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MACROPHAGES TRAJECTORIES

SMOOTHING BY EVOLVING CURVES

Giulia Lupi — Karol Mikula — Seol Ah Park

Department of Mathematics and Descriptive Geometry,
Slovak University of Technology in Bratislava, SLOVAKIA

ABSTRACT. When analyzing cell trajectories, we often have to deal with noisy
data due to the random motion of the cells and possible imperfections in cell
center detection. To smooth these trajectories, we present a mathematical model
and numerical method based on evolving open-plane curve approach in the La-

grangian formulation. The model contains two terms: the first is the smoothing
term given by the influence of local curvature, while the other attracts the curve
to the original trajectory. We use the flowing finite volume method to discretize
the advection-diffusion partial differential equation. The PDE includes the asymp-
totically uniform tangential redistribution of curve grid points. We present results

for macrophage trajectory smoothing and define a method to compute the cell
velocity for the discrete points on the smoothed curve.

1. Mathematical model

In this paper, we present a mathematical model and numerical method
for macrophage trajectories smoothing based on evolving open plane curve ap-
proach in the Lagrangian formulation, namely, we solve the equation

∂x

∂t
= −δkN + λ[(x0 − x) ·N]N + αT, (1)

where x represents the evolving curve and x0 the initial curve. The terms evolv-
ing the curve in the normal direction N and the tangential direction T are given
in details below.

The paper is structured as follows: in this section, we discuss the mathemat-
ical model and its possible applications. In Section 2, we show the numerical
discretization of the suggested model. In Section 3, we expose the numerical
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experiments made on cell trajectories. Moreover, the smoothed curves allow us
to compute the velocity of the cell. To do that, we propose a method to find the
new velocity for the discrete points on the evolving curve based on the evolution
of the length of the segments composing the piecewise linear initial condition.

Let Γ be an open plane curve with fixed endpoints

Γ : [0, 1] → R
2,

u �→ x(u),
(2)

where x(u) = (x1(u), x2(u)) is a point of the curve Γ. We consider the time
evolution of the curve Γ, Γt = {x(t, u), u ∈ [0, 1]} where t is the time and x(t, u)
represents the position of the point x(u) ∈ Γt at time t. From now on, we will
write x instead of x(t, u) for clarity. The evolution of a point x ∈ Γ is driven
by the following general equation

∂x

∂t
= V(x, t), (3)

where ∂x
∂t

is the time derivative representing the velocity of the evolving curve.
The velocity vector field V that drives the curve motion is given by

V(x, t) = −δk(x, t)N(x, t) + λ[(x0 − x) ·N(x, t)]N(x, t), (4)

where N is the unit normal vector to the evolving curve, k is its curvature, x0

is the initial condition, ” · ” is the scalar product and δ, λ are given positive
parameters. From now on, we will indicate by

w(x, t) = (x0 − x) ·N(x, t). (5)

The curvature term −kN, weighted by the parameter δ, regularizes the curve,
while w, weighted by the parameter λ, attracts the evolving curve next to the
initial condition. The vector function (x0 − x) realizes the minimum distance
between the curve x and the initial curve x0. We define it in the following way:
we fix a point x = x(u) ∈ Γt on the evolving curve Γt, parametrized by u ∈ [0, 1].
Then we define

(x0 − x)(u) = arg min
v∈χu

|v|, (6)

where

χu = {v ∈ R
2 : v = x0(q) − x(u), q ∈ [0, 1]}.

For every point on the evolving curve, parametrized by u ∈ [0, 1], (x0 − x)
selects the point on the original curve, parametrized by q ∈ [0, 1], which realizes
the shortest distance and considers the vector v = x0(q)−x(u). Then, since the
tangential velocity does not influence the shape of the evolving curve, we consider
only w(x, t), the component of the vector in the normal direction.
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We rewrite equation (3) as
∂x

∂t
= βN, (7)

where the normal velocity β is given by

β = −δk + λw. (8)

By construction of the model, the values of the curvature regularization term −δk
and of the attracting term λw always have opposite sign, therefore for some
nonzero values of δ and λ the normal velocity β will be zero. Then, since the tan-
gential velocity α only influences the distribution of the grid points, the evolving
curve will reach an equilibrium state.

On the other hand, from the numerical point of view, the tangential velocity
redistributes the points on the curve, see [3, 5, 8, 9], this improves both the sta-
bility and the robustness of numerical computations. To redistribute the points
asymptotically uniformly, we enrich the model as follows

∂x

∂t
= βN + αT, (9)

where β is defined in (8) and α will be defined in Section 2.1.

Equation (1) can be helpful in different applications where one needs to
smooth a curve and remove the noise while keeping the curve similar to the
original. In [2,11,12], models have been proposed for segmentation and tracking
of immune system cells. Once these trajectories are obtained, one may be inter-
ested in finding the actual velocity of the cells (see for example [4]). We applied
the proposed model for smoothing macrophage trajectories. Our goal was to de-
rive the actual velocity of the cell starting from the curve found connecting the
cell center in every frame of a 2D video [12]. Consequently, we needed to remove
the random motion of the cell and correct possible imperfections in cell centers
detection while keeping the final trajectory as close to the original as possible.
We discuss the results in Section 3.

2. Numerical algorithm

To apply the numerical scheme, the curve is discretized to a set of points,
x0, x1, . . . , xn+1 as displayed in Fig. 1.

Let g = |xu| =
√

(∂x1

∂u )2 + (∂x2

∂u )2. If we denote by s the unit arc-length

parametrization of the curve Γ, then ds = |xu|du = gdu and du = 1
gds.

The unit tangent vector T is defined as T = ∂x
∂s = xs while the unit normal

vector N is N = x⊥
s such that T∧N = −1. If T = (x1

∂s ,
x2

∂s), then N = (x2

∂s ,−x1

∂s).
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From the Frenet-Serret formulas we have Ts = −kN and Ns = kT, where k
is the curvature. It follows that −kN = Ts = (xs)s = xss. We can rewrite (9)
into the form of the so-called intrinsic partial differential equation

xt = δxss + αxs + λwx⊥
s (10)

which is suitable for numerical discretization. Since x = (x1, x2), (10) represents
a system of two partial differential equations for the two components of the
position vector x.

2.1. Suitable choice of tangential velocity

In [3,5,8,9], it has been shown how to choose the tangential velocity to have
an asymptotically uniform redistribution of points, and in this section, we recall
it for completeness. If we want to redistribute the points along the curve, we
have to consider the ratio g

L , where g = |∂ux| represents the local length of the
curve while L is the global length. In the discrete form, we obtain

g

L
≈

|xi−xi−1|
h

L
=

|xi − xi−1|
Lh

=
|xi − xi−1|

L
n+1

,

where h = 1
n+1 . We define the i-th element hi = xi−xi−1 with length hi = |hi|.

In the formula above, n + 1 is the number of elements used in the spatial dis-
cretization based on the flowing finite volume method. The numerator represents
the distance between two grid points, and on the other hand, the denominator
represents the distance that would occur if we had uniformly distributed points.
It is then clear that if we want uniformly distributed points, we will have to ask
for that ratio to tend to 1. In continuous setting, we have to fulfill the condition

g

L
→ 1.

For the time evolution of the ratio, we obtain( g
L

)
t

=
gtL− Ltg

L2
. (11)

First, we observe that the time derivative of the local length is obtained using
the Frenet-Serret formulas and is given by

gt = |xu|t =
xu

|xu| · (xu)t =
gxs

g
· (xt)u

= T · (βN + αT)u = T · g(βN + αT)s

= T · g(βsN + βNs + αsT + αTs)

= T · g(βsN + kβT + αsT− kαN)

= gkβ + gαs = gkβ + αu. (12)
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To get the formula for the global length, we have to integrate g = |xu| over the
curve Γ

L =

∫
Γ

gdu =

1∫
0

gdu,

and then

Lt =

1∫
0

gtdu =

1∫
0

gkβdu +

1∫
0

αudu =

1∫
0

kβds + α(1) − α(0). (13)

Now, since we fixed the endpoints of the open curve, we get α(1) = α(0) = 0,
and equation (13) reduces to

Lt =

1∫
0

kβds = L〈kβ〉Γ, (14)

where 〈kβ〉Γ = 1
L

∫
Γ

kβds. Substituting (12) and (14) in (11), we obtain

( g
L

)
t

=
(gkβ + αu)L− Lg〈kβ〉Γ

L2
=

g

L
(kβ + αs − 〈kβ〉Γ). (15)

If we now impose that
(
g
L

)
t

= ω
(
1 − g

L

)
, where ω is a parameter that determines

the speed of convergence of the ratio, we get the desired condition g
L → 1.

Finally, we obtain the formula for the tangential velocity

αs = 〈kβ〉Γ − kβ + ω

(
L

g
− 1

)
. (16)

2.2. Numerical discretization

Let us consider the following form of the intrinsic PDE (10)

xt − αxs = δxss + λwx⊥
s , (17)

where α and w are given by (16) and (5), respectively. First, we perform the
spatial discretization based on the flowing finite volume method [7, 9], then we
discuss the semi-implicit time discretization, which is implicit in the intrinsic
diffusion term and uses the inflow-implicit/outflow-explicit strategy for the in-
trinsic advection term [6].

Consider an open curve discretized into n + 2 grid points. We fixed the two
points x0 and xn+1 at the endpoints of the curve. Consequently, for these two
points, the velocity is zero. We define hi = |xi − xi−1| and consider the finite
volume pi = [xi− 1

2
,xi+ 1

2
], where xi+ 1

2
represents the middle point between xi

and xi+1, i.e.,

xi+ 1
2

=
xi + xi+1

2
.
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Figure 1. Open curve discretization. The finite volume pi = [xi− 1
2
,xi+ 1

2
]

is highlighted in blue.

Notice that the velocities αi, βi will be referred to the points xi, i = 0, . . . , n+ 1
with α0 = 0, β0 = 0 and αn+1 = 0, βn+1 = 0. On the other hand, the curvature ki
will be referred to the elements hi, i = 1, . . . , n + 1. Integrating (17) over the
finite volume pi, see Fig. 1, we get

x
i+1

2∫
x
i− 1

2

xtds −
x
i+1

2∫
x
i− 1

2

αxsds = δ

x
i+1

2∫
x
i− 1

2

xssds + λ

x
i+ 1

2∫
x
i− 1

2

wx⊥
s ds, (18)

where δ, λ are constants and the values α,w are considered to be constant
over the finite volume pi and will be indicated as αi, wi. The length of the

interval pi is hi+hi+1

2 consequently, and using the Newton-Leibniz formula we
get the following approximation of (18) for i = 1, . . . , n

hi + hi+1

2
(xi)t − αi[x]

x
i+ 1

2
x
i− 1

2

= δ[xs]
x
i+ 1

2
x
i− 1

2

+ λwi

(
[x]

x
i+1

2
x
i− 1

2

)⊥
. (19)

First of all, notice that

−αi[x]
x
i+1

2
x
i− 1

2

= −αi

(
xi+ 1

2
− xi− 1

2

)
= −αi,

(
xi + xi+1

2
− xi + xi−1

2

)

= −αi

(
xi+1 − xi−1

2

)
=

αi

2
(xi − xi+1) − αi

2
(xi − xi−1). (20)
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Then, approximating xs by a finite difference, we get

[xs]
x
i+1

2
x
i− 1

2

=

(
xi+1 − xi

hi+1
− xi − xi−1

hi

)
. (21)

Combining (20), (21), and (19), we obtain

hi + hi+1

2
(xi)t +

αi

2
(xi − xi+1) − αi

2
(xi − xi−1)

= δi

(
xi+1 − xi

hi+1
− xi − xi−1

hi

)
+ λwi

(
xi+1 − xi−1

2

)⊥
. (22)

Next we introduce time discretization: let m be the time step index and τ the
length of the discrete time step. The basic idea of the inflow-implicit/outflow-
-explicit strategy is that we treat outflow from a cell explicitly while inflow
implicitly [6]. If αm

i < 0, i.e., (−α) in (17) is positive in the finite volume pi, then
there is an inflow into the finite volume through its boundary point xi− 1

2
and

there is an outflow through the other boundary point xi+ 1
2
. On the other hand,

if αm
i > 0, there is outflow through xi− 1

2
and inflow through xi+ 1

2
. We therefore

define

bin
i− 1

2

= max(−αm
i , 0), bout

i− 1
2

= min(−αm
i , 0),

bin
i+ 1

2

= max(αm
i , 0), bout

i+ 1
2

= min(αm
i , 0),

(23)

and rewrite equation (22) as

hm
i + hm

i+1

2
(xi)t +

1

2

(
bini+ 1

2

) (
xm+1
i − xm+1

i+1

)
+

1

2

(
bouti+ 1

2

) (
xm
i − xm

i+1

)
+

1

2

(
bini− 1

2

) (
xm+1
i − xm+1

i−1

)
+
(
bouti− 1

2

) (
xm
i − xm+1

i−1

)

= δ

(
xm+1
i+1 − xm+1

i

hm
i+1

− xm+1
i − xm+1

i−1

hm
i

)
+ λwm

i

(
xm
i+1 − xm

i−1

2

)⊥
. (24)

Let us approximate the time derivative by the finite difference xt =
xm+1
i −xm

i

τ .
Note that we take the unknowns in the inflow part of the advection term im-
plicitly while taking the ones in the outflow part explicitly. Moreover, we take
the diffusion term implicitly and the attracting term explicitly.
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Finally, we obtain the fully discrete scheme

xm+1
i−1

(
− δ

hm
i

−
bin
i− 1

2

2

)
+ xm+1

i+1

(
− δ

hm
i+1

−
bin
i+ 1

2

2

)

+ xm+1
i

(
hm
i+1 + hm

i

2τ
+

δ

hm
i

+
δ

hm
i+1

+
bin
i− 1

2

2
+

bin
i+ 1

2

2

)

= xm
i

hm
i+1 + hm

i

2τ
−

bout
i+ 1

2

2
(xm

i − xm
i+1)

−
bout
i− 1

2

2
(xm

i − xm
i−1) + λwm

i

(
xm
i+1 − xm

i−1

2

)⊥
, (25)

for i = 1, . . . , n where n is the number of unknown grid points.

The system (25) is represented by a strictly diagonally dominant matrix, then
it is always solvable by the classical Thomas algorithm without any restriction on
the time step τ . In the numerical scheme (25), there are two parameters αm

i and
wm

i given by (16) and (5) for which we have not yet defined the discretization.

Let us first consider the discretization of wm
i referred to the curve grid

point xm
i . Note that the shortest distance of a point to a curve is in the normal

direction to the curve. The algorithm of finding the point q which realizes the
minimum distance is organized as follows: consider a point xm

i on the evolving
curve. Set Dmin = D (where D is a real number to be chosen reasonably) and
for j = 1, . . . , n + 1 repeat:

(1) consider the line r passing through the points x0
j−1 and x0

j of the original
curve,

(2) find the line s perpendicular to r and passing through xm
i ,

(3) find the point q of intersection between the line r and the line s,

(4) find d = d(q,xm
i ), where d is the Euclidean distance of q and xm

i ,

(5) if q ∈ [x0
j−1,x

0
j ] and d < Dmin then

x0 − xm
i = q− xm

i , Dmin = |x0 − xm
i | . (26)

Due to the discretization of the curve, it may happen that the algorithm does not
find any point q. In this case, for every j = 0, . . . , n+ 1, we check the Euclidean
distance d(x0

j ,x
m
i ) and we select the minimum j = jmin. Then,

x0 − xm
i = x0

jmin
− xm

i .

This approach is natural since we are trying to find the minimum distance
between a point and a segment: it is either the minimum distance found in (26)
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or the minimum distance between the point and one of the endpoints of the
segment. Therefore, we get

wm
i = (x0 − xm

i ) ·Nm
i , (27)

where Nm
i =

(
xm
i+1−xm

i−1

hm
i +hm

i+1

)⊥
.

Consider now the discretization of αm
i . Note that, since we fixed the first and

the last point, we set αm
0 = 0 and αm

n+1 = 0 for every m ≥ 0. We get αm
i

for i = 1, . . . , n by

αm
i = αm

i−1 + hm
i 〈kβ〉mΓ − hm

i kmi βm
i + ω

(
Lm

n + 1
− hm

i

)
. (28)

The curvature kmi , the normal velocity βm
i , the mean value 〈kβ〉mΓ and the total

length Lm are given by the following formulas [1,9,10]

kmi = sgn(hm
i−1 ∧ hm

i+1) 1
2hm

i
arccos

(
hm

i−1·hm
i+1

hm
i−1h

m
i+1

)
,

βm
i = −δkmi + λwm

i ,

〈kβ〉mΓ = 1
Lm

∑n+1
l=1 hm

l kml βm
i ,

Lm =
∑n+1

l=1 hm
l ,

(29)

where
hm
i = xm

i − xm
i−1, |hm

i | = hm
i and hm

i−1 ∧ hm
i+1

is the wedge product, i.e., the determinant of the matrix with columns

hm
i−1 and hm

i+1.

For the first and last element, since we don’t have the values of hm
i−1, respectively

hm
i+1, we set km1 = km2 and kmn+1 = kmn .

3. Numerical experiments

3.1. Smoothed trajectories

First, we considered the simple curve shown in Figs. 2-4 to see the influence
of the term which attracts the curve to the initial condition. In Fig. 2, we con-
sidered the evolution of the curve driven by the PDE (1) with λ = 0 and λ = 1,
δ = 0.001, ω = 1, and τ = 0.001 for 10000 time steps. The red line represents
the initial condition while the blue lines are the results of the smoothing plot-
ted every 1000-th time step. The curve evolved only by the curvature influence
goes to the straight line, while if we consider λ = 1, the curve is attracted
to the initial condition and stays closer to it. For this example, we observed
that the numerical solution of the model approaches the stationary solution.
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In Fig. 3 we considered the same initial curve as in Fig. 2 and we plotted the
results of the smoothing after 400 time steps for λ = 0, λ = 1, λ = 5 and
λ = 10, δ = 0.001, ω = 1, and τ = 0.001: we observe that considering bigger λ,
the smoothed curve stays closer to the original one. To understand better the
influence of the attracting term in Fig. 4, we plotted the vectors driving one
of the discrete points of the evolving curve: the blue arrow is the vector (x0−x),
the red arrow is its projection in the normal direction to the evolving curve,
and the green one is the diffusion term. We observe that the attracting vector
always points towards the original curve: it is clear that, if we consider bigger λ,
the result will stay closer to the initial condition.

Figure 2. Evolution of the initial curve (red) with λ = 1 (top) and λ = 0
(bottom), δ = 0.001, ω = 1, and τ = 0.001. The blue curves are the evolved
curves plotted every 1000-th time step, from the time step 1000 to 10000.

Article 1 Page 10 of 26



MACROPHAGES TRAJECTORIES SMOOTHING BY EVOLVING CURVES

Figure 3. Comparison of the evolution of the initial curve (red) for dif-
ferent values of λ after 400 time steps. Results are shown for λ = 0 (blue),
λ = 1 (light blue), λ = 5 (pink) and λ = 10 (green), δ = 0.001, ω = 1, and

τ = 0.001.

Figure 4. Plotting of vectors driving one of the curve grid points during
the evolution. −δkN (green), (x0 −x) (blue), and its projection in normal

direction to the curve [(x0 − x) ·N]N (red).

Then, we focused on real data of macrophage motion. In the following
experiments, we applied the proposed model to macrophage trajectories. The
piecewise linear initial condition was found connecting the cell center of the
macrophage for every frame of the 2D+time data [12]. First, we added grid points
in the original trajectory so that we had almost uniformly distributed points.
For every trajectory, the parameters were chosen as follows:

λ = 1, δ = 0.005, ω = 1, and τ = 0.0001.
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Note that, due to the tangential redistribution of points, in order to get a stable
solution we should consider the time step τ < hmin

2αmax
, where hmin = mini hi and

αmax = maxi αi. Figs. 5–9 show the result of the smoothing for two different
trajectories. The red lines in Figs. 5 and 8 are the original trajectories for two
different macrophages. As one can observe, due to the random motion of the
cells, these trajectories usually have noisy parts: Figs 6, 7, and 9 show the details
of these parts until the curve is completely unknotted. If one wants to keep the
curve closer to the original trajectory, then it is necessary to choose a bigger value
for λ. The blue lines are the smoothed trajectories after different numbers of time
steps: the evolving curve is kept close to the original trajectory by the attracting
term but we also observe the smoothing of the noisy parts due to the diffusion
term. In Figs. 6 and 7, we show the result of the smoothing until the random
part of the trajectory is completely smoothed: the black dot represents the last
point of the trajectory.

As a stopping criterion, we considered the mean Hausdorff distance between
two discrete curves. Consider the discrete sets of points:

A = {a0, . . . , an+1}, B = {b0, . . . , bn+1}

we will indicate the elements of the discrete curves by

ai = ai − ai−1 and bi = bi − bi−1, i = 1, . . . , n + 1,

respectively. Let us indicate by A = {a1, . . . , an+1} and B = {b1, . . . ,bn+1}
the sets of elements. The mean Hausdorff distance d̄H(A,B) is then defined as

δ̄H(A,B) =
1

n

n∑
i=1

min
b∈B

d(ai,b),

δ̄H(B,A) =
1

n

n∑
i=1

min
a∈A

d(bi, a),

d̄H(A,B) =
δ̄H(A,B) + δ̄H(B,A)

2
,

(30)

where d(ai,b) is the distance between a point ai ∈ A and an element b ∈ B
defined in Section 2.2. Since in our model the endpoints a0, an+1, b0, bn+1

are fixed, we do not consider them in the computation of the mean Hausdorff
distance. In order not to slow down the computation too much, this distance
was calculated only every p number of time steps. We chose the tolerance
ε=0.000065 and stopped iterating when dH(xn,xn+p) < ε. Fort̃he trajectory
in Fig. 5, the number of time steps needed to stop the evolution was 580, while
for the one in Fig. 8, it was 340.
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Figure 5. The original trajectory (red line) and smoothed trajectory
(blue line). Results (from top to bottom) after 50, 200, 400 and 580 time

steps.

Figure 6. A detail of noisy part of trajectory in Fig. 5. Original trajectory
(red line) and smoothed trajectory (blue line). Results (from top to bottom)
after 50, 200, 400 and 580 time steps. The black dot represents the last point
of the trajectory.
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Figure 7. A detail of noisy part of trajectory in Fig. 5. Original trajectory
(red line) and smoothed trajectory (blue line). Results (from top to bot-
tom) after 1000, 1500, 2500, and 5000 time steps. The black dot represents
the last point of the trajectory.

Figure 8. The original trajectory (red line) and smoothed trajectory
(blue line). Results (from top to bottom) after 50, 100, 200 and 340 time
steps.
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Figure 9. A detail of noisy part of trajectory in Fig. 8. Original trajectory
(red line) and smoothed trajectory (blue line). Results (from top to bottom)
after 50, 100, 200 and 340 time steps.

3.2. Velocities on smoothed curves

Our final goal was to compute the velocity for every grid point on the evolved
curve. To do so, we considered the lengths of the initial segments, i.e., the orig-
inal points without the added grid points. Then, we evolved them according
to the formula already shown in Section 2.1 instead of computing the real lengths
of the segments on the smoothed curve. This is because we added grid points
in the original segments and these points are redistributed along the curve dur-
ing the evolution, so the real lengths give no meaningful information to calculate
velocity.

In the 2D+time data, the real-time between each frame was 1 time unit
between the frames, which is equal to 2 minutes. That means, in the original
piecewise linear trajectory, the time between two endpoints of a segment was 1
time unit (see Fig. 10). First, when we added the grid points inside the initial
segments, we did it in such a way that the new added points were uniformly
distributed inside the segment. Consequently, we calculated the original velocity
for the grid points as the original length of the segment divided by the time
interval Δt, that in our case was 1 (time unit), and consider it constant inside the
segment. Therefore, in the beginning, all the added grid points inside a segment
have the same velocity. We assume this property holds also for the new velocities
of the grid points on the evolved curve. Our goal was to derive the velocity
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for every grid point on the evolved curve but we couldn’t do it directly because,
due to the stability of the numerical computations, we added the tangential
velocity in our model and this caused an asymptotically uniform redistribution
of the points. If the trajectory is not too complicated, the tangential velocity
does not move the points too much. But, in our case, some of the trajectories
had noisy parts with many points, which were moved a lot during the evolution,
so we were losing almost completely the spatial information.

Then, to get the new velocity estimation, first we studied the evolution of the
length of the segments. For the total length, we have already shown in Section 2.1
that it holds

Lt =

1∫
0

kβds +

1∫
0

αsds,=

1∫
0

kβds + α(1) − α(0). (31)

In the case of the total length, we had fixed the endpoints of the trajectory so
we had α(1) = α(0) = 0. Similarly, for the evolution of every segment, we can
consider the same formula. We will denote by j the index for the segments and
by i the index for the grid points. Consider the jth segment: we will indicate
by uj−1 and uj the first and last endpoint of the segment parametrization,
respectively. Therefore, for the evolution of the length Lj of the jth segment,
it holds

(Lj)t =

uj∫
uj−1

kβds +

uj∫
uj−1

αsds =

uj∫
uj−1

kβds + α(uj) − α(uj−1). (32)

Notice that in this case, in general, we have α(uj) 
= 0 and α(uj−1) 
= 0. But, as
we have already underlined, the tangential velocity is used only for the stability
of the numerical computations and it does not influence the shape of the evolving
curve. So, to not lose the spatial information, we will calculate the new length
of the segment as if we have applied to the trajectory the model with α = 0,
i.e., α(uj) = α(uj−1) = 0. Consequently, we consider the following model for the
evolution of the jth segment

(Lj)t =

uj∫
uj−1

kβds. (33)

Let’s now consider the discretization: let m be the time step index and τ the
length of the discrete time step. We approximate the time derivative by the finite
difference and consider the formulas for k, β defined in (29). To relate the index
j of the segments to the index i of the grid points, we will indicate by I(uj−1),
I(uj) the corresponding i index of the endpoint x(uj−1) and x(uj), respectively
(see Fig. 10).
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Figure 10. Visualization of curve discretization. The green dots represent

the grid points and the red dots represent the endpoints of the segments.

Notice that we consider the i index starting from I(uj−1) + 1, it is because
hI(uj−1)+1 is defined as hI(uj−1)+1 = |xI(uj−1)+1−xI(uj−1)|, which is indeed the
first element hi of the segment with endpoints x(uj−1) and x(uj). We obtain
the fully discrete approximation of equation (33) for the new length of the jth
segment

Lm+1
j = Lm

j + τ

I(uj)∑
i=I(uj−1)+1

hm
i kmi βm

i . (34)

For the first and last element of each segment, we use a different computation of k
and β that does not consider information from the previous and next segment.

If we consider the evolution of the curve driven only by the curvature influence,
then βi = −δki and we obtain

I(uj)∑
i=I(uj−1)+1

hm
i kmi βm

i = −
I(uj)∑

i=I(uj−1)+1

hm
i δ(kmi )2 ≤ 0.

Therefore, Lm+1
j ≤Lm

j for every segment j and for every time step index m.
Experimentally, this property holds also if βi = −δki + λwi. If the segment
is in a part of the trajectory which has high curvature (for example in the
noisy parts where the cell shows random motion), the length of that segment
will decrease faster than the length of a segment in a part of the trajectory
with small curvature (for example in the parts where the cell shows directional
motion). It is then clear that some of the segments may eventually disappear
and we may obtain Lm+1

j = 0.
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Let us first focus on the simple case, where the length of one segment is
decreasing, but the segment is not disappearing. In the first time step, I(uj−1)
and I(uj) are loaded from the original trajectory and are the indexes of the
endpoints of the original segments. Later, the length of every segment changes, so
after applying the formula in (34), we need to find the new i indexes for I(uj−1)
and I(uj). If we indicate by

Lm+1
s =

M−1∑
j=1

Lm+1
j , (35)

where M − 1 is the number of original segments. Ideally, Lm+1
s = Lm+1, where

Lm+1 is defined in (29). However, in the numerical computations, in later time
steps, it holds Lm+1

s 
= Lm+1. We define the ratio of the jth segment as

rm+1
j =

Lm+1
j

Lm+1
s

, (36)

and the discrete length of the segment is defined as

Ld
j = rm+1

j Lm+1, (37)

so that
∑M−1

j=1 Ld
j = Lm+1. Once we obtain the new lengths Ld

j , to get the new

i indexes I(uj−1) and I(uj) for the endpoints of the segments, we apply the
following algorithm. Set i = 1, j = 1, S = Ld

j , Se = 0 and repeat until j = M−1
and i = n + 1:

• Se = Se + hi

• if Se ≥ S

– if Se > S, then I(uj) = i− 1

– if Se = S, then I(uj) = i

– update S = S + Ld
j+1

– j = j + 1.

• i = i + 1

Notice that we focused only on the index of the last endpoint of each segment
I(uj), it is because the last endpoint of the segment j is the first endpoint
of the segment j + 1.
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Let us now focus on the disappearing segments. We add the following
condition: if Lm+1

j < hmin, then Lm+1
j = 0, where

hmin = min
1≤i≤n+1

hi.

If we obtain Lm+1
j = 0, it means the first and the last endpoints of that seg-

ment at time step index m + 1 became the same point, then I(uj) = I(uj−1).
So we modify the algorithm for finding the new indexes i for I(uj) by adding
the following condition

• if rm+1
j =

Lm+1
j

Ls
= 0 then I(uj) = I(uj−1).

This condition will cause that, when we apply formula (34) for every time step
index m + k, with k > 0, we will obtain

Lm+k
j = Lm+1

j = 0.

Consider two endpoints of a segment, x(uj−1) and x(uj). Note that every
endpoint is the position of the cell in a given time and that in our applica-
tion the initial time between two consecutive endpoints was fixed to 1 time unit.
To get the new velocity estimation, consider (Δt)j the time between the two
endpoints x(uj−1) and x(uj) of the segment j. In the beginning, every segment
has the same value of (Δt)j , later if a segment does not disappear, we consider
the same (Δt)j as in the beginning. On the other hand, if a segment j disappears,

we add
(Δt)j

2 to the first previous not disappeared segment

(Δt)j−1 = (Δt)j−1 +
(Δt)j

2

and
(Δt)j

2
to the first following not disappeared segment

(Δt)j+1 = (Δt)j+1 +
(Δt)j

2
.

To find the new velocity estimation for the grid points on the evolved curve,
we apply the following algorithm. Set j = 1, i = 1 and repeat until j = M − 1:

• If rm+1
j > 0

|v| =
Ld
j

(Δt)j
. (38)

• For i = I(uj−1), . . . , I(uj)

vm+1
i = |v|(x

m+1
i − xm+1

i−1 )

|xm+1
i − xm+1

i−1 | . (39)

Article 1 Page 19 of 26



G. LUPI—K. MIKULA—S. PARK

If the segment does not disappear, we consider the grid points inside that seg-
ment to have the constant velocity equal to the new length of the segment divided
by the time interval (Δt)j. On the other hand, if the jth segment disappears,
the time (Δt)j is distributed between the previous and following segments that
have not disappeared.

For the numerical experiments, to check our method, we set as initial condition
a semi-ellipse and we considered the evolution of the curve with λ = 0, δ = 0.05,
ω = 1 and τ = 0.001. We calculated the velocities using the algorithm described
above. The result is shown in Fig. 11 after 1000 time steps, while the vectors
are plotted in every 15th grid point. The initial number of segments was 7, then
we added grid points so that they were almost uniformly distributed and the
number of grid points was 697. Once we got the velocities for every grid point,
we normalized the length of the vectors to obtain better visualization, where
the color represents the norm. Then, if the arrow is yellow it means in that grid
point the velocity is high. On the other hand, if the arrow is blue or light blue,
at that point the velocity is slower. As we expected, the length of the segment
in the center of the discretized semi-ellipse decreases faster than the others.
Indeed, that is the part of the ellipse with the highest curvature. Then, we
focused on the real trajectories of the macrophages. We considered the evolution
of the trajectories with λ = 1, δ = 0.005, ω = 1, and τ = 0.0001. Results for three
different trajectories are shown in Figs. 12–14. We considered the evolved curve
obtained using the mean Hausdorff distance as a stopping criterion as described
in the last paragraph of Section 3.1. We observe that the velocity is slowed
down in the random parts of the original trajectory that are smoothed during
the evolution.

4. Conclusions

We proposed a mathematical method based on the Lagrangian approach to
smooth curves. The proposed model contains two terms: the curvature regular-
ization term and the attracting term. The regularizing term smooths the curve,
while the attracting term keeps the trajectory close to the initial condition. We
described the numerical discretization based on the flowing finite volume method
and we proposed a method to find the new velocity on the smoothed curves.
We presented and discussed the results for macrophages trajectories for both
smoothing of the trajectories and velocity estimation on the smoothed curves.

The future work will be to extend the current model for 3D+time trajectories
and to get velocity estimation for those trajectories.

Article 1 Page 20 of 26



MACROPHAGES TRAJECTORIES SMOOTHING BY EVOLVING CURVES

Figure 11. Top: initial trajectory and plotting of the velocity vectors.
Bottom: initial trajectory (red line), evolved curve, and plotting of the

velocity vectors. The vectors are normalized for better visualization, color
represents the norm. Vectors are plotted in every 15th grid point.
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Figure 12. Top: initial trajectory and plotting of the velocity vectors.
Bottom: initial trajectory (red line), evolved curve, and plotting of the
velocity vectors. The vectors are normalized for better visualization, color
represents the norm.
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Figure 13. Top: initial trajectory and plotting of the velocity vectors.
Bottom: initial trajectory (red line), evolved curve, and plotting of the
velocity vectors. The vectors are normalized for better visualization, color
represents the norm.
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Figure 14. Top: initial trajectory and plotting of the velocity vectors.
Bottom: initial trajectory (red line), evolved curve, and plotting of the

velocity vectors. The vectors are normalized for better visualization, color
represents the norm.
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