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Abstract

We designed a strategy for extracting the shapes of cell mamb and nuclei from time lapse
confocal images taken throughout early zebrafish embnexmierusing a partial-differential-equation-
based segmentation. This segmentation step is a pretegigisian accurate quantitative analysis of cell
morphodynamics during embryogenesis and it is the basiarfdntegrated understanding of biological
processes. The segmentation of embryonic cells requiveszibrafish embryos fluorescently labeled
to highlight sub-cellular structures and designing spedfgorithms by adapting classical methods to
image features. Our strategy includes the following stéps:signal-to-noise ratio is first improved by

an edge-preserving filtering, then the cell shape is reoactsd applying a fully automated algorithm
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based on a generalized version of the Subjective Surfachsitpie. Finally we present a procedure for

the algorithm validation either from the accuracy and theustness perspective.

EDICS Category: ARS-RBS

September 10, 2009 DRAFT



IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. , NO. , JUNE 2009 2

Cells Segmentation from 3-D Confocal Images

of Early Zebrafish Embryogenesis

. INTRODUCTION

The 3-D reconstruction of cellular shape is a crucial taskréarching an integrated understanding of
biological processes leading to organism formation. Pingichutomated procedures for reconstructing
the shape of all the cells of a living vertebrate embryo isbiayond the current state of art. Achieving
such a goal would readily provide measurements for a largebeun of biological features including
cell shape changes and deformation characteristic forddfé#rentiation and tissue morphogenesis. Cell
shape segmentation is also essential to track cell divdsiemd help reconstructing the cell lineage
tree and from that extract the cell proliferation rate in cgand time. This kind of data is highly
relevant to investigate stem cell populations, early stefpsancerogenesis and drug effects in vivo.
Furthermore, the reconstruction of the cellular shape willivigle relevant parameters to measure the
variability between different individuals of the same dpse¢ opening the way for understanding the
individual susceptibility to genetic diseases or respowmséreatments. In this context, our aim is to
design an algorithm achieving an automated segmentationaéi and membranes from 3-D time-lapse
imaging of live embryos engineered to express fluorescenkarmrAlthough interactive methods have
better performances (in terms of the percentage of objertectly segmented), we expected to avoid the
need for any manual intervention that becomes unrealistierwmanipulating millions of objects. The
segmentation technique has to be chosen according to thdeddtires. Typically, 3-D images for living
organism provide incomplete information such as objecth wiissing boundaries and the segmentation
technique should deal with that. Many algorithms for thepghaeconstruction have been developed
by researchers worldwide, and exist almost as many segtimntaethods as there are segmentation
problems. The 2D and 3D automatic or semi-automatic nuctgnsatation has been covered in a number
of previous works [1], [2], [3], [4], [5], [6], [7], [8], [9],[10]. In a recent work Padfield et al. [11] describe
a set of methods designed to automatically segment nucli time-lapse images. The methods, based
on level set segmentation, have been used to effectivelgaxhe nuclear tracks and generate a schematic
representation of cell cycle phases. An alternative giyafer identifying cell trajectories and studying
the variation of cell shape has been recently proposed Qy Tt algorithm performs cell segmentation

and tracking using texture-adaptative snakes and has bstdton both normal and autophagy cell image
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sequences. All the developed algorithms have proved to heuseful for nuclei segmentation, however
the reconstruction of the whole cell using membrane proteémkers is almost an unexplored area. In
a previous work by Sarti et al. [10] confocal microscopy inmgere processed to extract the shape of
nuclei. However, in that case, the analyzed volumes wereaogaired from a living organism but from
pieces of fixed tissues. On the contrary, the analysis of gicét processes during embryogenesis means
analyzing the cells within their natural environment,,iie.a living embryo. In that case, segmentation has
to proceed from sequences of 3-D data whose quality is muale difficult to handle. In a recent work
Keller et al. [1] developed digital scanned laser light sHmrescence microscopy for recording position
and movements of zebrafish cell nuclei throughout the first 2dshof embryonic development. However
the reconstruction procedure does not deal with membranage acquisition and shape reconstruction.
Ortiz et al. [13] presented a segmentation algorithm basedyradient-curvature driven flow, which
is suitable for whole cell segmentation. They measured thestoess against noise and resistance to
surface discontinuities on synthetic images and demdesiridne suitability of the method on real cell
images. However, as they discussed, the resistance tacsutfacontinuities is strictly dependent on a
parameter introduced in curvature term that determinesstiength of the regularization. This pose a
trade-off choice between surface accuracy and missingdaoies filling that should be solved by the
user. Here we present a method to segment a large numbetofroeh 3-D images characterized by non
homogeneous intensity and gradient signal and capablenplete surface discontinuities without any
compromise between precision and ability to integrate tisermplete contours. The segmentation method
we propose in this work is a generalized version of the Subg@&urfaces technique [14], [16]: it is
distinguishable from the classic formulation by the diéietr weights applied on the two flows constituting
the motion equation (curvature and advection). In addjtiero different dynamics constitute the same
segmentation process: by acting on the matching of levalesrwe control the evolutive behavior in
order to make it first mostly diffusive then a level set motidm.the biological application we deal
with, these strategies are fundamental for reaching aatsfy results, as preliminarily shown in [17].
Here we expose more widely the same base concepts, but iimgladstudy on the stability condition,
an algorithm validation and an overview on future developteeThe different sections of this paper
follow the steps undertaken to acquire and analyze the 3+idocal images (Fig. 1). In Section Il we
briefly explain the technique for image acquisition. In Sectib we apply a filtering method for image
denoising. In Section IV we describe the segmentation alyori Results are provided and discussed in
Section V. Finally, in Section VI we propose a strategy for thgodthm validation reporting its accuracy

and robustness performances.
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Fig. 1. Flowchart depicting the sequence of steps we undertook foeirared membranes segmentation.

Il. IMAGE ACQUISITION
A. In Vivo Imaging Technique

In vivo imaging is becoming an increasingly powerful toal foe analysis of morphodynamical patterns
in biology. Microscopic imaging, taking advantage of flua&st proteins engineering, is able to achieve
a resolution at the sub cellular level in a whole living origam to analyze biological circuits dynamics
and quantify molecular components. To obtain accurate uneagents of 3-D features at the cellular
level in living embryos, it is necessary to use an acquisitiechnique with micrometrical resolution,
able to reconstruct volumetric information and with enowghtrast to allow segmentation of individual
cells. To fulfill these requirements, the analyzed images Hasen acquired bgonfocal microscopy
(CLSM) or by multiphoton laser scanning microscopy (MLSMith the best compromise in terms of
spatial and temporal resolution [18]SM (laser scanning microscopgdnverts the fluorescent radiation
coming from a point of the excited sample into a proportiagiattrical signal. Repeating the scan for all
the points belonging to the focal plane, it is possible tamnstruct the image of a sample section and,
varying the depth of the plane, an entire volume can be aeguirhe acquisition repeated for a temporal
series turns a sequence of tridimensional data into a 4-B st In order to produce high contrast
images, the specimen has been labeled through the exprasfsituorescent proteineGFP (enhanced
Green Fluorescent Protein, targeted to nuclei) m@€herry(a Red Fluorescent Protein, addressed to the
membranes). This procedure produces high contrast imageaiing high intensity regions, where a
labeled structure is acquired, versus low intensity bamlgd regions. The two channels were acquired

separately but simultaneously, as the emission spectrutimectiwo proteins are sufficiently distinct.
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B. Data

Our animal model is the zebrafisBdnio rerio). This is a vertebrate that has been largely validated
as a powerful model for investigations related to humanlugling cancerogenesis and a number of
genetic diseases [19], and might become soon a major modahism for pre-clinical drug testing
by pharmaceutical industries. A huge advantage of zebradists isuitability for in vivo imaging: the
embryos are transparent, small and they develop outsidediieer. This means that a zebrafish egg can
be continuously imaged throughout embryogenesis. the z size of the acquired images was 512 x
512 x 30 voxels. The axial (z) resolution is around 2-fold ldssn the planar (xy) resolution, so the
volumetric images are nonuniform in spacing: the voxele $z0.58um in x and y directions and 1.04
um in z. The overall volume submitted to optical sectioning i®@h30 microns thick. The embryo
has been imaged from 3 hours post fertilization, the timesdagoes on for a period of timé of 4
hours, with a temporal resolutioAT of about 5 minutes. As the morphogenesis is slowed down by the
temperature (abo@3°C), by the end of the time lapse the embryo is just startingrgiasion (6 hours of
development a28°C) [20]. Fig. 2 shows the acquired portion in the entire anis@lme. The volume
that has been imaged encompasses part obthstoderm(the embryonic cell mass) and does not get

into theyolk (the non-cellular mass of nutrients).

Blastoderm

Yolk

(@) (b)

Fig. 2. Acquired portion of the Zebrafish embryo: (a) start point &al3ohours post fertilization, (b) end point about 7 hours

post fertilization.
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IIl. 1 MAGE DENOISING

The noise present in the image can disrupt the shape infamatierefore denoising is an essential
preliminary task in images segmentation. Noise has difteseurces such as photon noise, non homo-
geneous concentration of fluorescent proteins in the labstledttures or the electronic noise from the
instrument. In order to accurately reconstruct the objbeps, the denoising method has to improve
the signal-to-noise ratio, faithfully preserving the pmsi of the boundaries that define the shape of the

structures.

() (d)

Fig. 3. Details of filtering results (on the right) in comparison with the originaages (on the left) for membranes (a)(b)
and nuclei (c)(d) xy slices. The noise is greatly reduced and the imagfeast is enhanced thanks to the intensity level sets
accumulation around the boundaries promoted by the geodesic certattinique. Gray level images with values 0 (black) and
255 (white).
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We then chose to filter the data with the so caltggbdesic curvature filteringlO] which has been
proved to be suitable for this kind of dataset [21], [22].
Besides this, membranes segmentation requires an additmeprocessing. Membranes images are
corrupted by a weak nuclei signal, more intense during nsitobhis is due to overlapping between
nuclei and membranes emission range during acquisitionrefinpinary thresholding of nuclei images
separates the nuclei signal from the background, hightighthe interfering signal that is then subtracted
from the membranes images. This simple procedure prevent®rgvinterpretation of the membranes

edges deriving from the crosstalk between the two fluoressignals.

IV. ALGORITHM FOR CELL SEGMENTATION

This section presents a detailed description of the stepertaien in our segmentation algorithm. We
particularly focus on membranes images, that are typicdiracterized by a low or even absent signal,
giving rise to incomplete contours. Missing boundariesld¢die completed by using the Geodesic Active
Contour method [23], but the technique greatly depends enatborithm initialization: at the starting
point, the reference level has to be an approximation of the iontour. An interesting solution, that
does not require any a priori knowledge about the edgesdggphas been introduced in [9] and consists
in the use of a Malladi-Sethian approach [24]. Every membrarsegmented using a level-set function
initialized in its center and then expanded by a balloon téfhe missing boundaries are completed by
a manually chosen different weight between the regulaozatnd expansion term. Anyway, as we are
dealing with thousands of cells, the user interventionriour case, unfeasible. Moreover, if the weight
term is automatically chosen, the method is often not ablotoectly detect the membranes boundaries.
We propose to use a different technique, based on the Swgestirfaces [14], [16] model, in order to
correctly reconstruct the shape of membranes without anyuaiantervention. The Subjective Surfaces
method has been introduced [14] to segment objects chamsrteby a wide absence of information on
boundaries. Such peculiarity makes the model suitable &dlyefor this particular application. Besides,
we would like to point out that the Subjective Surfaces can becessfully applied also to nuclei
segmentation, automatically solving problems related uoclei sometimes clustered as the microscope
resolution is not able to distinguish them.

The proposed procedure requires two preliminary steps: ddeal image features extraction, illustrated
in section IV-A, and the detection of cells position, prasénin section IV-B. The section proceeds with
a detailed description of the Subjective Surfaces algoritimeh ia concluded by the numerical scheme

used for discretization.
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A. Low level features extraction: edge detector

The initial task of the segmentation strategy is to extraetgh-called low level image features. For
such purpose a classic solution is to consider an edge todiga= ¢(z,y, z), @ smooth nonincreasing
function of the image gradient [25]:

1
1+ ([VGo(,y,2) * I(z,y,2)|/5)"
whereG, (z,y, z) is a Gaussian kernel with standard deviatgr denotes the convolutiod,= I(z,y, z)

(1)

g(z,y, 2)

represents the filtered imaged, ands typically 1 or 2. The parameter determines the minimal size
of details that can be preserved, whergais related to the image contrast and acts as a scale factor by

which the image gray levels are mapped into ghiinction.

(c) (d) (e)

Fig. 4. Details of (a) nuclei and (c) membranes original data and the edficators obtained by applying the standard
formulation of g, (b) and (d) respectively. (e) is the alternative edgécator defined in order to detect a single contour in
membranes images. Images (a)(c) with a color map from 0 (black) So(\@Bite) depicting original data intensity. In images

(b)(d)(e) colors map values of the edge indicators from 0 (black) teHité).
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The value ofy is close to 1 in flat area§V 1| — 0) and close to O in the regions where image gradient
is high (i.e. edges). Thus, the minima @fdenote the position of the edges and its minus gradient is a
force field that can be used to drive the evolution, becauskvays points in the local edge direction.
The analyzed signals (membranes vs nuclei) behave in a ctalypldifferent way in terms of edge
detection: nuclei are solid and well contrasted objectanbranes are hollow, with a thickness of about
3 to 4 voxels and adjacent to each other. In nuclei imagesgcdh&ours to be segmented are located in
the regions where image gradient is higher and the minimd)ofi¢note the position of the edges (Fig.
4(b)). On the contrary, the function (1) reveals a doublet@an on the internal and the external side of
cells (Fig. 4(d)). These specific features require using diffefunctions for the detection of the edges in
nuclei and membranes images. In order to locate the miningairmthe middle of membranes thickness,
we propose an alternative edge indicator, using the imagdf ifnot its gradient) as a contours detector.
The edge indicator we propose is:

1
1+ (G (2, y,2) % I (2,9, 2)|/B)"
As expected, its minima locate the contours in the middlehefrhembranes thickness (Fig. 4(e)).

(2)

9(z,y,2)

B. Selection of a point of view: cells recognition and locatio

The second step in the segmentation procedure consists imditradreference point located in the
center of the object to segment. Observing that nuclei asaya surrounded by membranes, we use
the nuclear centers as starting points to segment botheinaretl corresponding membranes. The nuclei
localization is achieved with thgeneralized 3-D Hough transforif26] that allows detecting specific
shapes within an image. By approximating the nucleus as arigph object, the Hough Transform is
able to recognize every nucleus and to provide its centelr B&fore applying the Hough transform,
the volumes are transformed into an edge representatiog tise Canny edge detectioalgorithm [28]
which has mainly three advantages that make it optimal agpreecessing step of the Hough transform:
it is able to locate and mark all real edges, it minimizes tistadce between the detected edge and real
edge and it produces only one response per edge. A sphereenitér(z, yo, zo) and radiug- is the set
of points (z,y, z) where(z — z0)? + (y — y0)? + (2 — 20)? = r? and the parameters space of the spheres
with a fixed radius is a three dimensional space defineda@yyo, zp). We also know that the center
of a sphere is located units from the point(x, y, z) in the direction of the image gradient i, y, 2).

The Hough transform accumulates in a 3 dimensional array dteswof the edge points of the image

(Fig. 5(a)). The coordinates of those votes represent tharedess of the spheres that we are looking
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for. Therefore, coordinates with the highest value are mkslyl representing the parameters of a sphere
in the image space and the center of each nucleus can be iBstgletecting the local maxima in the
accumulator array (Fig. 5(b)). To make the method more flexibke consider a range of values for the
sphere radiusr],.;n, "mae] @nd a variation of the gradient direction. Thus, for eacheefdgint (x,y, z)

the sphere center is located in the neighborhood defined bintkeval [, maz] @and by the angular

sector along the gradient direction.

(@) (b)

Fig. 5. Example of application of the Hough transform on nuclei imaggsvglume rendering representation of the nuclei
channel (yellow) and the accumulator array; (b) detected centersj aphere is rendered everywhere the Hough transform

recognizes a nucleus.

C. Segmentation: Modified Version of the Subjective Susfdeehnique

The method of Subjective Surfaces, as introduced in [16] and ith@roved in [15], consists, in the
3D case, in the volume minimization of a 3-D manifold embetidea 4-D Riemannian space with a
metric constructed on the image itself. Let us consider therditt imageZ : (z,y,2) — I(z,y,2) as a
real positive function in some domail C R? and its low level local features given by the function
g = g(z,y, z) defined in IV-A. Such function is used to construct a Riemanmtric » in R* that will

be used as embedding for a 3-D hypersurface evolution:

g 00 0
0 g 0 0

e 3
00g 0
0 0 0 g/a
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Starting from the center of object to be segmented (in our casbeus center, see section IV-B), an
initial function ®, = ®((x,y, z) is then constructed, in the image domadify usually as a distance or
peak function. Let us defin@ = ®(z,y, z,t) an evolution of®,, wheret represents a synthetic time
known in literature as scale parameter. We point out dhat y, z,0) = ®,. The graph ofP represents a
3-D manifold S = (z,y, z, ®) embedded i{R*, h). ® is evolved afterward by a mean curvature motion

to minimize the volume of the hypersurfadethrough the following motion equation:
Py = Hy [VO|,, (4)

where

1
Hg:9H+<V9'V¢’)Wa 5)

represents the mean curvaturefn (R*, h) and

Ve[, =\/a+ |V (6)

can be seen as a regularization|of| [29]. In equation (5)H still represents a mean curvature &y

but with a metrich in which the edge detectar is equal to 1:

g o= (R0 A (@t BE 0Dy, (at BY+PL)Dar o R PPat Pu Dy Py + Dy D Py @)
(at+®7+27+22)%/ (a+®7+P7+2%)%/2 ‘

Subscripted denote shorthand notations for derivativespj.= 0®/0t, ®, = 0®/0z, B, = 9*°® /022,
®,, = 0*®/0x0y, and similarly for other spatial variables.

Let us now represent (4) in a more general formulation by agtivo different weightsy and v, to
the first and second term of the right side of (5). By considgboundaries and initial conditions, we

can then write our model equation as follow:
O, =pgH+vVg-Vo in Mx]0,7]
O(x,y,2,t) = min(Pp) in OM x]0, 7] (8)
O(x,y,2,0) = Py for (z,y,2) € M,
wherer is the value of scale parametemwhich corresponds to the steady state condition for (8).
Our model equation can then be read as in the following. Thetéirst on the right side of (8) represents
a mean curvature flow, a parabolic motion that evolves the risypce in normal direction with a
velocity given by the mean curvature H and weighted by theeeddicatorg. The second term is a

pure passive advection along the velocity field’g, whose direction and strength depend on position.

This term attracts the hypersurface in the direction of thagenedges. Locally, different behaviors can

September 10, 2009 DRAFT



IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. , NO. , JUNE 2009 12

(b)

Fig. 6. 2-D example of membrane segmentation in case of missing beesdéa, from left to right): original data, edge
detector, segmented contour, in red, superimposed to original dateorfb left to right): evolution of the initial point-of-view

surface and selection of a level set, red line, for segmentation.

be identified in the image regions according to one of these flowthe homogeneous regiogs= 1
andVg — 0, therefore (8) reduces to the mean curvature flow: inside tijects the hypersurface levels
collapse in a point then disappear. In regions where the edgemation existsy — 0 and (8) reduces
to a simple advection equation: the hypersurface levelsldven towards the edges by the fieldvg,
their accumulation causes the increase of the spatial ggrta@ind.S starts to generate discontinuities.
In regions with subjective contours (missing boundariegntinuation of existing edge fragments,

is negligible and (8) can be approximated by a geodesic fldawvalg the boundary completion with
geodesics. The application of these dynamics is clear in Figh@ving the effect of boundary completion
in a membrane with a missing contour. The use of different ktsitpetween the regularization and the
advective termsy( > ) facilitates the control of evolutive process. Indeed, segmentation, together
with the missing contours completion, is obtained througg shocks developed by the hypersurface on
object boundaries, while the hypersurface is simultangosimoothed and flattened inside the object.

An higher weight of advective term ensures a better accuiulaf image gray levels around existing
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contours. The parameterintroduced in the metric is a stretching factor and repressamweight between
two different dynamics. It indeed shifts the model from theam curvature flow of level seta & 0)

to the mean curvature flow of graph € 1). We will show in section V how we changed tlhevalue

in order to modify the dynamics of motion equation and to iower the segmentation of not perfectly

centered objects.

D. Numerical Discretization

Concerning the numerical schemes for discretization, #neégh derivatives in (8) are approximated with
finite differences [14], [16], [30]. Time derivatives are distized with first order forward differences, the
parabolic term with central differences and the advectvmtwith upwind schemes, where the direction
of the one-sided difference used in a point depends on tleetiin of the vector field = —Vg in the
same point. Let us consider a uniform grid in space-timgy, z, t), then the grid consists of the points
(@i, Y5, 2k, tn) = (iAz, jAy, kAz,nAt). We denote byp?.,. the value of the functio® at the grid point
(xi, 5, 2k, tn), DY giji the value of the edge indicator in the grid poiaf, y;, z;) and bywv;;; the value
of the vector fieldv in the same spatial grid point. The numerical approximatib@d is given by the
equation (9),

03

: Oi 02z 03 03 Oyy Oi 02
a+ Dijlc + Dijk)Dijk + (a+ Dijk + Dijk)Dijk + (a+ Dijk + Dijk

)DOI:L‘

ijk

2
a+ D% + D% 4+ D%

ijk ijk ijk

n+1 _ n (
(I)i].k = cI)ijk + At {H Gijk [
0z 705 110 0x 10y Ozy 0y 40, Oy=
ikaijszijzlf + DikaijkDijk + DijkDijszijk
02

2 03 02
a+ D+ D5+ D5

D
-2

-v{ [min(v?fk, O)D:ﬁ + max(v?ﬁc, 0)D, 5+

+ min(v?}’k, 0)DtY + max(v?j’k, 0)D; Y + min(v?jzk, 0)D;7 + max(v?;k, O)D_z} }} 9)

ijk ij ijk ijk

where D is a finite difference operator o}, the superscript§—1,0, 1} indicate backward, central,

and forward differences and the superscriptsy, z} indicate the direction of differentiation.

V. RESULTS AND DISCUSSION

We applied our algorithm to time-lapse 3-D datasets depmjctiebrafish embryogenesis at cellular
level. As reference points for the algorithm initializatiove chose the cell nuclei centers detected via
the generalized 3-D Hough transform. We then constructedypersurface in(R*, h) by defining a®,
function in the image domai. We used®, = «/D, whereD is the 3-D euclidean distance from the

reference point and is a positive constant. The same expressio@®tan be employed both for nuclei
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and membranes segmentation. Starting from the initialiaefbee, we performed nucleus/membrane
segmentation by using the following values of parameters:

« high value ofa = 1;

« low value ofa = 1076;

« load of the curvature term = 0.1;

o load of the advective term = 10;

o time stepAt = 0.065.

In the conclusive step of the algorithm, we automaticalkpd the level set that describes the desired
object. After segmentation, the intensity distributiontbé function®.,; = ®(x,y, z,7) is typically
associated to a bimodal histogram. Therefore, the segmeuntéate could be extracted as the isosurface
corresponding to the intermediate valuedaf,; scalar range.

Each object is processed separately from the others limitiegcomputation to subvolumes containing
only one cell. This structure greatly simplifies the code peliahtion, because it allows subdividing the
volume in blocks of few cells, sending blocks to differenbgessors for computation and then collecting
all the segmented surfaces as a single result. The positidheofeference point influences the result
of segmentation. If it is around the object center, at the ehthe evolution the highest hypersurface
values correspond to the shape we want to extract. On theacgnif we consider a strongly off-center
reference point other adjacent structures may become miaeat, not allowing a correct segmentation
[16]. We solved this problem, at least partially, by chaggthe motion equation dynamics during the
evolution process. Using first a high value of paramettre process is mostly diffusive: the hypersurface
smooths, moving away from the adjacent external structares simultaneously flattens inside the object.
Then, with a low value ofi, the hypersurface evolves driven by a pure level set mosbarpening its
discontinuities. A bidimensional example is shown in Fig). (ince diffusion was faster, the number
of iterations with a high value of was lower than the number of iterations with a low valueapto
make comparable the effects of the two motions on the finalocontWe used the same parameters both
for nuclei and membranes processing, except for the totalen of iterations: nuclei are smaller, thus
their segmentation requires less iterations (40000 iterateps for membranes, 10000 for nuclei). The
discrete time step\t has been chosen as the maximum value which insures thetgtabilhe advective
term in (8). The stability condition, which can be deducedrfnrmass balance considerations [31] applied

to a single voxel, is given by:
At

At At
N — - <
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wherev,, vy, v. are the velocity components. In our application we used dllewing approximation of
the components arising in the velocity field:

_ 9i+14k — 9i—1,5k

ga: ~ 2
 9ig+1k — Gij-1k
Gy ~ 9
9i5.k+1 — Gi5,k—1
9= = — 9 - (11)

Since0 < g < 1, in the worst caséy.| = |g,| = |g-| = 0.5. Therefore, substituting this value in (11) and
settingAz = Ay = Az = 1, we obtain from (10A¢ < 3% In our caser = 10, so we setAt = 0.065. A
similar analysis is difficult for the curvature term becausgeipends in nonlinear way on the solution. In

the actual implementation we did not use strong curvaturighteln case of strong curvature influence

(d (e) (f)

Fig. 7. 2-D example of membrane segmentation in case of missing baesidBhe point for the Surface initialization is chosen
very close to the boundaries but the membrane is correctly segmentdd tttathe use of different values for the parameter
a during the Surface evolution. (a) Original membrane. (b) Initial distafunction ®, depicted in red, superimposed on the
original data. (c) Membrane segmentation, in red, superimposed anithieal data. (d) Original Surfac€ constructed as graph

of ®@. (e) The Surface at the end of the first, diffusive, process: (1). (f) The Surface at the end of the evolution, after a pure

level set motion ¢ = 107°).
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(@) (b) (©

Fig. 8. Segmentation of a membrane with an uncompleted contour: (apgh@srtion underlined by a red circle, (b) segmented

surface, (c) cut of the surface superimposed on an image slice.

one should approximate the equation through the semi-tibgichemes [32], [33], [34], [35] which are

unconditionally stable. In this Section we show some medningsults of segmentation on two different
cell types distinguishable in the imaged developmentabpeepithelial cells from the enveloping layer

andinner cells. Their morphology varies along the cell cycle intradgamore morphological categories.

The inner cell mass is covered by an epithelial layer (EVL oredping layer). EVL cells are polarized,

i.e. their apical surface and baso-lateral surface haveifgperoperties, polygonal, large, flat and they
largely keep their shape when dividing. They sometime haveraknuclei, due to some stress condition
linked to manipulation. They also always show intracellutembrane staining, probably corresponding
to intra cellular membrane compartments. Inner cells arallsmthan EVL cells and not polarized. They
fill the space and their nucleus is centered. During divisiomei cells become spherical and largely
loose adhesion to their neighbors. Fig. 8 shows the effecobahflary completion on an inner cell: the
missing contour, underlined by the red circle, is compldigda straight line. The algorithm shows the
same behavior for dividing membranes (Fig. 9). When two diffié nuclei are found inside the same cell
and the membrane presents a constriction along the dividame, the algorithm segments two cells by
completing their contours with straight lines. These rasdémonstrate the suitability of the Subjective
Surfaces technique for this scenario, especially if comparigh other methods. In Fig. 10 we discuss
our algorithm against Malladi-Sethian approach [24] in tpecific case study of missing membrane
boundary. The performances are comparable in the regionwégthdefined contours, whereas the final
shape achieved by the classical level set method fails in bmeme completion. Before undergoing

division, inner cells become spherical, whereas nuclénista elongates as the chromosomes arrange in
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(@) (b) (©

Fig. 9. Segmentation of a dividing cell: (a) constriction of the membrargerined by a red circle, (b) segmented surface,

(c) cut of the surface superimposed on an image slice.

Subjective
Surfaces

(@) (b)

Fig. 10. Segmentation of an uncompleted membrane by using diffexgntentation techniques: (a) missing portion underlined
by a red circle, (b) segmented contour (yellow line Subjective Surfdedine Malladi-Sethian).

the future cell division plane (Fig. 11). It should be notedttthe nucleus size is underestimated in the
last two parts. This is due to the parabolic regularizatiomta the motion equation (8), which prevents
the segmented surface to reach the contour if it is concagenéth high curvature. However, the nuclei
of not dividing cells are correctly segmented, as confirmedibyal inspection.

Fig. 12 shows a complete sequence of an inner cell divisiothdriirst stages the cell shape is irregular,

because of the adhesion to its neighbors, but becomes sphbdfore mitosis. In the same way, the
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@) (b) (©

Fig. 11. Segmentation of a cell before division: (a) superimposition efbranes and nuclei signals, (b) segmented surfaces,

( (c) cut of the surfaces superimposed on an image slice.

nucleus shape changes during cellular division from a $gddeor ellipsoidal aspect to a more oblong
and flat shape. These morphological features are linked tafispeiwision phases:

1) Prophasethe nucleus starts changing its shape and gaining in inyefscause of chromosomes

condensation, and the membrane gradually looses adhesibe neighbors;

2) Prometaphasehromosomes attach to the mitotic spindle;

3) Methaphaseghe chromosomes arrange in the future cell division plane;

4) Anaphasdhe two sets of chromosomes separate;

5) Telophasehe membrane shows a constriction along the future celbidini plane;

6) Cytokinesighe daughter cells separate.

Eye inspection of the results reveals some problems in thenesagtion of EVL membranes. As
we described above, these cells surrounding the embryoeayeftat. This feature impaired membrane
completion by the Subjective Surfaces 3-D technique, becthesesmall extension in depth stops the
evolution process. Furthermore, EVL cells show intense ¢etialar labeling (as we can see in the central
cell of Fig. 13(c)), probably corresponding to intracellulmembrane compartments (Golgi apparatus or
endoplasmic reticulum). When the evolving surface rea¢hissintracellular staining, it is not able to
pass on. These considerations led us to think we require afisp@ethod for the segmentation of the
epithelial cells. Prior segmentation, they have to be autimally localized within the acquired volumes
through a discriminating factor. At the moment, we are dapiglg a simple method for the detection
of the epithelial cells based on their position. First, wensegt the surface of the embryo using the

Geodesic Active Contours technique [36]. The evolution it stopped by the external layer of cells,
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(a) Step 1. (b) Step 2. (c) Step 3.

(d) Step 4. (e) Step 5 Prophasg. (f) Step 6 Prometaphase

(g) Step 7 Metaphasg (h) Step 8 Telophask (i) Step 9.

() Step 10 Cytokinesis (k) Step 11. () Step 12.

Fig. 12. Sequence of cell division.
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because they have a weak outer contour, so we obtain the mlodien in Fig. 14(a)). The epithelial cells
remain outside (Fig. 14(b)) the surface and thus can be edsifcted and classified as epithelial. This
method is interesting because of its simpleness, but o#wtors could be used for the detection, such as
the polygonal shape or the bigger size of epithelial nuéaially, in Fig. 15 we show the segmentation
of two subvolumes of nuclei and membranes. Every object islémbwith a different color, whose scalar

value corresponds to the cell identity number.

VI. VALIDATION
In order to visually inspect the results validity, the segiaéon algorithm has been first tested using

a special framework designed for managing series of 3-Dopioal images [37]. The visual inspection

of results allowed the detection of glaring mistakes in ghegzonstruction, such as surfaces overlapping

(b) (©

Fig. 13. Segmentation of epithelial cells: (a) location of the epithelial cells imtheired volumes (dashed area), (b) segmented

surfaces, (c) slice of the segmented surfaces superimposed oraga slice.
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and incomplete contours. Nevertheless, this estimatiomtisnough to quantify the algorithm precision.

We then designed a strategy to measure both the accuracyhbustmess of our algorithm.

A. Accuracy measurement

To estimate the accuracy we propose to measure the mismataledn a segmented surface and a
gold standard obtained by manual segmentation. Such mibnigtguantified by using thélausdorff
distanceand themean Hausdorff distancg8], respectively associated to the maximum and mean
segmentation error. In the foreseen validation methodgc#beulation of the distance should be repeated
by considering different gold standards for the same menajréo execute a statistical analysis on
the data. This procedure should reduce the influence on resultse user who made the manual
segmentation. The proposed procedure has been applied o eefis and every manual segmentation
has been performed with the tool ITK-Snap [39]. However, a firglgsis on two cells with different

shapes revealed interesting features (Tab. I). Celll, éudmpfore division, is almost perfectly spherical,

(b)

Fig. 14. Detection of the epithelial cells on a 3-D LMS dataset: (a) slice ofegeented surface, (b) superimposition of the

segmented surface, nuclei channel in volume rendering représengad detected centers.
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(@) (b)

Fig. 15. Segmentation of an entire subvolume: (a) membranes, (linuc

TABLE |

H.D. (HAUSDORFF DISTANCE AND MEAN H.D. AVERAGED ON 10 DIFFERENT GOLD STANDARDS OUT

H.d. (um) | Mean H.d. fsm)

Celll | 1.3£0.3 0.4+0.2
Cell2 | 2.1£0.1 0.3+£0.0

whereas cell2 has an irregular shape because of the adhesiaijacent cells.

Examining different conformations, we want to estimate tfiece of the “shape factor” on the algorithm
precision. The mean Hausdorff distances are comparableeftdr: ©.4 4+ 0.2 pm and cell2:0.3 + 0.0
um. On the contrary, the maximum error is different whether shape is sphericalt.3 4+ 0.3 pm or
irregular:2.1 + 0.1 gm. These results suggest that the shape influences the maximarbet not the
overall precision. This is probably due to the behavior alyeabserved in section V: the inability of the
segmented surface to reach the contour if it is concave atid high curvature causes an increase of
the maximum error in the irregular shapes (Fig. 16). Cenathlese results have to be supported by a
larger record of cases. However they indicate that our pitiis at least sufficient to identify mitosis

which is the major issue for further reconstructing cell déhbrs.

September 10, 2009 DRAFT



IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. , NO. , JUNE 2009 23

Fig. 16. Details of segmented surfaces (red) and gold standardssfmu)ing the region where the maximum segmentation

error is located.

B. Robustness measurement

A robust segmentation method should correctly extract ti@goes of objects under different condition
of image intensity, signal to noise ratio and image contfage to the physics of the acquisition process,
our images are characterized by a signal to noise ratio whiogressively decreases when moving in

deep (z direction), as shown in Fig. 17.

(@) (b) ()

Fig. 17. Slices (xy plane) of membranes sub-volume at differenthdeqf the sample. (a) Top. (b) Middle. (c) Bottom.

Similar conditions can be achieved by artificially corruptimgages with different levels of noise.

Therefore, we aim at approaching a robustness measuremestigating whether our algorithm is able
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to segment a membrane enclosed in a region of interest whigrogressively degraded by additive
Gaussian noise. More precisely, the segmentation algoritas been applied on three different images,
attained by adding to the original a Gaussian noise with medime zero and an increasing standard
deviation of 50, 100, 150 (Fig. 18(b-d)). We compared the ssgation results achieved on noisy images
with the surface segmented on uncorrupted, original dat, in this case can be considered as gold
standard (Fig. 18(a)). Similarly to the accuracy estimatimtedure, the mismatch between surfaces has
been quantified through the use of tHausdorff distanceand themean Hausdorff distancg38]. Our
results, depicted in table Il and Fig. 18, clearly show thaspite the increment of noise influences the
segmentation quality, however, in the worst case (std = t&Ojnean and maximum error are respectively
kept below 0.8um and 2.6um. Considering that in our scenario the voxel size is 0.58 8 &5..04
wm? we can certainly assume that our algorithm is robust andetéopnances are acceptable even if

applied on really corrupted images.

© (d)

Fig. 18. Results of robustness procedure. Results of robustnesdpre. Left: slices (xy plane) of the selected region. Middle:
cut of segmented surfaces superimposed on the image slice. Righterseagl surfaces superimposed on the image slice. (a)
Original data (gold standard). (b) Noisy data (std 50). (c) Noisy dath1@®0). (d) Noisy data (std 150).

VIlI. CONCLUSION AND FUTURE WORKS

We designed an algorithm for the automated segmentationeafibranes and nuclei based on Subjec-
tive Surfaces technique that has good performances on limafish embryos confocal images. Visual

inspection of the results has shown the ability of the atharito complete the missing contours, especially
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TABLE I

H.D. (HAUSDORFF DISTANCE AND MEAN H.D. BETWEEN SURFACES SEGMENTED ON THE ORIGINAL AND NOISY DATA

std | H.d. (um) | Mean H.d. {im)

50 12 0.3
100 1.6 0.5
150 2.6 0.8

in membranes images, and to correctly reproduce the obgheige. Segmentation performances have
been evaluated and quantified calculating the Hausdorff haedMean Hausdorff distances between
gold standard and segmented surfaces. With the proposethtiah strategy we demonstrated that our
algorithm performs well both in term of accuracy and robasthagainst noise. The local precision seems
to decrease for elongated and flat shapes (EVL cells and dividiolei). The algorithm could be improved
by integrating the segmentation of membranes and nuclegrsuposing their edge indicators and defining
two different isosurface values for extracting both shdapehe same process. A specific method could be
designed for the segmentation of the EVL cells that have totaized prior segmentation. With this work
we have built the basis for future developments toward a ele@pderstanding of the biological processes
involved in the organism formation. In this direction, thexhstep will be to pass the segmentation results
to a specific algorithm for the cell shape analysis, that hdmtdefined yet, with the final goal to extract

information on the cell state and analyze the dynamics ashtpe.
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