arXiv:2112.09808v1 [math.NA] 17 Dec 2021

Noname manuscript No.
(will be inserted by the editor)

Direct simple computation of middle surface between
3D point clouds and/or discrete surfaces by tracking
sources in distance function calculation algorithms

Baldzs Késa - Karol Mikula

the date of receipt and acceptance should be inserted later

Abstract In this paper, we introduce novel methods for computing middle
surfaces between various 3D data sets such as point clouds and/or discrete
surfaces. Traditionally the middle surface is obtained by detecting singularities
in computed distance function such as ridges, triple junctions, etc. It requires
to compute second order differential characteristics and also some kinds of
heuristics must be applied. Opposite to that, we determine the middle surface
just from computing the distance function itself which is a fast and simple
approach. We present and compare the results of the fast sweeping method,
the vector distance transform algorithm, the fast marching method, and the
Dijkstra-Pythagoras method in finding the middle surface between 3D data
sets.

Keywords Middle surface - 3D point cloud - Triangulated surface - fast
sweeping method - fast marching method - vector distance transform -
Dijkstra-Pythagoras method

1 Introduction

Finding an optimal middle surface for a data set is a crucial task in many
applications such as computational geometry, surface representation and re-
construction, image processing and computer vision or mesh generation. In
optimal mesh generation [7] for example, the information about the middle
surface can be used to densify or coarsen the computational grid in the com-
putational domain. For this reason, having an efficient method that fulfills such

B. Késa
E-mail: kosa@math.sk

K. Mikula

E-mail: mikula@math.sk

Department of Mathematics and Descriptive Geometry, Faculty of Civil Engineering, Slovak
University of Technology in Bratislava, Slovakia

2 Balazs Koésa, Karol Mikula

needs is very important. Very often the middle surface for which algorithms
are seeking is a middle axis of a closed curve or a surface, see e.g. [GLI1L9].
Such algorithms can be complicated because they utilize second order deriva-
tives of the computed distance function in order to detect its ridges, junctions
and other singularities which often requires some kinds of heuristics, see also
[7. In cases where we can distinguish individual separate or labelled shapes
between which we want to find the middle surface, a much more straightfor-
ward approach can be derived. We show how algorithms designed for distance
function calculation can be adjusted and utilized in these cases to obtain the
middle surface already during the computations of the distance function itself.
Opposite to methods that utilize second order derivatives of the computed
distance function, we only adjust the distance function calculation algorithms.
This makes our methods simple, efficient and easy to implement.

A distance function to an object is a useful tool in a variety of disciplines.
For this reason, over the years many algorithms have been developed which
were optimized to obtain the most accurate result as fast as possible, see e.g.
[5]. We provide a short description of four such algorithms and show how they
can be implemented to calculate the distance function on a uniform voxel grid
for 3D objects represented either by a point clouds or triangulated surfaces. To
compare the algorithms, we applied them to several data sets and measured
their accuracy and speed.

After providing a sufficient explanation of the methods with detailed pseudo-
codes for each of them, we describe how we use them to find the middle surface.
We will see that all it needs is a few natural changes in the implementation to
achieve this goal. We test our approaches on several experiments and present
the results subsequently.

2 Numerical methods

In computational mathematics, the notion of distance function is used for
the result of distance computation. In this section, we will discuss common
numerical methods used for this task. Following [12] the presented methods
are classified according to following two criteria:

1. Distance definition: The distance function can be calculated as a solution
of the so-called eikonal equation or by the Euclidean distance computation.

2. Voxel visit order strategy: We will analyze sweeping and wavefront meth-
ods.

Our goal is to demonstrate how methods falling under these categories can
be used to find the middle surface between two or more input data sets. We
will discuss and analyze these methods: the fast sweeping method (FSM) [14],
the vector distance transform (VDT) algorithm [3], the fast marching method
(FMM) [10] and the Dijkstra-Pythagoras (DP) method [12]. Table [I]shows the
classification of the four studied methods.

Direct computation of middle surfaces 3

Sweeping ‘Wavefront
Eikonal equation Fast sweeping method Fast marching method
Euclidean distance | Vector distance transform Dijkstra-Pythagoras

Table 1 Distance function computation methods category overview. Rows represent the
distance definition. Columns represent the voxel visit order strategy.

2.1 Basic definitions

The distance function will be calculated on the computational domain §2,
2 C R™. A data set {2y, to which we want to compute distance function d,
will be a subset of 2, 2y C (2. In this paper, we work with 3D objects so we
limit the dimension of {2 to n = 3. With this notation of the domain we can
define the distance function as d : 2 — R. On subset (27 the distance should
be 0, thus we get the boundary condition

d(z) =0, z € C 1 (1)
Then the task is to calculate d (x), z € 2\ 2.

2.1.1 Distance definition

For the numerical methods, the computational domain {2 will be discretized
into a finite number of voxels with edge size h. The number of voxels will be
denoted as N; along the x axis, N; along the y axis and Nj, along the z axis.
In the obtained computational grid, the function d will be calculated at the
center of every voxel, the so-called grid points.

The eikonal equation is given by

Vd(z)| =1 z €. 2)

This equation will be coupled with the boundary condition . For the dis-
cretization of , we denote grid points of 2 by z; ;i and the numerical
solution of the distance function at z; ;1 as d; jr. The discretization of
at interior grid points is done according to the Godunov upwind difference
scheme [8]:

[(di,j,k —dy 7nin)+:|2 + |:(dz]k —dy min)+:| ’ + [(di,j,k —d, min)+:|2 = h?,
i=1, I =1, =1, J =1, k=1, K —1,
A min = min (d; j—1k, dij+1,k), (3)
Ay min = min (di—1 5k, dit1,jk)
Az min = min (di j k-1, dijk+1)
@ ={0Z0

At the boundary of 2 we use one sided difference. This enforces that the
solution at every voxel center is defined by the smaller values of neighboring

4 Balazs Koésa, Karol Mikula

grid points. Eikonal-based methods calculate the distance function by applying
the described numerical scheme (3)).

Euclidean distance between two points will be defined according to the
Pythagoras’ theorem. For a = (as,ay,a.) € £2,b = (bg, by, b.) € £2 we define

d(a,b) = [(@r — b2)? + (ay — b)) + (az — b.)*. (1)
2.1.2 Vozel visit order strategy

For algorithms with the sweeping approach, Gauss-Seidel iterations with al-
ternating sweeping orderings are used. This allows the methods to pass through
the voxels multiple times. For three dimensions we sweep the computational
domain with eight alternating orderings:
1.i=1:N;,j=1:Nj, k=1:Np; 2.¢=1:N;,j=1:N;, k=N :1,
30=1:N;, j=N;: 1, k=1:Ny; 4i=1:N;, j=N;:1, k=N :1;
5.4=N;:1,j=1:Nj, k=1:Np; 6.i=N;:1,j=1:N;, k= Np:1;
7T.i=N;:1,j=N;:1,k=1:Np; 8i=N;:1,j=N;:1, k=N : 1L
To work with these sweeps in the following sections we will define the following
sets:

tsweep = 110, N; — 1,1} ,{0, N; — 1,1} , {0, N; — 1,1} , {0, N; — 1,1},

{N; =1,0,—1} ,{N; — 1,0, =1} ,{N; — 1,0, =1}, {N; — 1,0, —1}}

Jsweep = {{0,N; — 1,1} ,{0, N; — 1,1} ,{N; — 1,0, -1} ,{N; — 1,0, -1},

{0, N; —1,1},{0, N; — 1,1} ,{N; — 1,0, -1} ,{N; — 1,0, —1}}

ksweep = {{0, N, — 1,1} ,{Ny — 1,0, -1} ,{0, Ny, — 1,1} , {N, — 1,0, -1},

{0, Ny — 1,1} ,{Nr — 1,0, =1} , {0, N)y — 1,1} , {N}, — 1,0, —1}} .

(5)

The different algorithms analyze a certain set of neighboring voxels in every
iteration. This can be the set of 6 closest neighbors

PY = {(r,s,t);r,s,t € {=1,0,1};|r| + |s| + |t| = 1} (6)
or the set including also the diagonal voxels, the set of all 26 neighbors
P2 ={(r,s,t);r,s,t € {=1,0,1};|r| + |s| + |t| = ;c € {1,2,3}}. (7)

In the wavefront methods at every grid point, we assign the final value
already in the first pass. To ensure this, the algorithms have to be set up in
a way that every voxel is visited in the correct order, starting with the voxel
nearest to {29 and ending with the furthest. For this, a data structure called
min-priority-heap [2] is utilized. In this structure whenever a change occurs
the elements are rearranged so the element with the smallest value is on top.
For wavefront algorithms at the beginning, we store all grid points that enforce
the boundary condition in such a heap, with their distance value d and their

Direct computation of middle surfaces 5

location in the grid. In every iteration, we can immediately obtain the grid
point with the smallest value of d (z). As the front moves on, new elements are
added to the heap. For easy updates of distance values at gird points already
saved in the heap, additional information about their location in the heap
should be maintained.

In the next subsections, we will go through the implementation of the
mentioned methods, so we will be able to describe how to change them for
the task of computing the middle surface. To that goal, we start with the
description of how to implement the initialization of the distance function to
ensure the boundary condition .

2.2 Initialization

For every point x of the input data set {2y the function d should fulfill .
When we implement a method for the calculation of d, we need to find a way
to fulfill this condition. If point z would coincide with the voxel center, in an
array representing d we could just set the values to 0 for every such point z.
Unfortunately, most of the time this is not the case.

While working with point cloud data, to fulfill , we initialize the function
d as follows. We find the 8 nearest grid points to every point in the cloud and
calculate the exact distance for these points from the corresponding point
cloud element. The smallest possible distance will be saved at grid points
when exploring subsequently all point cloud elements. These initialized values
will be fixed in further calculations. Some of the algorithms described in the
following sections use the cloud points as ”"sources” to calculate the distance
function at other grid points. For this reason, in the initialization, we will
keep track of this information as well. We can easily do this by setting the
index of the source cloud point to the fixed grid points which will refer to the
coordinates of the source. At other than fixed grid points, we set d to a high
enough number, which is bigger than the biggest possible distance in the grid.
To simplify this, we can use 400, which for example when we implement the
algorithm in C or C++ can be substituted by the maximum double value.

In Alg. |1} we show how the described initialization can be easily imple-
mented.

6 Balazs Koésa, Karol Mikula

Algorithm 1 Initialization of distance function to the point cloud data

Input: Point cloud data:
pc; - (z,y,z) coordinates of the [th point,
N - number of points.
Input: 3D grid with voxel edge size h and dimensions N;, N;, Ni.
Declaration: Arrays:
di j, — value of distance function at grid point (i,j,k),
¢ijk — (2,y,2) coordinates of grid point (¢,j,k),
fi,jk - determines if d; ;) is fixed at (4,4, k),
i,k - source for d;;j calculation at (i,j,k).

1: Set: d; jr to +oo, fijr to false, s;;r to unknown
2: Calculate: c; j

3: for l=0;l<N;l=1+1)do

4: ifirst = RoundDown ((pcl.:c — min (ciyjyk.z)) /h)

5: Jfirst = RoundDown ((pcl.y — min (Ci,j,k-y)) /h)

6: kfirst = RoundDown ((pcl.z —min ci,]-,k.z)) /h)

7 for (i =ifiret;i <ifirst +1;i=1i+1) do

8: for (] = jfi'rst?j < jfi'r‘st + L=+ 1) do

9: for (k:k‘first;kSkfirst-l—l;k::k-l—l) do
10: dpew = d (pcl, Ci,j,k) > Calculated by .
11: if dnew < di,j,k then

12: di,j,k = dnew

13: fi gk = true

14: Si,j,k = DCL

15: end if

16: end for

17: end for

18: end for

19: end for

2.3 Fast sweeping method

The fast sweeping method (FSM) [14] is an iterative algorithm with alternating
sweeps used for the numerical solution of the Eikonal equation . It can
be applied in any number of dimensions for a rectangular computational grid.
The value of d (z) at any grid point will never increase because an update rule
is implemented by which the new value of the distance function is saved only
if it is smaller than the current value. This enforces the correct value not to
change at later iterations.

Let us denote in equation the unknown as x = d; ; 1, and the coefficients
as a1 = dymin, @2 = dymin, @3 = d,min. Then the unique solution, denoted
by Z, to the equation

(@ a1)+r +[@ - a)'] g (- a3)+]2 2 (8)

can be found as follows. We order a1, as, a3 in increasing order. For generality
we assume a; < ag < ag. There is an integer p, 1 < p < 3, such that z is the
unique solution that satisfies

(z—a1)’+ (@ —a2)’+ (x—a3)’ =h* and a, <T <aps (9)

Direct computation of middle surfaces 7

To find Z we start with p = 1. If £ = a1 + h < as then Z = Z. Otherwise we
have to find the solution of the quadratic equation

(—a1)® + (x —az)® = h?

that satisfies £ > ao. We always take the maximum of the two solutions as
our Z. If Z < a3z then & = Z. If we still doesn’t have a Z which satisfies all the
conditions as the third step we compute the solution of the quadratic equation

(x — a1)2 + (z — a2)2 + (z— a3)2 = h?

which will satisfy @D

Only a finite amount of iterations is needed to obtain the solution, thus
the complexity of the method is O (N), where N is the total number of grid
points in the computational domain. This method is simple to implement, as
it can be seen in the provided pseudo-code Alg. 2}

Algorithm 2 Fast sweeping method
Input: From Alg.: 3D grid, d; k. fijk
1: for (I =0;1<8;l=1+4+1) do

2: for (i = isweep [1,0] ;% < tsweep [1,1] 51 =@ + tsweep [[,2]) do
3: for (j = jsweep [[,0]57 < Jsweep [1,1]37 = J + Jsweep [1,2]) do
4 for (k = ksweep [, 0] 1k < ksweep [1, 1] 1k = k + ksweep [1, 2]) do
5: if f; j 1 is not true then
6: al = min (di+1,j,k7di—l,j,k)
7 a = min (di,j+l,k7di,j—1,k)
8: az = min (di,j,k+17di,j,k—1) > Use +oo if (4,7, k) is out of bounds.
9: Sort {ai,a2,a3} from lowest to highest.
10: dnew = a1 +h
11: if dpew > a2 then
12: dnew = Manglution ((x —a1)? + (z—ap)? = hQ)
13: if dpew > a3 then
14: dnew = Manglution ((;B —a1)? + (z —a2)? + (x —a3)? = h2)
15: end if
16: end if
17: if dpew < di,j,k: then di,j,k: = dnew
18: end if
19: end for
20: end for

21: end for
22: end for

8 Balazs Koésa, Karol Mikula

2.4 Vector distance transform

For the implementation of the vector distance transform (VDT) [3] algorithm,
we follow the implementation used in [12] and extend it to 3D calculations.
Comparing the pseudo-code of this method, Alg. [3] with Alg. 2] we can im-
mediately see that the algorithm also uses Gauss-Seidel iterations alternating
the sweeping ordering . This shows that the information propagates in the
same manner, and we can use the same update rules for the values of d (z).
The main difference between VDT and FSM lies in the method of how
the values of d(z) are calculated at the not fixed grid points. While FSM
calculates new distance values from the values of neighboring grid points, VDT
only checks the source of the neighbors to calculate the smallest possible exact
Euclidean distance at the current grid point. For this reason, we need to
keep track of the sources, and every time we calculate a smaller distance value
we update this information. This method yields O (N) complexity as well.

Algorithm 3 Vector distance transform

Input: From Alg.: 3D grid, d; ks Cijks fijks> Sijk
1: for (I =0;1<81l=1+4+1) do

2: for (i = isweep [1,0];% < tsweep [1,1] 51 = @ + tsweep [[,2]) do

3: for (j = jsweep [1,0]:5 < jsweep [1,1]35 = j + Jsweep [1,2]) do

4 for (k = ksweep [1,0];k < ksweep [I,1] 5k = k + ksweep [1,2]) do

5: if f; jx is not true then

6: for all {(z +rj+sk+t);(rst)€ Pl} not out of bound do
7 if s;4, jt+s,k+t is known then

8 dpew = d (Si+'r,j+5,k+ta Ci,j,k) > Calculated by .
9: if dpew < di,j,k then

10: di,j,k = dnew

11: Sk = Sidr,jts kit

12: end if

13: end if

14: end for

15: end if

16: end for

17: end for

18: end for

19: end for

2.5 Fast marching method

Similarly, as the FSM algorithm, the fast marching method (FMM) [10] gives
results based on the solution of the Eikonal equation. While FSM tests the
possible solutions of the alternatives of @ by going through them in the right
order, FMM sets up the solution immediately according to which coefficients
are already calculated. In the construction of this algorithm, one-way propa-
gation of information is utilized, secured by the upwind difference structure of
discretization. To properly monitor this propagation the visiting of grid points

Direct computation of middle surfaces 9

is tracked throughout the execution of the algorithm. The solution is built
outward from the smallest values, which, as seen in the initialization phase in
Section are at the grid points nearest to the points in the cloud. These
elements are gathered in a min-priority-heap and marked as ’to be visited’,
while all others are marked "unvisited’. In Alg. [d] we can see how the heap is
used. While the solution from the initialized grid points is marched forward
the values from the heap are finalized, marked as ’visited’, and new points are
brought into this set. FMM works, because we always select the grid point
with the smallest value from the heap to calculate the values of the neigh-
boring elements, thus 'unvisited’ grid points will not have any effect on the
solution.

The complexity of the FMM algorithm is of order O (N logaN), because we
visit every grid point once and the operations of the min-priority-heap have a
complexity of O (logaN).

Algorithm 4 Fast marching method
Input: From Alg.: 3D grid, d; ks fijk
Declaration: v; j , will hold the visiting values of grid points
’unvisited’=0, ’to be visited’=1, ’visited’=2
Declaration: heap container will be a min-priority-heap
Initialization: Vf; ; , = true: {Uuk =1; heap,InsertNode(di,j‘k)} else: v; ;=0
1: while heap is not empty do
2: (4,4, k) = heap.GetRoot() > Obtain (i, j, k) with minimum d and delete from heap.

3 for all {(iJrr,j +s,k+1t);(r,s,t) € Pl}, not out of bound do
4 if (fi+7",j+s,k+t is false) and (Ui+7‘,j+s,k+t =0 or Vitr,j+s,k+t = 1) then
5: & = min (difri1,j4s ktts itr—1,j+sktt

6: y = min (diyr j4s41, k4t didr jts—1,k+t)

7 zZ = min (di+r,j+s,k+t+17 di+'r,j+5,k+t71) > Use +oo if (7, + ’f‘,j + s, k+ t) is
8: a=b=c=0 out of bounds..
9: if t#+oothena=a+1; b=b+xz; c=c+ x>

10: if y#+ocothena=a+1; b=b+y; c=c+1y?

11: if z£4oothena=a+1; b=b+2z c=c+2°

12: a=ax(1/h?)

13: b= (—2)xbx* (1/h?)

14: c=cx(1/h?) = 1.0

15 d _ —b+y/b2—dxaxc

. new — 2%a

16: if dnew < ditr j4s K+t then

17: di+r,j+s,k+t = dnew

18: if Vidr,j+s,k+t — 0 then

19: heap.InsertNode(d;4r, jts k+t)
20: Vidr,jtsktt = 1
21: else
22: heap.DecreaseKey((i + 1,5 + s,k + 1), dnew)
23: end if
24: end if
25: end if

26: end for
27: Vi g,k = 2
28: end while

10 Balazs Koésa, Karol Mikula

2.6 Dijkstra-Pythagoras method

The Dijkstra-Pythagoras (DP) method was introduced in [12]. In [I2], a gap
was detected for a wave-front type method, like FMM, which would yield
results with the exact Euclidean distance. Thus the DP method was created.
DP algorithm uses visiting rules and a min-priority-heap as described in the
FMM algorithm but utilizes the source tracking for distance calculation as in
the VDT method. In [I2] the pseudo-code of the method was outlined in a
2D pixel grid with pixel edge size 1. We extend it to the 3D voxel grid and
introduce a substantial modification. In the initial proposal, the algorithm
analyzes all neighbors of grid points. We changed this to include only the
closest ones, which in 3D are the voxels from the set P! @ We found that
with this modification the method becomes much faster and its precision stays
approximately the same. In Alg. [we show the detailed pseudo-code with our
changes.

The logic of the method is based on a two-fold relaxation of d (z) values. As
in FMM, every cycle of the algorithm starts with the grid point of the smallest
d value popped from a min-priority-heap. The distance value of this point is
checked to the sources of all its ‘visited’ neighbors. From all the 6 possibilities
the value is adjusted to the minimum before it is marked as ‘visited’ as well.
Its source is selected accordingly. Then this method attempts to relax the
‘unvisited” and ‘to be visited’ neighbors in a Dijkstra way. The distances for
these grid points are updated according to the Pythagoras rule if the new
value is smaller than the value already stored. Their sources are set to the
source of the grid point by which they were updated. The neighbors which
are ‘unvisited’ will be added to the heap. The algorithm runs till the heap is
empty.

Similarly to FMM the complexity of this method is O (N logaN).

Direct computation of middle surfaces 11

Algorithm 5 Dijkstra-Pythagoras method
Input: From Alg.: 3D grid, dijks Cijks fijks Sigk
Declaration: v; j , will hold the visiting values of grid points
’unvisited’=0, ’to be visited’=1, ’visited’=2
Declaration: heap container will be a min-priority-heap
Initialization: Vf; ;1 = true: {viy]-’k =1; heap.InsertNode(di,j,k)} else: v; =0
1: while heap is not empty do
2: (4,4, k) = heap.GetRoot() > Obtain (i, 7, k) with minimum d and delete from heap.

3 for all {(i—i—r,j +s,k+1t);(r,s,t) € Pl}, not out of bound do

4 if f’i+r,j+s,k+t is false and Vitr,j+s,k+t = 2 then

5: dpew = d (5i+r,j+s,k+t7 ci,]-,k) > Calculated by .
6: if dnew < d; j 1 then

T di,j,k = dnew

8 Sijk = Sitr,jts,k+t

9: end if

10: end if

11: end for
12: Vi gk = 2
13: for all {(2 +rj+sk+t);(rst)€ Pl}, not out of bound do

14: if (fi+7‘,j+s,k+t is false) and (Ui+r,j+s,k+t =0 or Vitr,j+s,k+t — 1) then
15: dpew = di,j,k +h

16: if dpew < di+r,j+s,k+t then

17: di+7‘,j+s,k+t = dnew

18: Sitrj+s,k+t = Sijk

19: if Vidr,j+s,k+t = 0 then

20: heap.InsertNode(d; 4y jts k+t)

21: Vitrj+s,k+t = 1

22: else

23: heap.DecreaseKey((i + 7,7 + s,k + 1), dnew)
24: end if

25: end if

26: end if

27: end for
28: end while

3 Numerical experiments - methods comparison

In this section, we compare the efficiency of the described algorithms and show
they can be used for computing the distance function to objects represented
by a 3D point cloud and triangulated surface.

3.1 Comparing methods

For the first experiment, we will work with a cube with an edge size of 1.0. an
its vertex with minimum coordinates at (0.0, 0.0, 0.0). We construct around it
a rectangular computational domain which is 0.4 times larger from the Cube
in every direction. In this experiment, we discretize the computational domain
in a way that some of the grid points will always lie on the surface of the Cube.
Thus, we can set the distance function at these points to 0 during initialization.

12 Balazs Késa, Karol Mikula

With this setup, we computed the distance function for the Cube with the
four algorithms on the computational domain discretized to a grid by voxels
with different edge sizes, namely 0.2, 0.1, 0.05, 0.025, 0.0125, 0.00625, 0.003125.
We demonstrate how the distance function looks like on these grids in Figure
calculated by the FSM algorithm.

R

Fig. 1 Distance function visualization for the Cube experiment. We visualize the section
in a constant z plane for voxel edge sizes 0.2, 0.1, 0.05, 0.025. Values go from the highest
dark red to the lowest dark blue. Results were calculated by FSM.

Direct computation of middle surfaces 13

To compare the accuracy of the algorithms, we calculated the mean squared
difference from the exact solution for all grids. If we denote the exact solution
as d; j . at x; ;1 € {2 the mean squared difference can be calculated as

Ni—1N2—1 N3—1

S>> (digk —digk)”| /(N1 # Ny s Ny) (10)

i=0 j=0 k=0

We are listing these results in Table 2] In the first column, we list the number
of grid points in x, y, z directions of our computational grid. In the second
column, we see the length of the voxel edges. In the following columns, we see
the mean squared difference for FSM, VDT, FMM, and DP methods. We can
see that the results for the VDT and DP methods are basically 0, as we would
have expected after stating the fact that they yield Euclidean distance results.
The results of FSM and FMM are less accurate. We compare these results also
visually in Figure |2 for computational grids with voxel edge size 0.1 and 0.025.
We can see that the results for the pairs of FSM, FMM, and VDT, DP in this
experiment are visually identical.

Besides the accuracy, for this experiment, we also measured the CPU time
in seconds which was needed to calculate the distance function with the dif-
ferent methods, reported in Table [3] Here again, we list the parameters of our
grid first. In the third column, we list the CPU time for the initialization phase
of the algorithms. The initialization is the same for all four methods. Because
of the simplicity of the experiment, this takes just a few seconds even for the
finest grid. Comparing the results we see that concerning CPU time the FSM
algorithm outperforms all other methods.

Number of Voxel

- . . FSM vDT FMM DP
grid points | edge size
10% 0.2 2.5692e-03 | 1.4791e-34 | 2.5692e-03 | 4.227801e-33
193 0.1 9.7901e-04 | 1.8869e-34 | 9.7902e-04 | 5.011068e-33
373 0.05 3.7697e-04 | 1.0579e-34 | 3.7697e-04 | 1.151981e-32
733 0.025 1.4352e-04 | 5.0275e-35 | 1.4352e-04 | 8.414407e-33
1453 0.0125 5.3092e-05 | 2.5195e-35 | 5.3092e-05 | 9.454389e-33
2893 0.00625 1.8949e-05 | 1.3057e-35 | 1.8949e-05 | 3.427338e-32
5773 0.003125 | 6.5244e-06 | 6.5770e-36 | 6.5244e-06 | 1.404635e-31

Table 2 Mean squared difference comparison for distance function calculation methods
tested on the Cube experiment.

14 Balazs Koésa, Karol Mikula

F qF qF qF g |

e el
ar “l g

nF

Fig. 2 Visualization of results for distance function calculation in a constant z plane. In
the first row, we see visualization for voxel edge size 0.1, in the second row for voxel edge

size 0.25. In the first column, we see the result for the FSM algorithm, in second for FMM,
in third for VDT and in the fourth for DP.

Number of - Voxel |y i ization | FSM | VDT | FMM DP

grid points | edge size
103 0.2 0 0.001 0.002 0.001 0.001
193 0.1 0 0.002 0.017 0.002 0.002
373 0.05 0.001 0.008 0.029 0.016 0.015
733 0.025 0.014 0.059 0.186 0.18 0.138
1453 0.0125 0.105 0.352 1.416 1.988 1.441
2893 0.00625 0.816 2.881 11.352 26.109 15.425
5773 0.003125 6.375 24.442 | 88.836 | 313.009 | 159.762

Table 3 CPU time comparison for distance function calculation methods tested on the
Cube experiment. CPU time was measured in seconds.

For further comparison of efficiency we choose a data set from [I] which
will be used as a point cloud data and as a triangulated surface as well. This
data set, seen in Figure[3] represents a teddy bear. Similarly, as in the previous
experiment, we computed the distance function for the point cloud data with
the four algorithms on computational grids with different voxel edge sizes
0.1, 0.05, 0.025, 0.0125, 0.00625, 0.003125, 0.0015625. Some of the results for
distance functions calculated by the FSM algorithm can be seen in Figure [
Visually there is no big difference between the results of the four algorithms.

We list the CPU time for calculation in Table @l We added one more
information in this table that was not listed in the previous experiment. In
the third column, we list the number of fixed grid points produced by the
initialization phase of the calculations. We will use this information for the
comparison of distance function calculation in the case of the triangulated
surface. In this experiment the points from the point cloud data do not coincide

Direct computation of middle surfaces 15

with points of the grid, thus the initialization was done by Alg. [I] The FSM
algorithm is the fastest in this case as well.

Fig. 3 Teddy Bear point cloud data. In the left picture, we can see it from the front in the
right picture from the side.

Nl}mbe}r of Voxe} Fl?(ed Imt.le?‘l FSM VDT FMM DP

grid points edge size points | condition

15x21x9 0.1 1003 0.001 0.002 0.002 0.001 0.001

29 x 41 x 17 0.05 3906 0.002 0.007 0.024 0.005 0.005

57 x 81 x 32 0.025 14428 0.007 0.036 0.083 0.059 0.054
113 x 161 x 62 0.0125 47575 0.042 0.253 0.562 0.658 0.605
224 x 321 x 122 0.00625 76231 0.293 1.891 4.135 9.079 7.638
447 x 640 x 242 0.003125 76384 2.235 15.335 33.126 121.185 | 103.515
893 x 1279 x 482 | 0.0015625 | 76384 19.085 118.572 | 254.895 1439.6 1221.13

Table 4 CPU time comparison for distance function calculation methods tested on the
Teddy Bear point cloud data. CPU time was measured in seconds.

16 Balazs Késa, Karol Mikula

|

Fig. 4 Distance function visualization of the Teddy Bear data set. Visualizing sections in a
constant z plane for voxel edge sizes 0.1, 0.05, 0.025, 0.0125, 0.00625, 0.003125. In the last
picture, we visualize the distance function with point cloud data. Values go from the highest
dark red to the lowest dark blue. Results were calculated by FSM.

3.2 Distance function to triangulated surfaces

With small changes, it is possible to easily modify the algorithm for the calcu-
lation of the distance function to triangulated surfaces. The most important
changes which need to be applied concern the initialization phase. We demon-
strate this in the pseudo-code Alg. [f] In this algorithm, we cycle through all
triangles in the triangulated surface. For every triangle, we find the grid points
which are lying next to its surface. In these grid points, we calculate the dis-
tance from the triangle. For this, we use the method described in [4]. Similarly,
as with the point cloud data, the values in these points will be fixed, but now
as the source of distance computation, we will refer to the triangles. Regard-
ing the algorithms FSM, VDT, FMM, and DP, the only changes will be in the

Direct computation of middle surfaces 17

pseudo-code Alg. [3] for VDT on line 8 and in the pseudo-code Alg. [5] for DP
on line 5 where the distance will be calculated between a point and a triangle.

Algorithm 6 Initialization of distance function to triangulated surface

Input: Triangulated surface:
tr; - set of triangles,
N - number of triangles.
Input: 3D grid with voxel edge size h and dimensions N;, Nj, Ni.
Declaration: Arrays:
dj jr - value of distance function at grid point (i,j,k),
¢ijk — (x,y,2) coordinates of grid point (¢,j,k),
fi,j,k — determines if d; j;j is fixed at (4,4,k),
i,k - source for d;;j calculation at (i,j, k).

1: Set d; jr to +oo, fijr to false, s;;x to unknown

2: Calculate: c; ;

3: for (I=0;l< N;l=1+1)do

4: gpm = PointsAlongTriangle (tr;) > gpm is a subset of the computational grid.
5: Ngp = NumberO f PointsIn(gpm)

6: for (m =0;m < Ngp;m =m+1) do

T (izj’ k) = gPm

8: dpew = d (trl, c,-,j,k) > Distance of a point from a triangle.
9: if dngu) < di,j,k then

10: di,j,k = dnew

11: fij e = true

12: Si gk =t

13: end if

14: end for

15: end for

To demonstrate the results of these changes we will use again the Teddy
Bear data set, but now as a triangulated surface as seen in Figure 5| Similarly,
as for the calculation to the point cloud data, we measured the CPU times
and listed them in Table |5} If we compare this to Table |4] we can see the
difference between the calculation of the distance function for point cloud data
and a triangulated surface. The number of fixed points is much higher for the
triangulated surface. This is because the initialization produces a ” contiguous”
volume around the triangles for every density of the grid, while around the
point cloud data gaps can develop. We can see this also in Figure [f] Here we
compare the distance function for both point cloud and triangulated surface by
the results obtained by the FSM algorithm. (The difference in the visualization
of the distance function calculated with the other algorithms is very small
thus we provide just the visualization of the FSM algorithm.) The results for
the triangulated surface, seen in the right column, are much smoother near
the object as for the point cloud data, seen in the left column. While this
difference has no real effect on the calculation time of the FSM and FMM
algorithms, it drastically increases the time for VDT and DP. This is because
the implementation of FSM and FMM is independent of the initial data, but
in VDT and DP we work with the source as well and the calculation of the

18

Balazs Koésa, Karol Mikula

distance between a point and a triangle takes more time than the calculation
between two points.

To demonstrate a further example of distance function calculation on a
triangulated surface we applied the algorithm on an additional data set. We
obtained it from [I3]. In Figure El we can see the triangulated surface of hand
bones. With its many details and small parts, it is a good data set to show the
accuracy of the results. We can see these in Figure 8| Here we choose planes
in the computational domain in which we can see the most details.

Fig. 5 Teddy Bear triangulated surface data. In the left picture, we can see it from the
front in the right picture from the side.

NL.lmbe.r of Voxe.l Fu‘ced Inlt.lffml FSM VDT FMM DP
grid points edge size points condition
15x21x9 0.1 1283 0.039 0.001 0.007 0.001 0.001
29 x 41 x 17 0.05 5147 0.048 0.007 0.056 0.005 0.008
57 x 81 x 32 0.025 20526 0.067 0.04 0.446 0.057 0.08
113 x 161 x 62 0.0125 82756 0.139 0.255 3.408 0.659 0.828
224 x 321 x 122 0.00625 331874 0.504 1.966 26.054 9.475 11.02
447 x 640 x 242 0.003125 1332140 2.877 16.211 203.035 | 120.117 | 131.252
893 x 1279 x 482 | 0.0015625 | 5346482 19.807 126.331 | 1578.07 | 1441.91 | 1394.25

Table 5 CPU time comparison for distance function calculation methods tested on Teddy
Bear triangulated surface data. CPU time was measured in seconds.

Direct computation of middle surfaces 19

Fig. 6 Comparing the results of distance function calculation from point cloud data (first
column) and triangular surface (second column). Voxel edge size for results in the first row
is 0.0125, in second row 0.003125. Results were calculated by FSM.

20 Balazs Koésa, Karol Mikula

s B
R
ww
Il
Ty
T A

=
A

&\

K\
~ N ns‘m‘

N

F\ \ W,
\
B

Sy

)
Ky
§

o = W

N\

Fig. 7 Hand Bones triangulated surface data. In the left picture, we can see it from above,
in the right upper picture from the front and in the right bottom picture from the side.

Fig. 8 Visualization of slices of distance function calculated to Hand Bones triangulated

surface data. In the upper pictures, we can see the location of slices in the 3D computational
domain, in the bottom picture the slices.

Direct computation of middle surfaces 21

4 Numerical methods for computing the middle surface

While analyzing the algorithms for distance function calculation, we realized
that methods that track the source of the distance, such as VDT and DP, can
be straightforwardly modified for the search of middle surfaces between data
sets. In fact, the main inspiration for us was DP method where we expected
such modification should work. We propose how to adjust all previously de-
scribed algorithms to find the middle surface for more data sets of various
kinds. Our approach is based on information propagation throughout which
we track the source of the information.

In the pseudo-codes Alg. [T] and Alg. [6] we showed how to initialize the
distance function from one data set. When we have more data sets, we apply
one of the algorithms for them separately on the same computational grid. A
change which needs to be applied is that in the array s; ; for the source of
d; jr calculation, we need to track also the information to which data set this
source belongs to.

The change in the VDT and DP algorithms for our new purpose is very
easy because they already include source tracking. Again, what we need to
change is to track also a label of the data set from which the information
propagates. The modification of the FSM and FMM algorithms is not trivial.
These methods originally do not contain any information about sources, thus
we need to include it in a proper manner.

We display the modification of the FSM algorithm in the pseudo-code Alg.
[7l In every iteration of the algorithm when we cycle through the grid points,
we take the distance value from the neighboring points to solve a quadratic
equation. We need to keep track, from which neighbors the distance values en-
ter the quadratic equation, thus we save the indexes (r, s, t), r,s,t € {—1,0, 1},
which identify them. When the solution is calculated for the equation we add
up the indexes (r, s,t), see line 20 of Alg. m and this will show us which source
to save for the current grid point from the sources of its 26 neighbors.

For the FMM algorithm, the modification is shown in the pseudo-code Alg.
In this modification after a nonfixed voxel is tagged as ’visited’ (the visiting
value is set to 2), we analyze all its neighbors, see line 26 of the pseudo-code.
With the neighbors that also were ’visited’, we calculate the current voxel’s
possible distance from the neighbors’ sources, which for quick calculation will
be determined by the neighbors’ distance value plus the distance between the
voxel and its neighbor. The source for which the calculated value is the smallest
will be chosen as the source for the current voxel.

By using the modified algorithms, the grid points in the computational do-
main will be divided into subvolumes ”belonging” to the different data sets by
source information propagation. To obtain the middle surface between the data
sets we just need to find the borders between these subvolumes. To that goal,
we use two methods. For any number of data sets, we can cycle through all
points of the computational domain and find every point which has a neighbor
belonging to a different subvolume. If we apply this for every data set sepa-
rately, for each of them we obtain a set of points which are at a discrete border

22 Balazs Koésa, Karol Mikula

of the subvolume belonging to it. If we have just two data sets, we can treat
the obtained information about which data set the grid points belong to, as
a function of values 0 or 1, and visualize the isosurface of the function with
the value 0.5. We demonstrate the two approaches of visualizing the results in
the next subsection with the first numerical experiment for finding the middle
surface. In Figure [11]in the second picture of the right column we see the rep-
resentation of the middle surface as a discrete border of subvolumes belonging
to a data set, and in the third picture of the right column as an isosurface of
a function.

Algorithm 7 Modified fast sweeping method including sources

Input: From correct initialization: 3D grid, d; jx, fijk» Sijk
1: for (I =0;1<81l=1+4+1) do

2: for (i = isweep [1,0];% < tsweep [I,1] 51 = @ + tsweep [[,2]) do
3: fOI‘ (] = jsweep [ly 0] ;j S jsweep [l7 1] ;j = .7 +jS’LU6€P [l7 2]) do
4: for (k = ksweep [lv 0] ; k < ksweep [l7 1] ?k =k+ ksweep [la 2]) do
5: if f; jx is not true then
6: The indexes (r,s,t), 7,s,t € {—1,0,1}, indicate from
7 which neighbor the distance value comes from.
s (a1, (5,004, | = min ([dis1,5,: (1,0,0)] [dim1,5,0, (<1,0,0)])
9: [a2,(r,5,t),12] = mjn ([di, 41,5, (0,1,0)] , [di,j—1,5, (0, —1,0)])
10: [as, (5,004, | = min ([de1, (0,0, 1)) [di g1, (0,0, 1))
11: > Use +oo0 if (4, 4, k) is out of bounds.
12: Sort {[a1, (r,s,t)], a2, (r,s,t)],[as, (r,s,t)]} from lowest to
13: highest according to values {a1,a2,as}.
14: [dnew, (r, s, t)dnew] = [al, (r, s, t)al] + [k, (0,0,0)]
15: if dnew > ag then
16: dnew = MaxSolution ((z - a1)2 + (z — a2)2 = h2)
x
17: (r,s,t)dmw =(0,0,0) + (r,s,t)a1 + (r,s,t)a2
18: if dpew > a3 then
19: dnew = MaxSolution ((x —a1)? 4 (z—a2)? + (x —a3)? = h2>
xr
20: (r:8,0) 4,0 = (0,0,0) + (r,5,8),, + (1,5,8),, + (1,8, 1),
21: end if
22: end if
23: if dnew < djjx then {di,j,k = dnew; Sijk = S(i.5.k)+(rst)g, . }
24: end if
25: end for
26: end for

27: end for
28: end for

Direct computation of middle surfaces 23

Algorithm 8 Modified fast marching method including sources
Input: From Alg.: 3D grid, di ks fijks Sijk
Declaration: v; j , will hold the visiting values of grid points
’unvisited’=0, ’to be visited’=1, ’visited’=2
Declaration: heap container will be a min-priority-heap
Initialization: Vf; ; , = true: {viy]-’k =1; heap.InsertNode(di,j,k)} else: v; =0
1: while heap is not empty do
2: (4,4, k) = heap.GetRoot() > Obtain (i, 7, k) with minimum d and delete from heap.
3: for all {(i—i—r,j +s,k+1t);(r,s,t) € Pl}, not out of bound do

> The pseudo-code is the same as in Alg. [

22: end for
23: Vi, 5,k = 2

24: if f; ;1 is not true then

25: [dmin, (u, v, w)] = [00, (0,0,0)]

26: for all {(z +rj+sk+t);(rst)€ PQ}, not out of bound do
27: if Vidr,j+s,k+t = 2 then

28: if |’I" + ‘8‘ + ‘t| =1 then dtest = di+r,j+s,k+t + h

29: if |7’“ + ‘S‘ + ‘t| = 2 then diest = di+r,j+s,k+z + \/5* h
30: if [r| + [s| + |t| = 3 then diest = ditr jtskt+t + V3*h
31: if dmzn > dtest then

32: [dmrru (uv v, w)] = [dt85t7 ('L +rj+s, k+ t)}

33: end if

34: end if

35: end for

36: 85k = S(u,v,w)

37: end if

38: end while

4.0.1 Ezxperiment 1: Sponge € Sphere

Let us have two 3D point clouds, presented in Figure 0] The first is the
”Sponge” point cloud data created by the parametric equations
z = s, + (0.207 +2.003 - sin® (p) — 1.123 - sin* ()) - cos () - sin (0),
y = s, +cos () - sin (6),
z=8,+sin(p),
v €(0,2m),0 € (0,7).

(11)

The second point cloud data is a sphere with a radius of 0.5. The distance
between the centers of the two objects is 2.0. To create the point cloud data
we used a step of {5 for both angles in the parametric equations. We calculated
the distance function on a grid voxel edge size 0.025. For the middle surface
calculated by the VDT algorithm, we obtained the result seen in Figure
visualized as an isosurface. The FMM and DP algorithms yield a similar result.

With the application of the modified FSM algorithm for this experiment,
we discovered that it can cause some issues in specific situations. When we
initialize the distance function according to Alg.[[Jon a grid with density higher
than the point cloud density, we get an initial value that consists of separated
subvolumes around the points. The problem is that these gaps in the initialized

24 Balazs Koésa, Karol Mikula

|:.: :._ .. __:.

Fig. 9 Experiment 1: Generated point cloud data of Sponge and Sphere.

Fig. 10 Experiment 1: Middle surface between Sponge and Sphere point cloud data calcu-
lated by the VDT algorithm.

Direct computation of middle surfaces 25

distance function do not contain any source information, and if we apply FSM,
such lack of information can propagate through the computational grid. We
can see that in the second picture of the left column in Figure The orange
dots indicate the grid points with no source information. This leads to errors
when we are trying to detect grid points on the discrete borders of subvolumes
belonging to the different point cloud data sets or when we want to visualize
the middle surface as an isosurface of a function. The isosurface with errors
can be seen in the third picture of the left column in Figure [T}

To solve this problem, we need to modify also the initialization of the
distance function to point cloud data for the FSM algorithm. The idea is to
get a contiguous subvolume for the initialized grid points. For this, we need to
increase the volume around the single points in which we initially calculate the
distance function. We need to find the minimum size of this volume so that for
two neighboring cloud points the volumes will intersect. We found that for this
minimum size we can use the maximum of all minimal distances between two
cloud points. With its value, we build a cube around every cloud point which
determines the volume in which we will calculate the exact distance values.
We can see the result of this modification in the right column of Figure [T1]
In the first picture, visualizing a section of the new initial condition, we can
see that now we have a contiguous subvolume of grid points. In the second
picture, we can see that the discrete border of the subvolumes belonging to a
data set can be detected correctly, and in the third picture that the isosurface
is obtained without any error.

In the following experiments, we will show various cases of how we can
apply the described algorithms and discuss possible differences in the results
of the methods.

26 Balazs Koésa, Karol Mikula

Fig. 11 Experiment 1: Finding the middle surface between Sponge and Sphere point cloud
data by the FSM algorithm. In the first picture of the left column, we see the section of the
original initial condition in a constant y plane. In the second picture of the left column, the
grid points with no source are visualized. In the third picture of the left column, the incorrect
isosurface between subvolumes of the computational grid is visualized. In the first picture of
the right column, we can see the corrected initial condition. In the second picture of the right
column, the discrete borders of the subvolumes obtained by the corrected calculation are
visualized. Red points ”belong” to Sponge point cloud data blue points ”belong” to Sphere
point cloud data. In the third picture of the right column, the correct isosurface between
subvolumes of the computational grid is visualized.

Direct computation of middle surfaces 27

4.0.2 Ezxperiment 2: Subsets of the Cube

We return to the Cube data set that has coinciding points with the computa-
tional grid. We will use a computational grid with voxel edge size 0.05. The
points on every subset of the Cube (vertex, edge, wall) will be treated as a
separate data set. In Figure we visualize with colors how the points are
distributed into sets of sources. We can see that the vertices are treated as
one-point data sets, the edges do not contain the vertices and the walls do
not contain either the edges or the vertices. Now in this setup, we apply the
algorithms for computing the middle surface.

First, we analyze the results for VDT. In Figure we can see how the
grid points are assigned to the different subsets. For clearer visualization, we
show just some of the separate volumes with the outlines of the Cube by
white lines. We can identify by color to which subset of the Cube the points
belong to. Let us notice that to the interior of the Cube only the information
from the walls propagates. From the vertices and edges, the information only
propagates outwards. For this reason, the discrete borders of the subvolumes
inside of the Cube are not ”uniform”. We can see it more clearly in Figure
where we visualize only the borders of the subvolumes. For FMM and DP we
obtain similar results.

Let us compare the previous result to the results of the FSM algorithm
visualized in Figure We can identify by the colors that the information
propagates inward from all subsets of the Cube. Inside of the Cube, the grid
points belonging to vertices are along a line, for edges, the grid points are
confined to a triangle, and for the walls, they are inside a pyramid. In these
results, the borders of the separated volumes are much clearer and sharper
which we can identify easier in Figure

28 Balazs Koésa, Karol Mikula

Fig. 12 Experiment 2: Visualization of source labels on the Cube data set.

Direct computation of middle surfaces 29

Fig. 13 Experiment 2: Visualization of source tracking result on the Cube data set for the
VDT method.

Fig. 14 Experiment 2: Visualization of discrete borders of subvolumes belonging to different
sources on the Cube data set for the VDT method.

30 Balazs Koésa, Karol Mikula

Fig. 15 Experiment 2: Visualization of source tracking result on the Cube data set for the
FSM algorithm.

Fig. 16 Experiment 2: Visualization of discrete borders of subvolumes belonging to different
sources on the Cube data set for the FSM algorithm.

Direct computation of middle surfaces 31

4.0.8 Experiment 3: Cube & Sphere

In the next experiment, we consider a cube with the same parameters but
now we will work with it as a triangulated surface. As we demonstrated in
Section we can use the algorithms for distance function calculations on
triangulated surfaces as well if we use the Alg. [0] for the initialization. This
type of initialization produces contiguous subvolumes of grid points thus it
does not need any changes to be applicable for the Modified FSM algorithm
as it was in the case of point cloud data. Inside of the Cube, we have the
Sphere with radius 0.25 and center point the same as the center of the Cube.
We can see their relative location in the first picture of Figure [I7} In the
second picture, we see the computed middle surface with the objects. In the
next pictures of this figure, we can see the results for the VDT, DP, FSM,
and FMM algorithms, in this order from left-up to right-down. In the detailed
view of the results, we can see the fine differences between them.

For a quantitative comparison of the methods, we calculate the volume
and area of the isosurfaces computed on computational grids with different
voxel edge sizes, equal to 0.2, 0.1, 0.05, 0.025, 0.0125, 0.00625, 0.003125. We
list these results in Table[6] By comparing the values in this table and looking
at the pictures of the middle surface we can see that the results from the pairs
VDT, DP, and FSM, FMM are very similar.

Number of Voxel VDT DP FSM FMM

grid points | edge size Volume Area Volume Area Volume Area Volume Area
10% 0.2 0.418667 | 2.92008 | 0.418667 | 2.92008 | 0.418667 | 2.92008 | 0.418667 | 2.92008
19° 0.1 0.3005 2.39785 0.2855 2.34128 | 0.244167 | 1.98998 0.2645 2.21841
37° 0.05 0.291396 | 2.40964 | 0.291396 | 2.40964 | 0.271396 | 2.29456 | 0.273396 | 2.31799
73° 0.025 0.286294 | 2.39177 | 0.286326 | 2.39452 | 0.277992 | 2.34297 | 0.274508 | 2.34427
1453 0.0125 0.287682 | 2.40421 | 0.287686 | 2.40489 | 0.282912 | 2.39768 | 0.277739 | 2.37683
2893 0.00625 0.287828 | 2.42233 | 0.287828 | 2.42245 | 0.284826 | 2.40956 | 0.281192 | 2.40664
5773 0.003125 | 0.287996 | 2.42093 | 0.287995 | 2.42094 | 0.286224 | 2.42284 | 0.283977 | 2.41481

Table 6 Experiment 3: Comparing volume and area for middle surface between the Cube
and the Sphere data sets.

32 Balazs Koésa, Karol Mikula

Fig. 17 Experiment 3: Finding the middle surface between Sphere point cloud data inside
a Cube triangulated surface. In the first picture, we see the two objects. In the next picture,
we visualize the middle surface together with the objects. In the following pictures, we show
the resulting isosurfaces for every algorithm in more detail. They are visualized from left-up
to down-right in the following order: VDT, DP, FSM, FMM. The visualized results were
computed on a grid with 1812 elements and a voxel edge size of 0.01.

Direct computation of middle surfaces 33

4.0.4 Ezxperiment 4: Five Ellipsoids

The following experiment is done with five different Ellipsoids point cloud data
sets, for which the center points all lie on the plane z = 0. In Figure [18| we
visualize the results of the algorithms in the plane z = 0 as the discrete border
of subvolumes together with the distance function and the original data. Here
we show the results of the FSM algorithm with red lines, of VDT with dark
blue lines. Because of the overlapping of the results for DP and FMM are
almost not visible. We can just see the result for DP with a green line in the
upper left corner. In this experiment, we can see that with our algorithms the
obtained results are a good approximation of the Voronoi diagram.

Fig. 18 Experiment 4: Finding the border between five Ellipsoid point cloud data. In the
picture, the border points between divided volumes are visualized in the plane z = 0 together
with the distance function and the data sets. We show the results for FSM algorithm with
red lines, for VDT with dark blue lines.

34 Balazs Koésa, Karol Mikula

4.0.5 Ezxperiment 5: Two parallel surfaces

For the last experiment, we want to show how accurately the algorithms can
find the middle surface between two parallel data sets. For this purpose, we
will use wave-like surfaces generated as point cloud data by functions

flx,y) = 0.2 % cos (x xy) + 0.5,
f(z,y) = 0.2 % cos (xz xy) — 0.5, (12)
(z,y) €< =5.0,5.0 > x < —=5.0,5.0 >

with a step of 0.05 for both x and y variables.

We can see the visualization of the point cloud data generated by the first
equation of in the first picture of Figure In the second picture, we can
see the result of the calculations by the FSM algorithm on a computational
grid with voxel edge size 0.025 represented as an isosurface. This isosurface
lies between the two parallel point cloud data sets. Visually the results for the
four methods do not show noticeable differences, thus we show only the results
of FSM.

Acknowledgements We would like to thank Prof. Zuzana Krivd for pointing out the
possibility to use 6 voxel neighbors instead of 26 in the Dijkstra-Pythagoras method.

References

1. Chen, X., Golovinskiy, A., Funkhouser, T.: A benchmark for 3D mesh segmentation.
ACM Transactions on Graphics 28(3) (2009). DOI 10.1145/1531326.1531379

2. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to algorithms, Third
Edition. MIT Press and McGraw-Hill (2009)

3. Danielsson, P.E.: Euclidean distance mapping. Computer Graphics and Image Process-
ing 14(3), 227-248 (1980). DOI 10.1016,/0146-664X(80)90054-4

4. Eberly, D.: Distance between point and triangle in 3D. Geometric Tools (1999). URL
https://www.geometrictools.com/Documentation/DistancePoint3Triangle3.pdf

5. Jones, M.W., Baerentzen, J.A., Sramek, M.: 3D distance fields: a survey of techniques
and applications. IEEE Transactions on Visualization and Computer Graphics 12(4),
581-599 (2006). DOI 10.1109/TVCG.2006.56

6. Kimmel, R., Shaked, D., Kiryati, N., Bruckstein, A.M.: Skeletonization via distance
maps and level sets. Computer Vision and Image Understanding 62(3), 382-391 (1995).
DOI 10.1006/cviu.1995.1062

7. Persson, P.O.: Mesh generation for implicit geometries. Ph.D. thesis, Department of
Mathematics, Massachusetts Institute Of Technology (2005)

8. Rouy, E., Tourin, A.: A viscosity solutions approach to shape-from-shading. SIAM
Journal on Numerical Analysis 29(3), 867-884 (1992). DOI 10.1137/0729053

9. Rumpf, M., Telea, A.: A continuous skeletonization method based on level sets. Pro-
ceedings of the symposium on Data Visualisation 2002 p. 151-{f (2002)

10. Sethian, J.A.: A fast marching level set method for monotonically advancing fronts.
Proceedings of the National Academy of Sciences 93(4), 1591-1595 (1996). DOI 10.
1073/pnas.93.4.1591

11. Siddiqi, K., Bouix, S., Tannenbaum, A., Zucker, S.: The hamilton-jacobi skeleton. In-
ternational Conference on Computer Vision (ICCV)

12. Smisek, M.: Analysis of 3D and 4D images of organisms in embryogenesis. Ph.D. thesis,
Faculty of Civil Engineering, Slovak University of Technology Bratislava (2015)

https://www.geometrictools.com/Documentation/DistancePoint3Triangle3.pdf

Direct computation of middle surfaces 35

Fig. 19 Experiment 5: Finding the middle surface between two parallel wave-like point
cloud data sets generated by equations . In the first picture, we see the visualization
of one point cloud. The other one is identical just shifted along the z axis. In the second
picture, we visualize the middle surface which divides the computational domain between
the two point cloud data sets.

13. Turk, G., Mullins, B.: Large geometric models archive, Georgia Institute of Technology
(1999). URL https://www.cc.gatech.edu/projects/large_models/

14. Zhao, H.: A fast sweeping method for Eikonal equations. Mathematics of Computation
74, 603-627 (2005). DOI 10.1090/S0025-5718-04-01678-3

https://www.cc.gatech.edu/projects/large_models/

	1 Introduction
	2 Numerical methods
	3 Numerical experiments - methods comparison
	4 Numerical methods for computing the middle surface

