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Abstract The fixed gravimetric boundary-value problem
(FGBVP) represents an exterior oblique derivative problem
for the Laplace equation. Terrestrial gravimetric measure-
ments located by precise satellite positioning yield oblique
derivative boundary conditions in the form of surface gravity
disturbances. In this paper, we discuss the boundary element
method (BEM) applied to the linearized FGBVP. In spite of
previous BEM approaches in geodesy, we use the so-called
direct BEM formulation, where a weak formulation is derived
through the method of weighted residuals. The collocation
technique with linear basis functions is applied for deriv-
ing the linear system of equations from the arising boundary
integral equations. The nonstationary iterative biconjugate
gradient stabilized method is used to solve the large-scale
linear system of equations. The standard MPI (message pass-
ing interface) subroutines are implemented in order to per-
form parallel computations. The proposed approach gives
a numerical solution at collocation points directly on the
Earth’s surface (on a fixed boundary). Numerical experi-
ments deal with (i) global gravity field modelling using syn-
thetic data (surface gravity disturbances generated from a
global geopotential model (GGM)) (ii) local gravity field
modelling in Slovakia using observed gravity data. In order to
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extend computations, the memory requirements are reduced
using elimination of the far-zone effects by incorporating
GGM or a coarse global numerical solution obtained by
BEM. Statistical characteristics of residuals between numeri-
cal solutions and GGM confirm the reliability of the approach
and indicate accuracy of numerical solutions for the global
models. A local refinement in Slovakia results in a local
(national) quasigeoid model, which when compared with
GPS-levelling data, does not make a large improvement on
existing remove-restore-based models.

Keywords Linearized fixed gravimetric boundary-value
problem (LFGBVP) · Boundary element method (BEM) ·
Method of weighted residuals · Collocation · Piecewise
linear basis functions · Parallel computing · Global and
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1 Introduction

The determination of the Earth’s external gravity field is usu-
ally formulated in terms of the geodetic boundary-value prob-
lem (BVP) for the Laplace equation. The classical
approaches, e.g., the Stokes problem (Stokes 1846) or the
linearized Molodenskij problem (Molodenskij et al. 1962,
later extended by Krarup 1973 and Moritz 1980), involve
boundary conditions (BC) in the form of the well-known
fundamental equation of physical geodesy. Here the input
gravity anomalies (geoidal or surface) are considered on the
boundaries that only approximate the real Earth’s surface,
i.e., on the geoid or telluroid, respectively.

In recent decades, more attention has been focused on the
fixed gravimetric BVP (FGBVP), where the physical surface
of the Earth is assumed to be known. Without any doubt, the
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16 R. Čunderlík et al.

precise 3D positioning by GNSS (global navigation satellite
systems) has brought new possibilities in gravity field mod-
elling. Terrestrial gravimetric measurements located by pre-
cise geocentric positioning directly provide surface gravity
disturbances. They almost correspond to negative values of
derivatives of the unknown disturbing potential at points on
the Earth’s surface. It means they represent the oblique deriv-
ative BC for the linearized FGBVP. At the same time, the
Earth’s surface is given as a fixed boundary.

A uniqueness theorem for a non-linear FGBVP was first
given by BackusGE (1968). The existence and uniqueness
of the solution for the associated linear (or linearized) prob-
lem was introduced by Koch and Pope (1972). They also
gave a uniqueness proof for the non-linear case. This general
problem was later discussed by Bjerhammar and Svensson
(1983), Sacerdote and Sansó (1989) and Grafarend (1989).
Later on, many authors have dealt with the FGBVP (e.g.,
Heck 1989a,b; Holota 1997, 2005).

In this paper, we discuss a numerical solution of the line-
arized FGBVP, where BC are considered in the form of the
surface gravity disturbances. It represents an exterior oblique
derivative problem for the Laplace equation. We use the
boundary element method (BEM), which is suitable for solv-
ing exterior BVPs. BEM, as a numerical method, is based on
a weak formulation of a partial differential equation (PDE).
Its principle consists in an approximation of the unknown
quantity by a function that satisfies the PDE exactly, but the
BC only approximately.

The advantage of BEM is that only the boundary of the
solution domain requires a subdivision into its elements.
Thus, the dimension of the problem is effectively reduced
by one. The reformulation of the PDE consists of the sur-
face integral equations defined on the boundary, i.e., on the
Earth’s surface. They are transformed into a linear system of
equations by an appropriate numerical technique, e.g., by the
collocation method or the Galerkin BEM (see, e.g., Brebbia
et al. 1984; Hartmann 1989; Schwarz et al. 1990; Lucquin
and Pironneau 1998). Such approach leads to a numerical
solution that is as close as possible to reality, but the price to
be paid is a numerical complexity.

First application of BEM to gravity field modelling was
given by Klees (1992). This approach based on the Galerkin
BEM was gradually extended (Klees 1998; Lehmann 1997c).
In order to reduce the numerical complexity of BEM, paral-
lel computing (Lehmann and Klees 1996; Lehmann 1997a,b)
and compression techniques such as panel clustering and the
fast multipole method were implemented. This effort results
in very sophisticated approaches (Klees and Lehmann 2001;
Klees et al. 2001). All these BEM applications use the single
layer potential ‘ansatz’ for reformulating the Laplace equa-
tion, i.e., they are based on the indirect BEM formulation.

In our approach, we use a direct BEM formulation, where
the boundary integral equations (BIEs) can be derived

through the application of Green’s third identity or through
the method of weighted residuals (Brebbia et al. 1984). Both
methods lead to the same integral relation. In this paper, we
use the weighted residuals technique, which can be under-
stood as a weak formulation of the problem. In order to
discretize BIEs and transform them into the linear system,
we consider the collocation method with linear basis func-
tions. Such approach provides a numerical solution directly
at points on the Earth’s surface, which is discretized into
finite elements. Taking into account that the exterior BVP
for the Laplace equation with the Neumann BC admits a
unique solution that is regular at infinity (Brebbia et al. 1984),
we will show how to project the oblique derivative BC into
the Neumann BC. This step includes a simplification that is
acceptable for the practical purposes and makes numerical
experiments easier to implement.

The main drawback of the BEM application is its numeri-
cal complexity. The obtained system matrix is dense and non-
symmetric. Therefore, enormous memory requirements are
a main limitation for numerical computations. With respect
to the size of the Earth and in order to get accuracy as high as
possible, computing on parallel computers is inevitable. In
our applications, the number of equations is more than 104

and can feasibly increase to 106 or more.
There are several options to reduce the memory require-

ments. An application of the linear basis functions instead of
constant ones in our approach reduces the memory require-
ments by a factor of four (Čunderlík 2004). Recently, numer-
ous compression techniques have been developed to reduce
the numerical complexity of BEM, e.g., the fast multipole
methods (Greengard and Rokhlin 1987), panel clustering
(Hackbusch and Nowak 1989), wavelet techniques and oth-
ers. Their implementation to the gravity field modelling by
BEM is discussed in (Klees et al. 2001).

In our approach, we simply reduce memory requirements
by incorporating a priori known approximate values obtained
from a global geopotential model (GGM) or from numerical
solutions computed on coarse grids. This permits us to trans-
form the original dense stiffness matrix into a sparse one,
allowing further computation extensions that can yield more
precise numerical solutions.

2 The linearized fixed gravimetric BVP

The linearized FGBVP represents an exterior oblique deriv-
ative problem for the Laplace equation (cf. Koch and Pope
1972; Bjerhammar and Svensson 1983; Grafarend 1989).
Following the definition of the disturbing potential T ,

T (x) = W (x)− U (x), x ∈ R3, (1)

where W is the actual and U the normal gravity potential
at any point x and according to assumptions for the same
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Numerical solution of the linearized fixed gravimetric boundary-value problem 17

problem described in Holota (1997), the problem may be
formulated as:

�T (x) = 0, x ∈ R3 −Ω, (2)

〈∇T (x), s(x)〉 = −δg(x), x ∈ Γ, (3)

where the domainΩ is the body of the Earth with its bound-
ary Γ (the Earth’s surface), 〈, 〉 represents the inner product
of vectors, ∇ is the gradient operator and

s(x) = −∇U (x)/γ (x), x ∈ Γ. (4)

The surface gravity disturbance δg compares the magnitudes
of the actual gravity g = |∇W | and normal gravityγ = |∇U |
at the same point x

δg(x) = g(x)− γ (x), x ∈ R3. (5)

Moreover, we assume that T is regular at infinity, i.e.,

T = O(|x|−1) as x → ∞ (6)

Equations (2), (3) and (6) represent the exterior oblique
derivative BVP for the Laplace equation, because the normal
to the Earth’s surface Γ does not coincide with the vector s
defined by Eq. (4). The oblique derivative BC in Eq. (3)
contains an error that arises from a linearization of the gen-
eral gravimetric BVP (cf. Bjerhammar and Svensson 1983;
Grafarend 1989). Here the surface deflection of the vertical
is neglected as well, because the direction of g = ∇W does
not correspond to the direction of s.

3 The direct BEM formulation for the linearized
FGBVP

The underlying objective in a derivation of BEM is to replace
the PDE that governs the solution in a domain by an equa-
tion that gives the solution on the boundary only (see, e.g.,
Brebbia et al. 1984; Hartmann 1989; Schwarz et al. 1990;
Lucquin and Pironneau 1998). There are two fundamental
approaches to the derivation of an integral equation formula-
tion of the Laplace equation. The first is often called the direct
method and the integral equations can be derived through the
application of Green’s third identity. The second technique is
called the indirect method, which is based on the assumption
that harmonic functions can be expressed in terms of a sin-
gle-layer or double-layer potential generated by continuous
source density functions defined on the boundary.

A conceptual disadvantage of the indirect BEM formula-
tion is the introduction of the formal source densities usually
without a direct physical relation to the problem. This can be
overcome by using the direct BEM formulation, where val-
ues of the function and its normal derivative over the bound-
ary Γ play the role of the source densities in generating the
harmonic function over the solution domain (Brebbia et al.

1984). The integral equations can be derived using Green’s
third identity, where a harmonic function is represented as
a superposition of the single-layer and double-layer poten-
tial. The same integral relation can be obtained through the
method of weighted residuals. Here we briefly outline its
main principle.

Let us seek an approximate solution to the problem gov-
erned by the Laplace equation (2), with BC of the
Dirichlet type

T (x) = T̄ (x), x ∈ Γ1, (7a)

or the Neumann type

∂T

∂nΓ
(x) = q̄(x), x ∈ Γ2, (7b)

where nΓ is the normal to the boundary Γ . T̄ and q̄ are pre-
scribed values of the function and its normal derivative over
the boundary Γ . Notice that Γ = Γ1 ∪ Γ2.

The error, introduced by replacing T and q by an approxi-
mate solution, can be minimized using the following
weighted residual consideration:

∫

Ω

�T ( y)w(x, y)d y =
∫

Γ1

[T ( y)− T̄ ( y)]∂w(x, y)
∂nΓ ( y)

d y

−
∫

Γ2

[ ∂T

∂nΓ
( y)− q̄( y)]w(x, y)d y,

x ∈ Γ, (8)

where w is a weighting function. A double integration by
parts of the left-hand side of Eq. (8) yields

∫

Ω

�T ( y)w(x, y)d y =
∫

Γ1

∂T

∂nΓ
w(x, y)d y

+
∫

Γ2

q̄( y)w(x, y)d y

−
∫

Γ1

T̄ ( y)
∂w(x, y)
∂nΓ ( y)

d y

−
∫

Γ2

T ( y)
∂w(x, y)
∂nΓ ( y)

d y

+
∫

Ω

T ( y)∆w(x, y)d y, x ∈ Γ.

(9)
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18 R. Čunderlík et al.

Comparing the right-hand sides of Eq. (8) and Eq. (9), gives

−
∫

Ω

T ( y)�w(x, y)d y +
∫

Γ

T ( y)
∂w(x, y)
∂nΓ ( y)

d y

=
∫

Γ

∂T

∂nΓ
( y)w(x, y)d y, x ∈ Γ. (10)

Now let the weighting functionw be the fundamental solu-
tion of the Laplace equation, known as Green’s function G,

G(x, y) = 1

4πr
, x, y ∈ R3, (11)

where r = |x − y|. Then its normal derivative with respect
to the outward normal nΓ to the boundary at the point y is

Q(x, y) = ∂G(x, y)
∂nΓ ( y)

= 〈r, nΓ ( y)〉
4πr3 , x, y ∈ R3. (12)

Considering properties of the fundamental solution G in the
first term of Eq. (10), it can be rewritten into the form (for
more details see Brebbia et al. 1984)

1

2
T (x)+

∫

Γ

T ( y)Q(x, y)d y

=
∫

Γ

∂T

∂nΓ
( y)G(x, y)d y, x ∈ Γ. (13)

The BIE in Eq. (13) represents the direct BEM formulation
for the Laplace equation. An advantage is that the restriction
for the boundary surface to be a Liapunov (smooth) one can
be relaxed. In fact, Eq. (13) can be applied to the more general
Kellogg regular surfaces allowing corners or edges (Brebbia
et al. 1984) provided that it is considered in the form

c(x)T (x)+
∫

Γ

T ( y)Q(x, y)d y

=
∫

Γ

∂T

∂nΓ
( y)G(x, y)d y, x ∈ Γ, (14)

with a coefficient c. There are two different procedures for
evaluating the coefficient c; (i) through physical consider-
ations, which arise from the fact that a constant potential
applied over a closed body produces no flux, and (ii) through
geometrical considerations (see later). Let us note that the
BIE in Eq. (14) can be directly applied to evaluate the har-
monic function T in any points x ∈ R3 −Ω . In this case, the
coefficient c equals one.

In this paper, we apply the direct BEM formulation
(Eq. 14) to the linearized FGBVP described in Sect. 2.
According to the oblique derivative BC in Eq. (3), ∇T (x)
projected to s(x) equals to −δg(x). Neglecting the surface
(Helmert) deflection of the vertical, the normal derivative
term ∂T/∂nΓ in Eq. (14) is approximately equal to −δg(x)
cosµ(x), where µ(x) is the angle � (nΓ (x), s(x)). Let us

note that this term represents the projection of the vector
δg(x)s(x) (not exactly of the vector ∇T (x)) to the normal
nΓ (x). The error of such approach is proportional to the error
already included in Eq. (3). In this way, the oblique derivative
BC in Eq. (3) is incorporated into the direct BEM formula-
tion Eq. (14). Another approach using generalized Green’s
theorem would be also possible, but we do not follow it in
this paper.

3.1 Collocation with linear basis functions

In the proposed approach, a collocation method with lin-
ear basis functions (denoting the C1 collocation) is used for
deriving the linear system of equations from Eq. (14). The
Earth’s surface as a boundary of the domain is approximated
by the triangulation of the topography – expressed as a set
of panels �Γ j . The vertices xi , . . . , xN of the triangles rep-
resent the nodes – the collocation points.

The C1 collocation involves approximating the boundary
functions by a linear function on each triangular panel using
linear basis functions (Brebbia et al. 1984), i.e.,

T (x) ≈
3∑

k=1

Tkψk(x), x ∈ ∆Γ j , (15a)

δg(x) ≈
3∑

k=1

δgkψk(x), x ∈ ∆Γ j , (15b)

where Tk and δgk for k = 1, 2, 3 represent values of the
boundary functions at the vertices of the triangular panel
�Γ j . The linear basis functions {ψ1, ψ2, . . . , ψN } are given
by

ψ j (xi ) = 1, xi = x j , (16a)

ψ j (xi ) = 0, xi �= x j , (16b)

where i = 1, . . . , N ; j = 1, . . . , N and N is the num-
ber of the collocation points. These approximations allow to
Eq. (14) to be reduced to a discrete form for each collocation
point i

ci Tiψi +
N∑

j=1

∫

suppψ j

∂Gi j

∂nΓ
Tjψ j dΓ j

=
N∑

j=1

∫

suppψ j

Gi jδg jψ j dΓ j , i = 1, . . . , N , (17)

where supp ψ j is the support of the j th basis function.
The coefficient ci in Eq. (17) represents a “spatial seg-

ment” bounded by the panels joined at the i th collocation
point. In the case of the linear basis functions, it can be eval-
uated by (Balaš et al. 1985)
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Numerical solution of the linearized fixed gravimetric boundary-value problem 19

ci =
S∑

s=1

ϕis

4π

(
1 − cosφis

)
, (18)

where ϕis is the angle between two planes intersecting in
ne(xi ) and creating two edges of the sth triangle of the
suppψi . φis is the angle between ne(xi ) and the sth trian-
gle. S represents the number of triangles in the suppψi .

Equation (17) represents the system of equations that can
be rewritten into the matrix–vector form

Mt = Lδg, (19)

where t = (T1, . . . , TN )
T and δg = (δg1, . . . , δgN )

T.
Coefficients of the matrices M and L represent integrals that
need to be computed using an appropriate discretization of
the integral operators in Eq. (17). The discretization of the
integral operators is affected by the weak singularity of the
kernel functions. The integrals with regular integrands, which
represent non-diagonal coefficients, are approximated by the
Gaussian quadrature rules defined on a triangle (Laursen and
Gellert 1978). Their discrete form is (Čunderlík et al. 2002)

Li j = 1

4π

S∑
s=1

A js cosµ js

K∑
k=1

1

riks

ψkwk, i �= j, (20a)

Mi j = 1

4π

S∑
s=1

A js ki js

K∑
k=1

1

r3
iks

ψkwk, i �= j, (20b)

where A js is the area of the sth triangular element of the
suppψ j , ki js is the perpendicular from the collocation point
i to this planar element, K is the number of points used for
the Gaussian quadrature with their corresponding weights
wk and linear basis functions ψk, riks is the distance from
the i th collocation point to the kth quadrature point of the
sth triangular element and cosµ js represents a projection of
s (defined by Eq. (4)) in the j th collocation point to the nor-
mal nΓ of the sth planar element. Then the j th component
of the vector δg in Eq. (19) corresponds to the input value
of the measured surface gravity disturbance δg at the j th
collocation point.

The non-regular integrals (singular elements) arise only
for the diagonal components of the linear system. They
require special evaluation techniques in order to handle the
singularity of the kernel function. Thanks to the diagonal
component ci and the orthogonality of the normal to its pla-
nar triangular element, we obtain (Balaš et al. 1985)

Mii = ci . (21)

The kernel function G (Eq. 11) in the integrals on the
right-hand side of Eq. (17) is weakly singular. The diago-
nal coefficients Lii can be evaluated analytically. After some
elementary calculations using the Mathematica� software
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α2

α3

α1

α4

α5

α6

β1

β2
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r3
r4

r1

r5

r6

Fig. 1 Evaluating of the singular element (collocation with linear basis
functions)

(Wolfram 1996), the analytical form is

Lii = 1

2π

S∑
s=1

Ais

rs
ln

tg[(βs + αs)/2]

tg(βs/2)
, (22)

where Ais is the area of the sth triangle of the suppψi deter-
mined by the line of length rs and angles αs, βs (Fig. 1).

The diagonal component in Eq. (21) can be evaluated
geometrically using Eq. (18) or through the physical con-
sideration. The second approach is based on the fact that
a constant potential applied over a closed body produces no
flux. Accordingly, in case of the exterior Neumann problems,
the sum of all components in each row should be equal to one
(Brebbia et al. 1984). Then one can easily calculate coeffi-
cient ci after evaluating of all non-diagonal coefficients of
matrix M using the Gaussian quadrature in Eq. (20b).

In Eq. (19), M represents the stiffness matrix. Unfortu-
nately, it is a nonsymmetric dense N × N matrix. However,
the decay of the kernel function Q in Eq. (12) makes the stiff-
ness matrix generally well conditioned. Consequently, non-
stationary iterative methods can be efficiently applied to solve
this large-scale linear system of equations. In our applica-
tion the biconjugate gradient stabilized (BiCGSTAB) method
(Barrett et al. 1994) is used, which is suitable for dense and
nonsymetrical matrices.

3.2 Gravity field modelling

An appropriate solution of the linear equation (19) provides
the values of the unknown disturbing potential T at the col-
location points directly on the Earth’s surface. Then one can
easily evaluate the actual potential W or the geopotential
numbers at the collocation points. In order to obtain a geomet-
ric quantity, the height anomaly ζ , the disturbing potential
is rescaled using an expression analogous to the modified
Bruns formula

ζ (x) ∼= T (x)
γ (x)

, (23)
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20 R. Čunderlík et al.

where γ (x) is the magnitude of the normal gravity at the
collocation point.

Here, there is an analogy with the Molodenskij problem
(Molodenskij et al. 1962), which transforms the disturbing
potential into height anomalies corresponding to the quasi-
geoid heights. Although the scaling factor γ in Eq. (23) is
considered on the Earth’s surface, in spite of the linearized
Molodenskij problem where it is considered on a telluroid
(Moritz 1980), we can identify ζ(x) with the quasigeoidal
height. Therefore, we use the term quasigeoid for the dis-
turbing potential rescaled by Eq. (23).

A superposition of the single-layer and double-layer
potential in the direct BEM formulation (Eq. 14) allows us
to use the mixed BC. In ocean areas, where mean sea sur-
face (MSS) models are available from satellite altimetry, the
Dirichlet BC can be defined. Then the same aforementioned
functional model can be applied to the altimetry-gravimetry
BVP. It only requires rearranging the system in Eq. (19) that
yields a new stiffness matrix with different properties. In this
way, unknown gravity disturbances can be obtained in areas
of the oceans.

4 Efficient numerical solutions

Since the stiffness matrix M is a dense and nonsymmetric
N x N matrix, storage and time consumptions are of the order
O(N 2). In the presented numerical experiments, N is more
than 105. In order to solve such large-scale linear systems,
computing on parallel computers, eventually clusters, is prac-
tically inevitable. In our approach, we use the standard MPI
(message passing interface) subroutines for code paralleliza-
tion (Aoyama and Nakano 1999). Here, the point-to-point
and collective communication subroutines are implemented
for the matrix assembly as well as for the BiCGSTAB linear
solver.

Since every matrix component is independent of the oth-
ers (each component Mi j represents a contribution of the
j th element to the i th collocation point) and BiCGSTAB
involves two matrix-vector products for each iteration
(Barrett et al. 1994), the stiffness matrix M can be parallel-
ized to processors by the row-wise block distributions. Then
only the known vector on the right-hand side of Eq. (19) and
two residual vectors in BiCGSTAB need to be communi-
cated between the processors. In this way, the time spent for
communications between processors is minimized.

Numerous compression techniques developed in the last
two decades can efficiently reduce the numerical complex-
ity of the BEM. Here we briefly mention the fast multipole
method, which approximates the kernel function in Eq. (11)
factorizing the x, y dependency by a multipole expansion
(Greengard and Rokhlin 1987). Hence, interactions of the
far zones can be evaluated straightforwardly and the original

dense stiffness matrix M is transformed into a sparse one. It
can rapidly reduce the memory as well as the CPU-time con-
sumption. An implementation of the fast multipole method
as well as the panel clustering to the gravity field modelling
by the Galerkin BEM is in Klees et al. (2001).

In our functional model, we have not yet implemented the
fast multipole method. Instead, we use an approach that sim-
ply incorporates a priori known global solutions obtained:
(i) from GGMs, where the low-frequency components are
obtained from satellite missions, or (ii) from our numerical
results computed on coarser grids without any far zone elim-
ination. Considering the decay of the kernel function Q in
Eq. (12), such approximate values of the disturbing potential
are sufficient to evaluate a contribution of the far zones to
any collocation point without a significant loss of accuracy.
Consequently, all the “far zone components” of the original
system matrix multiplied by the approximate values of the
unknown disturbing potential will pass to the known vector
on the right-hand side in Eq. (19). Then the original dense
stiffness matrix is transformed into the sparse one, which
becomes significantly better conditioned.

This approach reduces the memory requirements rapidly,
while the CPU time-consumption remains almost unchanged.
However, both integrations over the Earth’s surface that deter-
mine coefficients of M and L in Eq. (19) are unchanged. It
has at least two advantages: (i) errors that arise for the approx-
imation of the kernel functions by the multipole expansion
(Greengard and Rokhlin 1987), although very small, are not
involved; (ii) the essential coefficient ci derived through the
physical consideration (see Sect. 3.1) can be evaluated more
precisely. The price to be paid is the high CPU time-con-
sumption. It can partly be reduced by decreasing an order
of the Gaussian quadrature for ‘far zones’ elements with a
minimum loss of accuracy (Sect. 5.1, Table 2). Nevertheless,
implementation of the fast multipole method to our func-
tional model could significantly improve the efficiency of
the proposed approach.

5 Numerical experiments

The main objective of the numerical experiments is to dem-
onstrate that the proposed approach of BEM applied to the
linerized FGBVP gives the numerical solution of the Laplace
equation (Eq. 2) directly on the real Earth’s surface. The
oblique derivative BC in the form of the surface gravity dis-
turbances can be obtained from terrestrial gravimetry with
precise satellite positioning and without demanding level-
ling. At the same time, the Earth’s surface as the fixed bound-
ary is prescribed. All these aspects are fundamental for the
proposed approach.

The surface gravity disturbances as input data to our exper-
iments are more or less simulated. This is because terrestrial
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Numerical solution of the linearized fixed gravimetric boundary-value problem 21

gravimetric measurements have been and are still followed
by the precise levelling. However, precise 3D positioning
by GNSS used in some modern gravimetry (cf. Kirby 2003)
will eventually yield globally homogenous surface gravity
disturbances.

The presented numerical experiments deal with both
global and local gravity field modelling. In our effort, we
focus on increasing accuracy of numerical solutions by refin-
ing a global triangulation of the Earth’s surface as well as by
local refinements. In order to extend numerical experiments,
we reduce the enormous memory requirements in the way
described in Sect. 4.2.

5.1 Global gravity field modelling

The first part of numerical experiments deals with global
gravity field modelling. Unfortunately, we do not have at
our disposal any database of the homogeneous input grav-
ity data all over the Earth. Therefore, we use a GGM to
simulate necessary input gravity disturbances. Consequently,
our numerical results should converge to the corresponding
GGM. This would confirm mathematical reliability of the
numerical solution.

An application of the C1 collocation to the direct BEM
formulation (Sect. 3.1) involves a discretization of the bound-
ary by a triangulation of the topography. First, we model the
Earth’s surface using the following datasets: (i) in continental
areas, we add the SRTM30_PLUS V1.0 global topography
model (Becker and Sandwell 2003) to EGM96 (Lemoine
et al. 1998) in order to get geocentric positions, (ii) in ocean
areas, we use the KMS04 MSS model (Andersen et al. 2005)
transformed to the World Geodetic System 1984 (WGS84)
(NIMA 2001) in the tide-free system.

Then, we approximate the above Earth’s topography by
a triangulated surface generated in the following way. We
construct a triangulation using subdivisions of faces of a
“12-hedron” (Fig. 2a). In every subdivision step, each tri-
angle is divided into four congruent sub-triangles by halving
the sides until a required level is reached (Fig. 2b). Such an
algorithm generates horizontal positions, while the vertical
coordinates, i.e., geodetic (ellipsoidal) heights, are

interpolated from the datasets described above. The vertices
of the final triangulated surface represent the collocation
points. The surface gravity disturbances at the collocation
points are generated from EGM96 using the FORTRAN
program GEOPOT97.V0.4.F (developed by Dru Smith, US
National Geodetic Survey, in 2006). The parameters of the
normal gravity field are given by WGS84.

Thanks to an opportunity to access high-performance
computing (HPC) facilities (see the acknowledgments), the
final large-scale computations were accomplished on the
IBM SP5 high-speed parallel computer with 512 processors
(about 1.2TB of distributed internal memory) at the CINE-
CA HPC Centre. The standard MPI subroutines have been
implemented for the code parallelization (Sect. 4.1). Partic-
ular numerical solutions for different levels of the global
refinement are compared with EGM96. Basic statistical char-
acteristics for the corresponding residuals as well as main
computational aspects are shown in Table 1. A surface lay-
out of the residuals on the reference ellipsoid for the largest
experiment without any far zones elimination (124,418 col-
location points) is depicted in Fig. 3.

The next part of the numerical experiments deals with a
reduction of the enormous memory requirements. The devel-
oped algorithm eliminates interactions of the far zones by
incorporating approximate values of the disturbing potential
(Sect. 4.2) obtained from; (i) EGM96, or (ii) the numeri-
cal solution corresponding to the last column in Table 1.
Such an approach rapidly reduces the memory requirements
(Table 2). Consequently, a number of processors necessary
for the same level of discretization can be reduced as the limit
for the far zones decreases. This allows us to extend computa-
tions and to increase a level of the discretization considerably
(Tables 2, 3; Fig. 4).

The particular refined numerical solutions are compared
with EGM96. The basic statistical characteristics of the cor-
responding residuals are depicted according to the source of
approximate values; (i) in Table 2 using the GGM, and (ii)
in Table 3 for the second case. Table 2 shows the additional
computational details as well. An influence of the chosen
limit of far zones to accuracy of the numerical solution can
be deduced from Table 2. The first five columns treat the

Fig. 2 Discretization of the
Earth’s surface; a subdivision of
triangular faces of the
“12-hedron” b the global
triangulation of the topography
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Table 1 Statistical
characteristics of residuals
between the numerical solution
and EGM96 and corresponding
computational aspects

N 44 378 48 602 60 002 124 418
�φ (size of elements) 1.047◦ 1◦ 0.9◦ 0.625◦

Residuals (BEM - EGM96)

Mean

Total − 0.025 m − 0.373 m − 0.258 m − 0.341 m

Oceans −0.061 m −0.302 m −0.199 m −0.275 m

Lands +0.023 m −0.515 m −0.373 m −0.509 m

Max

Total 6.163 m 4.611 m 2.869 m 1.505 m

Oceans 4.156 m 3.754 m 2.869 m 1.505 m

Lands 6.163 m 4.611 m 1.981 m 0.602 m

Min

Total − 6.283 m − 5.480 m − 4.062 m − 3.285 m

Oceans −4.371 m −3.770 m −2.089 m −2.019 m

Lands −6.283 m −5.480 m −4.062 m −3.285 m

SD

Total 0.724 m 0.583 m 0.293 m 0.203 m

Oceans 0.520 m 0.485 m 0.230 m 0.151 m

Lands 0.937 m 0.729 m 0.376 m 0.306 m

Computational aspects

Code Serial MPI MPI MPI

Memory requirements 15 GB 18 GB 28 GB 116 GB

Processors 1 12 16 80

Iterations 16 16 10 12

Matrix assembly 17 385 s 1 563 s 1 731 s 1 375 s

BiCGSTAB time 124 s 181 s 119 s 116 s

CPU time/procs 17 512 s 1 748 s 1 852 s 1 496 s

Total CPU time 17 512 s 20 976 s 29 632 s 119 680 s

Fig. 3 Residuals between the
numerical solution and EGM96
(unmodified algorithm with the
dense stiffness matrix – 124,418
collocation points (Table 1))
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Table 2 Statistical characteristics of residuals between the refined numerical solution and EGM96 and reduction of memory requirements using
the elimination of the far zones’ interactions by incorporating EGM96 and corresponding computational aspects

N 124 418 124 418 124 418 124 418 124 418 194 402 375 002 1 215 002
�φ 0.625◦ 0.625◦ 0.625◦ 0.625◦ 0.625◦ 0.5◦ 0.36◦ 0.20◦

Far zones Limit No A/2 A/4 A/8 A/8 A/2 A/8 A/12

Gauss q. G7 G7 G7 G7 G3 G7 G3 G1

Residuals Mean − 0,341 m − 0,457 m − 0,508 m − 0,538 m − 0,539 m − 0,507 m − 0,614 m − 0,632 m

Max 1,505 m 1,248 m 1,195 m 1,164 m 1,163 m 0,727 m 0,268 m −0,276 m

Min −3,285 m −3,446 m −3,525 m −3,594 m −3,603 m −4,639 m −2,657 m −2,837 m

SD 0,203 m 0,202 m 0,208 m 0,214 m 0,215 m 0,214 m 0,201 m 0,197 m

Memory requirements Full M 116 GB 116 GB 116 GB 116 GB 116 GB 282 GB 1.05 TB 10.75 TB

Sparse M 116 GB 6.0 GB 1.43 GB 338 MB 338 MB 14.5 GB 3.25 GB 24.12 GB

Percentage of full matrix 100% 5.17% 1.24% 0.32% 0.32% 5.16% 0.31% 0.21%

Processors 80 8 10 10 10 22 24 42

Iterations 12 6 5 5 4 6 5 4

Matrix assembly 1 375 s 17 899 s 13 354 s 13 367 s 4 270 s 15 556 s 16 539 s 15 973 s

BiCGSTAB time 116 s 1997 s 9 s 4 s 5 s 38 s 16 s 14 s

CPU time/procs 1 496 s 19 901 s 13 369 s 13 375 s 4 281 s 15 602 s 16 573 s 16 037 s

Total CPU time 119 680 s 159 208 s 133 690 s 133 750 s 42 810 s 343 244 s 397 752 s 673 554 s

A semimajor axis of ellipsoid GRS-80, G7 7 Gaussian points (quadrature of the 5th order), G3 3 Gaussian points (linear quadrature), G1 1 Gaussian
point (constant quadrature)

Table 3 Statistical characteristics of residuals between the refined numerical solutions and EGM96 and the elimination of the far zones interactions
by incorporating the numerical solutions from the first column

N 124 418 194 402 375 002 1 215 002
�φ 0.625◦ 0.5◦ 0.36◦ 0.20◦

Far zones Limit No A/2 A/8 A/12

Gauss q. G7 G7 G3 G1

Residuals Mean −0,341 m −0.343 m − 0,347 m −0,348 m

Max 1,505 m 0,951 m 0,476 m 0,010 m

Min −3,285 m −3,078 m −2,541 m −2,561 m

SD 0,203 m 0,201 m 0,200 m 0,196 m

A semimajor axis of ellipsoid GRS-80, G7 7 Gaussian points (quadrature of the 5th order), G3 3 Gaussian points (linear quadrature), G1 1 Gaussian
point (constant quadrature)

same discretization level, while the limit (denoted by the
semi-major axis of the ellipsoid) is changing.

5.2 Local refinement for precise gravity field modelling

The proposed approach enables detailed gravity field mod-
elling by a local refinement of the discretization. The com-
putational procedure is the same as for the global treatment
(Sect. 5.1). Small changes that arise from a local refinement
of the global triangulation affect only “the list of neigh-
bouring elements” (Čunderlík 2004). Similar to the global
modelling, local gravity field modelling by BEM involves
the integration over the whole Earth’s surface. The impor-
tant difference is that a fine grid is used locally, while a
coarse triangulation is used outside the refinement region

(Fig. 5). This reduces memory requirements and computa-
tional time. Moreover, the integration over the whole Earth’s
surface brings an advantage that the local solution does not
depend on GGMs in comparison with solutions based on the
remove-restore technique.

The presented numerical experiment deals with the local
solution in Slovakia, where we have at our disposal origi-
nal gravity data. The local refinement of the triangulation
is depicted in Fig. 5 (altogether 157,258 collocation points;
48,602 for the global triangulation and 108,656 for the local
refinement). The smallest element represents a triangle of the
area about 28′′ × 40′′ (�ϕ × �λ). As the available terres-
trial gravimetric measurements have been accompanied by
levelling (they have been collected for decades), we have to
transform sea level heights to ellipsoidal (geodetic) heights.
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24 R. Čunderlík et al.

Fig. 4 Residuals between the
numerical solution and EGM96
(elimination of the far zones-the
sparse stiffness matrix-
1,215,005 collocation points
(Table 3))

Here we use the GMSQ03CF national quasigeoid model
computed by the remove-restore technique and FFT-based
methods (Mojzeš et al. 2005). We assume that the accuracy
of GMSQ03CF is comparable with accuracy of levelling
heights in lowlands, and slightly better in mountainous
regions. In this way, we get the geocentric positions of the
available gravimetric measurements. Note: this step vanishes
in the case that the terrestrial gravimetry uses precise satellite
positioning. Our input data set includes about 200 points of
such data (cf. Kirby 2003) measured in extremely mountain-
ous terrain in High Tatras, where precise levelling is practi-
cally impossible.

The input surface gravity disturbances at the collocation
points are interpolated from values at points of discrete mea-
surements. First, we transform the discrete surface gravity
disturbances to complete Bouguer disturbances. Then, after
gridding, we interpolate their values at the collocation points.
Finally, we transform them back to the surface gravity distur-
bances at the collocation points using a digital terrain model
comprising ellipsoidal heights. Here the most essential part
is a precise evaluation of the topographical corrections at the
discrete as well as the collocation points.

The final computations were accomplished on the IBM
SP5 parallel computer. The performance, in terms of CPU-
time, took 1083 s (about 18 min). The local (national) quasi-
geoid model in Slovakia as a numerical result of BEM applied
to the linearized FGBVP is depicted in Fig. 6. Comparison
with GPS/levelling indicates accuracy of the local numerical
solution (Table 4, the case denoted by BEM). It shows an
overall shift of the local solution about −18 cm. The stan-
dard deviation of 17 cm decreases to 6 cm after second-order
polynomial fitting (6 coefficients). The residuals after fitting
are depicted in Fig. 7a.

In order to compare our local solution with ones achieved
by classical numerical techniques, we present the same
GPS/levelling test for two other models (Table 4). Both of
them are obtained by the remove-restore technique and FFT-
based methods (Schwarz et al. 1990). The first represents
a solution of the linearized FGBVP using the GRAVSOFT
Package (Tscherning et al. 1994), while the Stokes kernel
function is replaced by the Hotine (1969) kernel function
inside the FORTRAN program SPFOUR. The second one
is the GMSQ03CF national quasigeoid model (Mojzeš et al.
2005). It represents a solution of the linearized Molodenskij
problem using the original SPFOUR program from GRAV-
SOFT. The residuals of the GPS/levelling test after second-
order polynomial fitting for all three local quasigeoid models
are depicted in Fig. 7.

6 Results and discussions

The numerical experiments of BEM applied to the linearized
FGBVP apparently confirm the mathematical reliability of the
proposed approach. The experiments dealing with the global
quasigeoid modelling show that the achieved numerical solu-
tions converge to EGM96 as the level of the discretization
increases (Table 1). However, the achieved results represent
numerical (approximate) solutions that include three differ-
ent approximations (Lucquin and Pironneau 1998):

• The boundary is approximated by a piecewise polynomial
surface defined by polynomials of degree t . In our case
t = 1, i.e., the triangulation of the topography consists of
planar panels.
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Fig. 5 The local refinement of
the triangulation in Slovakia

Fig. 6 The local (national)
quasigeoid model in Slovakia
(the local numerical solution of
BEM applied to the linearized
FGBVP)
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Table 4 GPS/levelling test for the local quasigeoid models - statistical characteristics of residuals before and after second-order polynomial fitting

BVP The linearized FGBVP The linearized FGBVP The lin. Molodenskij BVP
Method BEM FFT (gravsoft) FFT (gravsoft)
Resolution 28′′ × 40′′ 20′′ × 30′′ 20′′ × 30′′

Polynomial fitting No Yes No Yes No Yes

Coefficients – 6 – 6 – 6

Test points 61 61 61 61 61 61

Residuals Mean −0.183 m 0.000 m −0.385 m 0.000 m −0.711 m 0.000 m

Max 0.087 m 0.172 m −0.226,m 0 098 m −0.499 m 0.101 m

Min −0.624 m −0.158 m −0.523 m −0.107 m −0.875 m −0.111 m

SD 0.171 m 0.060 m 0.064 m 0.046 m 0.078 m 0.039 m

Fig. 7 GPS/levelling test residuals after second-order polynomial fit-
ting (Table 4) from local quasigeoid models; a numerical solution
of the linearized FGBVP by the proposed BEM approach, b solution of
the linearized FGBVP by the remove-restore technique and FFT using
the modified SPFOUR program from GRAVSOFT, c GMSQ03CF -
solution of the linearized Molodenskij problem by the remove-restore
technique and FFT using the original SPFOUR program from GRAV-
SOFT

• The boundary functions are approximated by piecewise
polynomial functions of degree m. In our case m = 1, i.e.,
linear functions (the C1 collocation) are used in Eq. (15).

• The Gaussian quadrature of the kth order is used for the
discretization of integral operators in Eq. (19). In our case
k = 5, i.e., seven Gaussian integration points are used.

Denoting the mesh size by r , the theoretical accuracy of
the method is a function of all parameters r, t, m, k. There
are some explicit expressions for the error estimation as a
function of these parameters (Lucquin and Pironneau 1998).
However, they require precision of the input boundary data,
which is a problem in our case. Therefore we only mention
that the applied method is approximately of the order O(r2).
Consequently, instead of estimating the theoretical accuracy
of the solution, we focus on the comparison of the numerical
solutions with GGM, from which the input data are simu-
lated.

The statistical characteristics of the residuals between the
numerical solutions and EGM96 (Tables 1– 3) confirm that a
level of approximations decreases by refining the boundary’s
discretization. The standard deviation as well as maximal and
minimal residuals decreases by refining the global triangula-
tion. The mean values for ‘unmodified’ experiments (Table 1)
are about −34 cm. It means that the achieved solutions are
globally “smaller” than EGM96. It is due to a fact that the
normal potential U0 on the reference ellipsoid WGS-84 is
smaller than an estimated value of the actual potential W0 on
the geoid (Lemoine et al. 1998).

Table 1 and Fig. 3 show that the numerical solutions better
fit to EGM96 in areas of oceans and seas. There are evident
residuals along boundaries of the lithospheric plates, e.g., in
the Pacific Ocean (Fig. 3). It is probably due to an insuffi-
cient discretization along these zones, where the surface grav-
ity disturbances abruptly change from extremely positive to
extremely negative values. The maximal residuals are in the
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Himalayas and Andes (Figs. 3, 4), especially on the edges of
mountain ranges, where the quasigeoid is steeply undulating
(zones of the highest deflection of the vertical). Here a small
shift in the horizontal direction results in striking residuals
in the vertical direction.

However, a quite nice agreement in the mountainous part
of North America indicates that a more probable reason for
the discrepancies in the Himalayas is due to a lack of terres-
trial gravimetric measurements in this area. Another source
of high residuals is that the sea level heights used to compute
gravity anomalies and determined by levelling are subject to
systematic errors and vertical datum offsets. This is proba-
bly the cause of large residuals in the mountainous parts of
South America. With respect to gravity field modelling in
mountainous areas, we reiterate that the proposed approach
considers input data as well as the numerical solution on the
real Earth’s surface.

The next part of the numerical experiments focuses on a
reduction of memory requirements. They demonstrate how
to overcome this main drawback of the proposed approach.
The elimination of the far zones’ interactions by incorporat-
ing the a priori known coarse global solutions rapidly reduces
the memory requirements (Table 2). This permits extension
of the computations considerably by increasing a level of the
discretization for the available number of processors. In this
way, more precise solutions can be achieved (last columns in
Tables 2, 3; Fig. 4).

Both unchanged integrations over the Earth’s surface
(matrices M and L in Eq. 19) keep their inner accuracy,
but at the expense of the high CPU time. This explains why
the standard deviations as well as the maximal and minimal
residuals do not change much (cf. Table 2, first five columns).
However, mean values change according to the source of
approximate values of the disturbing potential.

(i) When using EGM96, the mean values decrease con-
sistently. The overall shift −34 cm from the previ-
ous “unmodified” experiments (Table 1) increases to
−63 cm for the largest experiment (1,215,002 col-
location points in Table 2). Here, the mean value
in ocean areas is about −55 cm (standard deviation
9 cm). It corresponds to the adopted value of −54 cm
of the correction to the height anomalies of EGM96
as a consequence of different values of U0 and W0;
the zero-degree term (Lemoine et al. 1998).

(ii) When using our numerical results computed on
coarser grids (e.g., the largest experiment correspond-
ing to the last column in Table 1), the mean values
for higher resolutions go to −35 cm (Table 3) and to
–28 cm in marine areas. The standard deviations are
slightly better than those for the corresponding exper-
iments in Table 2, e.g., 19.4 cm against 19.7 cm for the
largest cases. Here we have to take into account that

a discrepancy between U0 and W0 is also involved in
the input gravity disturbances. It can yield a ‘double’
effect included in the mean values for all experiments
in the case (i).

Finally, the high CPU time consumption can be consider-
ably reduced by decreasing the order of the Gaussian quad-
rature for evaluating the ‘far zone elements’ with a minimum
loss of accuracy (compare the cases A/8 + G7 and A/8 +
G3 for N = 124, 418 in Table 2).

The last numerical experiment shows that the proposed
approach is also suitable for detailed quasigeoid modelling.
It confirms that the local refinements provide more precise
numerical solutions inside the refined areas. The GPS/level-
ling comparisons indicate precisions of all considered local
quasigeoid models (see Sect. 5.2). The local numerical solu-
tion obtained by BEM is less precise (Table 4; Fig. 7) than
models obtain by the remove-restore and FFT-based methods
using GRAVSOFT; compare the standard deviation 17.1 cm
for BEM solution with 6.4 or 7.8 cm for FFT-solutions
(Table 4).

The residuals after fitting (Fig. 7) show higher discrepan-
cies at points in mountainous areas for all models. Here the
inaccuracies of GPS and especially levelling are included.
Residuals for the numerical solution by BEM (Fig. 7a) are
more striking than the corresponding ones for the FFT-based
models (Fig. 7b,c), (compare the maximal and minimal resid-
uals before and after the polynomial fitting in Table 4). This,
together with the high computational time and enormous
memory requirements due to the integration over all Earth’s
surface, lowers the efficiency of the proposed approach in
local quasigeoid modelling.

On the other hand, the BEM functional model allows a
triangulation of the Earth’s surface directly from the discrete
terrestrial gravimetric measurements. Then all errors due to
an interpolation of gravity data based on an evaluation of
the topographical corrections (see Sect. 5.2) vanish. Conse-
quently, a changed inhomogeneous configuration of the tri-
angulation influences properties of the stiffness matrix and
conditioning of the system in Eq. (19). An increase of the
order of the Gaussian quadrature for nearest elements could
give more precise local solutions.

Considering the computational aspects of all numerical
experiments, the performance in terms of CPU time was
always much longer for the matrix assembly than for the
solution of the linear system (Tables 1, 2). The BiCGSTAB
nonstationary iterative linear solver seems to be very effi-
cient for all our numerical experiments. Thanks to well-con-
ditioned stiffness matrix in the case of the pure oblique deriv-
ative BC (see Sect. 3.1), only several iterations of BiCGSTAB
were necessary to keep an error lower than the prescribed
tolerance ε in absolute residual error (Tables 1, 2). In all
computations, ε = 10−5 of the potential units (m2 s−2) and
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we did not use any preconditioning. The elimination of the
far zones interactions made the stiffness matrix even better
conditioned. Corresponding elements were set to zero (the
sparse stiffness matrix), while contributions of the far zones
charged the known vector of the right-hand side of the sys-
tem in Eq. (19). It affected the number of necessary iterations
(compare Table 1 with Table 2).

We have tested the influence of the order of EGM96 geo-
potential coefficients used for elimination of the far zones’
interactions to the accuracy of the numerical results. Thanks
to the decay of the kernel function Q in Eq. (12), only the low
frequency part (n ≈ 70) was sufficient to get precise solu-
tions. Only the overall bias due to a discrepancy between
U0 and W0 affected mean values of the residuals between the
numerical solutions and EGM96 (compare Tables 2 and 3).
Of course, the aforementioned influence depends on a chosen
limit for the far zones and on a level of the discretization.

7 Conclusion

The boundary element method (BEM) applied to the linear-
ized fixed gravimetric BVP (FGBVP) provides a numerical
solution directly on the Earth’s surface. The direct BEM for-
mulation using collocation with linear basis functions appears
to be an efficient numerical tool for gravity field modelling.
The oblique derivative boundary condition in the form of
surface gravity disturbances has a striking practical advan-
tage as the terrestrial gravimetric measurements can be posi-
tioned by GNSS without demanding levelling. Neglecting the
deflection of the vertical leads to a possibility to use normal
derivatives of the disturbing potential included in the direct
BEM integral formulation, instead of the oblique derivatives.

The numerical experiments dealing with the global grav-
ity field modelling apparently confirm the reliability of the
proposed approach. A comparison with EGM96 shows that
accuracy of the achieved numerical solutions increases by
refining the discretization of the Earth’s surface. The enor-
mous memory requirements as a main limitation are rapidly
reduced by the elimination of the far zones’ interactions.
Such an approach, as well as computing on parallel com-
puters, enable to extend computations considerably and to
get more precise numerical results. Precision of the obtained
global quasigeoid models computed from simulated surface
gravity disturbances is comparable with the precision of the
GGM.

A local refinement in the area of original gravity data
results in a reasonably precise local quasigeoid model.
Although its precision is slightly worse than models obtained
by classical approaches (e.g., remove-restore and FFT), such
experiments indicate new opportunities for precise local grav-
ity field modelling based on the adaptive refinement proce-
dures. Their application, especially in zones of abrupt

changes of input data (both surface gravity disturbances and
mountainous terrain), is a challenge for further investigations.
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