i = N1 + 1 , j = 0 , j = N2 + 1 , k = 0 , 
k = N3 + 1 , l = 0 , l = N4 + 1 are reserved for Dirichlet boundary conditions and all 
the inner doxel positions correspond to the original 4D image. Let np be the number 
of processes, then to distribute the 4D data, define n4 = ⌈N4

np
⌉ , nlast

4
= N4 − (np − 1)n4 , 

n3 = N3 , n2 = N2 , n1 = N1 . Hence, the processes with rank from 0 to np − 2 deal 
with part of the discrete 4D image which is the series of 3D volumes given by the 
array with indices i = 0 , … , n1 + 1 , j = 0 , … , n2 + 1 , k = 0 , … , n3 + 1 , indexed 
locally by l in the range l = 0 , … , n4 + 1 . Additionally, on the last process with rank 
np − 1 , the index l of the last 3D volume is nlast

4
+ 1 instead of n4 + 1 . The merging of 

all 3D volumes for l = 1,… , n4 ( nlast4
 on the last process) from all processes gives 

the non-distributed complete 4D image. For the purpose of iterative solution of the 
linear system and computation of its coefficients, the data overlap is needed. The 
overlap with the necessity of information exchange between neighbouring processes 
is given by the slices n4 , n4 + 1 and slices 0,   1 of the subsequent processes. It is 
good to mention at this point that in our computer implementation, iMax = n1 + 2 , 
jMax = n2 + 2 , kMax = n3 + 2 , lMax = n4 + 2 , N = proc_lMax = n4 . Furthermore, 
the following relationship is used (see Listing 1) to transform 4D to 1D array:

In each segmentation time step, the solution values are updated as the linear sys-
tem is solved iteratively. In each iteration, four of these neighbors should be known 
already. Consequently, each consecutive process must wait until its preceding pro-
cess is completed to get the unknown neighbors’ values updated in a parallel run. 
The RED-BLACK SOR method (see, e.g., [2, 23], and [25]) is employed to do away 
with this dependency. In the RED-BLACK SOR, all doxels in the computational 

T1D(i, j, k, l) = l ∗ iMax ∗ jMax ∗ kMax + k ∗ iMax ∗ jMax + j ∗ iMax + i.
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domain are split into RED elements, given by the condition that the sum of its indi-
ces is an even number, and BLACK elements, given by the condition that the sum of 
its indices is an odd number. So, the eight neighbors of RED elements are BLACK 
elements and the value of RED elements depends only on those of the BLACK ele-
ments, and vice versa [23]. As a result of this method, one SOR iteration is split into 
two steps. In the first step, RED elements are updated and BLACK elements are 
updated in the second step. This splitting is perfectly parallelizable [23].

After computation of one RED-BLACK SOR iteration for the RED elements on 
every parallel process, RED updated values have to be exchanged in the overlapping 
regions, and then one iteration for BLACK elements can be computed. The data 
exchange is implemented using non-blocking MPI_Isend and MPI_Irecv subrou-
tines. For the residual’s computation, partial information from all the processes are 
collected and send to all processes to check the stopping criterion by every process.

We note that all parallel computations were performed on a Linux cluster com-
prising six computational servers (nodes) and 192 processors. Each computational 
node has 252 GB of memory and 32 processors; thus, the cluster has 1512 GB of 
memory available for computations. Additionally, we used processors belonging to 
one of the computational nodes for the experiment involving computing the EOC in 
Sect. 3.4, whose results are shown in Table 3. Furthermore, we used the six servers 
to ensure sufficient memory resources for the fifth and sixth experiments in Sect. 4, 
which involves solving a linear system with 3 366 466 110 unknowns.

Table 3 shows a comparison of CPU times with MPI parallel implementation and 
serial implementation. In this experiment, processors in one of the six servers in the 
Linux cluster were utilized.

Table 3 shows a linear speed-up with 2, 4, and 8 processors. However, with 16 
processors, the speed-up dropped from approximately 16 (expected) to 13.545. This 
drop may be attributed to the amount of time spent on communication between pro-
cesses. For instance, one, three, seven, and 15 2-way communications are involved 
with two, four, eight, and 16 processors, respectively. Thus, we may conclude that 
the communication time impacts the speed-up of the MPI parallel program.

4 � Application to 4D image segmentation

In this section, the new 4D method is tested on artificially generated 3D+time vid-
eos and applied to real data representing 3D+time microscopy images of cell nuclei 
within the zebrafish pectoral fin and hind-brain.

Table 3   Computing times and speed-up of MPI parallel program running on 1 to 16 processors for com-
puting the EOC in Sect. 3.4, with n = 80

# processors 1 2 4 8 16

time (secs) 41681.08 20976.89 10675.87 5487.309 3077.166
speed-up 0 1.987 3.904 7.596 13.545
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In the first experiment (see https://​doi.​org/​10.​5281/​zenodo.​55130​89 for the vid-
eos), 3D+time video of one sphere was artificially generated. The goal of this sim-
ple experiment is to show that the 4D method (7) can approximate a missing shape 
in a 3D+time video. This is because SUBSURF models can complete a missing part 
of an object. In the 4D case, the method is expected to complete a missing volume. 
Thus, from a 3D+time video of 20 frames, we removed time frames 5, 10, and 15 
and tried reconstructing the entire video using our 4D model. In Fig. 11, the first 
column shows the 3D frame of the video at the time step 10, the second and third 
columns show their corresponding reconstruction using the 4D method; the third 
column shows the result when the sphere at volume/frame 10 is removed. We note 
that in the second column, all frames were considered in the segmentation. The 
results of the segmentation shown in columns two and three are colored in blue. 
Furthermore, the second column of Fig. 11 shows that the segmentation results of 
this moving sphere are good. However, the third column of this figure shows that 
the segmentation result of the sphere at the missing volume/frame is an ellipsoidal 
shape instead of a spherical shape. The approximation of a sphere with an ellip-
soid is a good result that can be very useful during cell tracking. Thus, we can con-
clude from this experiment that our 4D method can approximate a missing shape in 
3D+time.

In the second experiment (see https://​doi.​org/​10.​5281/​zenodo.​55130​89 for the 
videos), 3D+time videos of spheres were artificially generated. There are four 
spheres in time steps 1 − 3 , seven spheres in time steps 4 − 17 , and five spheres in 
time steps 18 − 20 . In Fig.  12, the first row shows the 3D frames of the video at 
the time steps 1 (first column), 10 (second column), and 20 (third column), and the 
second row shows their corresponding reconstruction using the new method. The 
results of the segmentation are colored in blue. Furthermore, the segmentation 
results of the 3D+time videos of these spheres show a very good performance of the 
4D method (7) on this artificial dataset.

In the following two experiments, we present the results of experiments with data 
from zebrafish hindbrain. 3D microscopy images of cell nuclei in the hindbrain of 
developing zebrafish embryos were provided by Mageshi Kamaraj from the group of 
Nadine Peyriéras (CNRS BioEmergences, France).

In the subsequent two experiments, seven arbitrary cell nuclei centers in zebrafish 
hindbrain were selected, and 23 time frames were considered. For each time frame, 

Fig. 11   First column of this figure shows the 3D frame of 4D image of a sphere at time step 10, the 
second column shows the corresponding reconstruction using (7), and the third column shows the result 
when the sphere at volume/frame 10 is removed

https://doi.org/10.5281/zenodo.5513089
https://doi.org/10.5281/zenodo.5513089
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we considered a small 30 × 30 × 30 computational domain around each of these 
seven nuclei centers. The motivation for this construction is to reduce the memory 
requirement of our serial implementation and ensure easy visualization. Further-
more, image intensities from the original dataset are copied to these small computa-
tional domains around nuclei centers in each time frame. Hence, when the 3D vol-
umes containing these seven small cubes are put together, we obtain the 3D+time 
image shown in Fig. 13.

In the third experiment, using the 3D method case presented in [36], we per-
formed 3D segmentation of these seven cell nuclei within the small 30 × 30 × 30 
computational domain in each 3D volume containing these seven small cubes. 
The 3D segmentation results of these cell nuclei in each 3D volume are put 
together over time and used as an input 3D+time image to the 4D method (first 
column of Fig.  13). This is another artificial experiment that is more closer to 
experiments with real data. Hence, in generating the 3D+time image for this 
experiment, we consider shapes closer to real cell shapes than spheres. We note 

Fig. 12   First row of this figure shows the 3D frames of 4D image of spheres at time steps 1 (first col-
umn), 10 (second column), and 20 (third column) and the second row shows their corresponding recon-
struction using (7)

Fig. 13   This figure shows the 3D image of seven zebrafish cell nuclei moving in time (first image). Sec-
ond image shows the segementation result using model 7
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that in the first, second, and third experiments, the following pairs of parameters 
(� = 1, � = 0) , (� = 0, � = 1) , and (� = 0.5, � = 0.5) in model (7) yield the same 
result. This is because the thresholded and original image intensities are the same.

First image of Fig.  13 shows the visualization of seven zebrafish cell nuclei, 
segmented in 3D and put together to form a 3D+time image. Second image of 
Fig. 13 shows the corresponding segmentation result using the 4D model (7). The 
segmentation results are colored in blue and show accurate correspondence of the 
segmented moving cells in 4D with the original 4D image.

In the fourth experiment, we worked with original image intensity within the 
small 30 × 30 × 30 computational domain. For each of the seven selected nuclei 
centers, the intensities around each nucleus are copied to the 30 × 30 × 30 com-
putational domain. Hence, there are seven small computational domains in each 
time frame or 3D volume, and each domain contains the original image intensity. 
The 3D+time image processed is obtained by putting these original 3D images 
(containing seven small 3D volumes) together. Additionally, we restricted compu-
tations to a small 3D volume around the nuclei. The images presented in Fig. 14 
show a visualization of the 3D+time images.

First image of Fig. 14 shows the 3D image of seven zebrafish cell nuclei that 
are moving in time and second image shows the corresponding segmentation 
result using the 4D model (7). The results of the segmentation are colored in 
black.

Unlike in the previous four experiments where serial implementations were 
used, we will use the parallel implementation in subsequent experiments; thus, 
the entire 3D volumes of image intensities will be considered. We remark that the 
dataset used in the two subsequent experiments comprises several frames of 3D 
volumes. Each of these volumes has a dimension of 567 × 577 × 147 . Therefore, 
the maximum number of frames of the 3D volumes that can be processed at once 
in the cluster is 90. The reason for this maximum number is that the cluster has 
1512 GB of memory available for computations. Additionally, to process the 90 
frames of 3D volumes, with volume dimensions 567 × 577 × 147 , more than 1130 
GB of memory is needed, and we decided to limit the number of frames in our 
computations to a maximum of 70. Furthermore, to process these 70 frames of 
3D volumes, with volume dimensions 567 × 577 × 147 , 1012 GB of memory was 

Fig. 14   This figure shows the visualization of seven zebrafish cell nuclei moving in time



133

1 3

4D segmentation algorithm with application...

needed. This clearly shows that it may not be possible to process these images on 
a serial machine without parallel implementation utilizing the MPI.

In the fifth experiment (see https://​doi.​org/​10.​5281/​zenodo.​55131​18 for the vid-
eos of this experiment), we selected seven cell nuclei in 70 time frames within the 
zebrafish pectoral fin. The selected cell nuclei were clearly visible in all time frames. 
Thus, easy visualization of segmentation results in all time frames is the motivation 
for this selection. Additionally, in the two previous experiments of this section, we 
used an arbitrary number “seven;” hence, we have used seven in this experiment too.

In Fig.  15, the first row shows the 3D frames of the video at the time steps 1 
(first column), 20 (second column), 40 (third column), and 70 (fourth column) 
and the second row shows the corresponding reconstruction of the selected seven 
nuclei images using (7). Figure 15 (see also, https://​doi.​org/​10.​5281/​zenodo.​55131​
18) shows that in each time frame, the seven selected cell nuclei, located nearly at 
the bottom of each image in the figure, were accurately reconstructed using the 4D 
method. The segmentation results of these cell nuclei are colored in black at the bot-
tom of each image in the second row of this figure.

In the last experiment (see https://​doi.​org/​10.​5281/​zenodo.​55131​18 for the vid-
eos of this experiment), we reconstructed a group of selected cell nuclei in 70 time 
frames within the zebrafish pectoral fin. This cell population was selected by the 
biologists who provided the dataset. In Fig. 16, the first row shows the 3D frames of 
the video at the time steps 1 (first column), 20 (second column), 40 (third column), 
and 70 (fourth column) and the second row shows the corresponding reconstruction 
of the selected nuclei images using the 4D method (7). The segmentation results 
of this group of cell nuclei are colored in black at the center of each image in the 
second row of this figure. Furthermore, the selected group of cells are located inside 
the fin tissue and are covered by other cells nearer to the fin’s surface. Consequently, 
it is not easy to visualize the segmentation results together with the original image 
intensity. This is why we selected the seven cell nuclei that are easily visualizable in 
the previous experiment. Moreover, Fig. 19 in Sect. 5 shows segmentation results of 

Fig. 15   First row of this figure shows the 3D frames of 3D+time microscopy images of cell nuclei within 
the zebrafish pectoral fin at the time steps 1 (first column), 20 (second column), 40 (third column), and 
70 (second column). The second row shows the corresponding reconstruction of the seven nuclei images 
using (7)

https://doi.org/10.5281/zenodo.5513118
https://doi.org/10.5281/zenodo.5513118
https://doi.org/10.5281/zenodo.5513118
https://doi.org/10.5281/zenodo.5513118
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this experiment, which were used for cell tracking. Thus, we can deduce from these 
figures that the segmentation results appear to be correct.

Throughout the experiments, the following recommended parameters were cho-
sen automatically: � = 0.5, � = 0.5, h = 0.01, � = 0.01, � = 1, � =

h2

8
 . The param-

eters R = 12, � = 0.87, and � = 0.13, are empirically chosen based on visual inspec-
tion of results or influence on the accuracy of tracking. Finally, � is chosen based on 
available computational resources. For instance, in the experiments whose results 
are presented in Figs. 15 and 16, � is 70 and the maximum possible value for � is 90 
due to memory availability.

5 � Cell tracking based on 4D segmentation

In this section, the results of cell tracking based on the 4D segmentation method are 
presented. The cell tracking procedure is briefly described below, and details of the 
algorithm are given in [28]; for previous works on cell tracking, see [21] and [22].

After we obtain the 4D segmentation of 3D+time video, first, we label all voxels 
in all time frames belonging to any 3D simply connected segmented region; we refer 
to such 3D simply connected segmented region as “segmented cell.” The labeling 
distinguishes between the inner cell volumes and the “background” correspond-
ing to the outside of the cells’ region. Additionally, inside the segmented cells, we 
compute a 3D distance from the segmented cell boundary. By detecting the voxel in 
which the maximal distance is achieved, we obtain an approximate cell center. The 
goal of tracking is to interconnect in time such approximate cell centers obtained 
for every cell in every time frame. We use an iterative backtracking approach to that 
goal, starting from the last time frame and going backward in time through all sim-
ply connected regions of 4D segmentation. First, we project the voxel representing 
the cell center detected in the current time frame to spatially same voxel in the pre-
vious time frame. If the projected voxel belongs to some cell in the previous time 

Fig. 16   First row of this figure shows the 3D frames of 3D+time microscopy images of cell nuclei within 
the zebrafish pectoral fin at the time steps 1 (first column), 20 (second column), 40 (third column), and 
70 (fourth column) and the second row shows the corresponding reconstruction of the nuclei images 
using (7)
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frame, we find its center and connect two cell centers forming one section of the 
cell trajectory. If the projected voxel is outside of any segmented cell in the previous 
time frame, all voxels of the cell at the current time frame are inspected and checked 
whether its projection to the previous time frame is inside of any simply connected 
segmented region. If there is an overlap between the cells at the current and the 
previous time frame, we find the cell center of the overlapping region at the previ-
ous time frame and construct the section of partial trajectory again. If no overlap is 
found, the partial trajectory ends at the current time frame and does not continue 
further backward. After constructing all partial trajectories inside the 4D segmenta-
tion by the approach described above, we interconnect them if a suitable condition 
is fulfilled. We estimate the tangent of the partial trajectory in its first and last point 
and prolong it to the corresponding time frames. If the last/first point of another 
trajectory exists in the previous/next time frame in a closed neighborhood of the 
prolonged trajectory, we interconnect them. As we can see, the tracking procedure is 
quite simple, mainly due to the utilization of the 4D segmentation.

5.1 � Numerical experiments

In the first experiment (see https://​doi.​org/​10.​5281/​zenodo.​55130​89 for the com-
plete video), results of segmentation by the 4D method (7) were used as a basis to 
track the artificially generated spheres shown in Fig. 12. In Fig. 17, 3D frames of 
the sphere trajectories (in this case, straight lines) at the time frames 1, 10, and 20 
were shown. In this artificial dataset, we may recall that there are four spheres in 
time frames 1–3, seven spheres in time frames 4–17, and five spheres in time frames 
18–20. So, this explains why there are four, seven, and five spheres in this figure. 
In each of the three pictures, the straight lines show the trajectories of the spheres, 
and the square at the end of each line or trajectory shows the sphere’s present time. 
The trajectories are correct because, from the construction of the dataset, all spheres 
move in straight lines. We note that the viewpoint of the images presented in this 
figure is different from the viewpoint of the images in Fig.  12. In presenting the 
result of this experiment, we choose this viewpoint because it has the best view of 
all trajectories.

Fig. 17   This figure shows 3D frames of the sphere trajectories at time frames 1 (first column), 10 (sec-
ond column), and 20 (third column)

https://doi.org/10.5281/zenodo.5513089
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In the second experiment (see https://​doi.​org/​10.​5281/​zenodo.​55131​18 for the 
complete video), results of segmentation by the 4D method were also used as a basis 
to track the 3D+time microscopy images of selected seven cell nuclei within the 
zebrafish pectoral fin shown in Fig. 15. In Fig. 18, 3D frames of the trajectories of 
3D+time microscopy images of seven cell nuclei within the zebrafish pectoral fin at 
the time steps 1, 20, 40, and 70 were shown. The trajectories of these tracked cells 
show the movement of the cells over time. Additionally, from the last frame (second 
column) in Fig. 18, we see that these cells are not moving in straight lines. Instead, 
they move in an arbitrary random direction.

In the third experiment (see https://​doi.​org/​10.​5281/​zenodo.​55131​18 for the com-
plete video), results of segmentation by our 4D method were again used as a basis 
to track the 3D+time microscopy images of a group of selected cell nuclei in 70 
time frames within the zebrafish pectoral fin shown in Fig. 16. In Fig. 19, 3D frames 
of the trajectories of 3D+time images of five cell nuclei selected from the origi-
nal population within the zebrafish pectoral fin at the time frames 1, 20, 40, and 70 
were presented. The five selected cell trajectories are the ones that showed signifi-
cant cell movement in the selected population. Additionally, the trajectories of these 
five selected cells are colored yellow, blue, red, cyan, and pink. Furthermore, in the 
second image of Fig. 19, the initial positions of the nuclei were colored gray, while 
the current positions are colored green.

Finally, from the results presented in Figs. 17, 18, and 19, we can conclude that 
our 4D method (7) serves as basis for cell tracking.

Fig. 18   This figure shows 3D frames of the trajectories of 3D+time microscopy images of seven cell 
nuclei within the zebrafish pectoral fin at time frames 1 (first column) and 70 (second column)

Fig. 19   This figure shows 3D frames of the trajectories of 3D+time images of five cell nuclei within the 
zebrafish pectoral fin at time frames 1 (first row) and 70 (second row)

https://doi.org/10.5281/zenodo.5513118
https://doi.org/10.5281/zenodo.5513118
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6 � Conclusion

We suggested a segmentation approach that is based on the surface evolution gov-
erned by a nonlinear PDE. The approach is a generalization of the SUBSURF 
model [33]. This generalization is achieved by defining the input to the edge 
detector function as the weighted sum of norm of presmoothed 4D image and 
norm of presmoothed thresholded 4D image in a local neighborhood. We intro-
duced and studied a numerical method for the solution of the studied model. The 
numerical method is based on a finite volume approach and used the reduced 
diamond cell approach to approximate the gradient of the solution. For numeri-
cal discretization, we used a semi-implicit finite volume scheme. We proved that 
the numerical scheme employed is unconditionally stable. As a special case in 
the 3D framework, we applied the studied 4D method to 3D image segmenta-
tion of cell nuclei and membranes within the pectoral fin of developing zebrafish 
embryo and cell nuclei in developing mouse embryo. Furthermore, we employed 
the OpenMP and MPI for the studied model’s efficient (parallel) computer imple-
mentation. Several numerical examples were presented to demonstrate how the 
model works both for 3D and 4D images. Moreover, we included the cell tracking 
results to show how our new method serves as a basis for tracking. All paral-
lel computations were done on a Linux cluster on a server comprising six com-
putational nodes. Each computational node has 32 processors and 252 GB of 
memory; thus, the cluster has 192 processors and 1512 GB of memory available 
for computations. In the real application presented in the fifth and sixth experi-
ments of Sect.  4, to process the 3D+time microscopy images with dimensions 
567 × 577 × 147 × 70 , 1012 GB of memory was needed. This clearly shows that it 
may not be possible to process these images on a serial machine without parallel 
implementation utilizing the MPI. Finally, from the results presented, we con-
clude that the mathematical model (7) is a useful and successful generalization of 
the classical SUBSURF model.
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