
This is a preprint of an article accepted for publication in Discrete Mathematics
c©2015 (copyright owner as specified in the journal).

1



Hyperbolic analogues of fullerenes with
face-types (6, 9) and (6, 10)

Martin Knor∗and Maryam Verdian-Rizi†

January 22, 2016

Abstract

Mathematical models of fullerenes are cubic polyhedral and spherical

maps of face-type (5, 6), that is, with pentagonal and hexagonal faces only.

Any such map necessarily contains exactly 12 pentagons, and it is known

that for any integer α ≥ 0 except α = 1 there exists a fullerene map with

precisely α hexagons.

In this paper we consider hyperbolic analogues of fullerenes, modelled

by cubic polyhedral maps of face-type (6, k), where k ∈ {9, 10}, on orientable

surface of genus at least two. The number of k-gons in this case depends on

the genus but the number of hexagons is again independent of the surface.

For every triple k ∈ {9, 10}, g ≥ 2 and α ≥ 0, we determine if there exists

a cubic polyhedral map of face-type (6, k) with exactly α hexagons on an

orientable surface of genus g. The only unsolved cases are k = 10, g = 5
and α ≤ 3 when we are not able to say if a hyperbolic fullerene with these

parameters exists.

1 Introduction

Fullerenes are carbon-cage molecules in which every atom is connected by bonds
to exactly three next atoms. The well-known Buckminster fullerene C60 was
found by Kroto et al. [14], and later confirmed by experiments by Krätchmer et
al. [13] and Taylor et al. [18]. Since the discovery of C60, fullerenes have attracted
considerable interest of scientists all over the world, see e.g. [2, 4, 7, 15, 16].
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Radlinského 11, 813 68 Bratislava, Slovakia, knor@math.sk.

†Department of Mathematical Sciences, KAIST, 291 Daehak-ro Yuseong-gu Daejeon, 305-701, South Korea
mverdian@gmail.com.

2



If one replaces the carbon atoms by vertices, bonds by edges, and fills the
smallest cycles (of lengths 5 and 6) by 2-cells, then a fullerene is turned into a
spherical embedding of cubic 3-connected graph, with faces bounded by cycles of
lengths 5 and 6. Hence, mathematical model of a fullerene is a cubic, spherical
and polyhedral map of face-type (5, 6).

In this paper we study mathematical models of fullerene analogues on ori-
entable surfaces of higher genera. By a hyperbolic k-gonal fullerene we under-
stand any trivalent polyhedral map on some orientable surface of genus at least
two, with all faces bounded by cycles of length 6 or k for some fixed k ≥ 7, that is
of face-type (6, k), see [3]. The genus of the k-gonal fullerene is simply the genus of
its supporting surface. Analogues of fullerenes embedded on hyperbolic surfaces
have been considered earlier by a number of authors, see e.g. [5], [19] or [20]
and references therein. Constructions of higher genus fullerenes with additional
symmetries have been suggested in [12].

Denote by α and β the number of hexagonal and k-gonal faces, respectively,
in a hyperbolic k-gonal fullerene of genus g. By Euler’s formula, we have

β = 12(g − 1)/(k − 6), (1)

but there is no restriction on α. Hence, we have the following problem:

Problem 1. For every k ≥ 7 and g ≥ 2, characterize all α’s such that there exists a hyperbolic

k-gonal fullerene of genus g with exactly α hexagonal faces.

We remark that the necessary conditions for existence of a hyperbolic k-gonal
fullerene of genus g ≥ 2 are also sufficient for large enough α, see [10]. However, it
seems to be impossible to determine the corresponding bound for α just using the
results of [10], and moreover, the smallest values of α are the most interesting.

As regards the analogue of Problem 1 for classical fullerenes, that is for cubic,
spherical and polyhedral maps of face-type (5, 6), it is well-known that (mathe-
matical models of) these fullerenes with precisely α hexagonal faces exist for all
non-negative values of α with the sole exception of α = 1, see [6, section 13.4]. In
[3], Problem 1 is solved for the cases k = 7 and 8 and all g ≥ 2:

Theorem 2. If k ∈ {7, 8}, g ≥ 2 and α ≥ 0, then there exists a hyperbolic k-gonal fullerene
of genus g with exactly α hexagonal faces, except for k = 8, g = 2 and α ≤ 3, where no such

maps exist.

(In fact, for k = 8, g = 2 and α = 3, it is claimed in [3] that a corresponding
hyperbolic fullerene exists, which is false. They claim that “the graph K9 −K3,
the complete graph on nine vertices with three edges forming a triangle removed,
can be embedded on the orientable surface with genus 3 due to Heffter [9]”, while
Heffter [9] only shows that K9 has an embedding on S3. When Youngs [21] refers

3



to Heffter’s work, it is to resolve Heawood problem for K9, but not to show the
existence of triangular embedding for K9 − K3. On the contrary, it was shown
by Jungermann [11] (using computer program) that K9 − K3 has no orientable
triangular embedding.)

In this paper we consider the next two values, namely k = 9 and 10. Analogous
to the cases k = 7 and 8, we give a complete solution of Problem 1 for all g ≥ 2
with the exception of cases k = 10, g = 5 and α ≤ 3, when we are not able to state
if corresponding hyperbolic 10-gonal fullerenes exist.

We remark that values k = 7, 8, 9, 10 are universal in the sense that there is
a trivalent polyhedral map of face-type (6, k) for all genera g ≥ 2. The remaining
universal values are k = 12 and 18, see [3], and it will be interesting to investigate
Problem 1 for these two values of k.

In the next section we present some preliminary results and a general con-
struction for duals of hyperbolic k-gonal fullerenes when k ∈ {9, 10}. Section 3
is devoted to hyperbolic 9-gonal fullerenes, and Section 4 deals with hyperbolic
10-gonal fullerenes.

2 Preliminaries

A map is an embedding of a graph, possibly with loops or multiple edges, into
a surface, such that every face is homeomorphic to an open 2-cell. A map is
polyhedral if the following is true, see [17, Proposition 5.5.12] and the text below.

(p1) The underlying graph of the map is simple, that is, without loops and mul-
tiple edgs.

(p2) All facial walks are cycles, that is, no vertex appears more than once on the
bondary of a face.

(p3) The intersection of any two faces is either empty, or it contains a unique
vertex, or exactly two vertices and the edge joining them.

Let T be a map. If we shrink every face of T to a vertex and extend every
vertex of T to a face, we obtain a dual map TD. Then T and TD have the same
numbers of edges and every edge of T intersects exactly one edge of TD and vice
versa. By [17, Proposition 5.5.12 (b), (d)], a map is polyhedral if and only if its
dual map is polyhedral.

Let T be a hyperbolic k-gonal fullerene of genus g and let TD be its dual map.
Then TD is a polyhedral triangulation of orientable surface of genus g in which
every vertex has degree either 6 or k. However, to check polyhedrality for TD,
it suffices to check (p1), as (p2) and (p3) follow. More precisely, (p2) is implied
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by the fact that the underlying graph for TD does not contain loops, and (p3) is
implied by the fact that this graph does not have multiple edges and the vertex
degrees are greater than 2. Hence, we have the following proposition:

Proposition 3. Let T be a triangulation of an orientable surface of genus g ≥ 2 by a simple

graph G, such that α vertices of G have degree 6 and the remaining vertices have degree k.
Then the dual of T is a hyperbolic k-gonal fullerene of genus g with exactly α hexagonal faces.

In our constructions, we do not construct hyperbolic k-gonal fullerenes directly,
instead we construct their duals. By Proposition 3, this approach reasonably
simplifies the check for polyhedrality. In all but finitely many cases we construct
the required triangulations using triangulations of tori by 6-regular simple graphs.

For k = 9, take two toroidal triangulations by 6-regular simple graphs. In
each of them, cut out two adjacent facial triangles together with the edge joining
them. This leaves a 4-hole in each surface. These 4-holes are bounded by 4-cycles
with four vertices having degrees 6 and 5 distributed alternatively around the
cycle. Hence, if we glue these holes together properly, that is, we identify the
boundary cycles so that in every case a vertex of degree 6 will be identified with
a vertex of degree 5 and we identify these cycles in the opposite way (so that the
resulting surface is orientable when making more gluing of this type), we obtain
a triangulation of an orientable surface in which the vertex degrees are 6 and 9
only, see Figure 1.

Figure 1: Gluing the holes to obtain a dual of hyperbolic 9-gonal fullerene.

For k = 10, the process is analogous but we cut out only one facial triangle
from each of the two toroidal triangulations by 6-regular graphs. This leaves one
3-hole in each surface. Now if we glue these holes together properly, that is, we
identify the boundary cycles in the opposite way, we obtain a triangulation of an
orientable surface in which the vertex degrees are 6 and 10 only.

Of course, there may be more vertex-disjoint (13− k)-holes and more toroidal
triangulations. We will glue these holes properly in pairs to obtain a single
surface without a hole. The problem is that in general this process does not yield
a triangulation by a simple graph. The following lemma will handle this issue.
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Lemma 4. Let T1, T2, . . . , Tn be n triangulations of tori by 6-regular simple graphs, and

k ∈ {9, 10}. Cut out in total 2t vertex-disjoint (13 − k)-holes from T1, T2, . . . , Tn, and glue

them in pairs properly to obtain a map T , on a single orientable surface where the vertices of

the holes get degree k. Then T is a triangulation of an orientable surface of genus t+1 and

the embedded graph has vertex degrees 6 and k only. Moreover, if the holes are glued so that

for every pair Ti and Tj, 1 ≤ i < j ≤ n, there is at most one hole in Ti and one in Tj which

are glued together, and for every i′, 1 ≤ i′ ≤ n, there is no pair of holes in Ti′ which are glued

together, then the underlying graph of the resulting map is simple.

Proof. In the first part of lemma it remains to show that the genus of the resulting surface S
is t+1. Note that T has exactly (13− k)t vertices of degree k while all the other vertices are
of degree 6. Denote by α the number of vertices of degree 6 in T . Then T has (13− k)t + α
vertices, ((13−k)tk+6α)/2 edges and ((13−k)tk+6α)/3 faces. So the Euler characteristics
of S is

(13− k)t+ α +
(13− k)tk + 6α

3
−

(13− k)tk + 6α

2
= t(13− k)

6− k

6
= −2t,

where the last equation is true since k ∈ {9, 10}. Hence, the genus of S is t+1.
Now suppose that if two holes are glued together then they come from Ti and Tj , where

1 ≤ i < j ≤ n, and for given i and j there is at most one pair of such holes. Observe that
in the process of obtaining T from T1, T2, . . . , Tn, we did not add a single edge. We only
identified some of them and some of the vertices. Moreover, T1, T2, . . . , Tn are triangulations
by simple graphs. Let G be the underlying graph of T . We show that G has neither loops
nor multiple edges.

Suppose G has a loop. It means the end vertices of an edge from some Ti have been
identified. But the vertices that are identified come from different Ti’s, a contradiction.

Now suppose G has a multiple edge. Denote by u and v vertices such that there are two
edges joining u with v in G. Since we did not add edges in the process of obtaining T from
T1, T2, . . . , Tn, the two parallel edges must come from different edges which are already present
in T1 ∪ T2 ∪ · · · ∪ Tn. If these edges come both from one of T1, T2, . . . , Tn, say they come from
Ti, then since the holes are vertex-disjoint, there must be two holes in Ti which are glued
together, a contradiction. Thus, we may assume that one of these edges comes from Ti and
the other comes from Tj , 1 ≤ i < j ≤ n. Then u (v) is obtained by identifying two vertices,
say u1 and u2 (v1 and v2), where u1v1 is an edge of Ti and u2v2 is an edge of Tj .

If both u1 and v1 are in one hole in Ti, then u2 and v2 are in one hole in Tj, since the holes
are vertex-disjoint. But then either u1v1 is an edge bounding this hole which means that after
the gluing process the edge u1v1 is identified with u2v2 and no parallel edges occur, or k = 9
and u1 and v1 are opposite vertices in a 4-hole which means that in the process of cutting
out holes one of u1v1 and u2v2 was deleted, see Figure 1. Thus we may assume that u1 and
v1 are in two distinct holes in Ti. But then also u2 and v2 come from two distinct holes of
Tj , which means that there are at least two holes in Ti which we glue with two holes in Tj , a
contradiction.
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Suppose that we provide the gluing process on n toroidal triangulations T1, T2, . . . , Tn

by 6-regular graphs. That is, we cut out di (13−k)-holes in Ti, 1 ≤ i ≤ n, and glue
them in pairs properly. Then the resulting map T is triangular with vertex de-
grees 6 and k only. Construct an auxiliary graph GT with vertices T1, T2, . . . , Tn.
Whenever there is a hole in Ti which is glued to a hole in Tj, add to GT an edge
connecting Ti with Tj. So if there are ℓ holes in Ti glued to ℓ holes in Tj, then
we have ℓ parallel edges connecting Ti with Tj in GT . The graph GT is called an
associated graph for T . Observe that the degree of Ti is di in GT . If we denote by
m the number of edges of GT , then m = 1

2
(d1 + d2 + · · ·+ dn) and T is a map on an

orientable surface of genus m+ 1, by Lemma 4.
In our constructions, it will be not important which hole of Ti is glued to

which hole in Tj. Only the structure of GT will be important. By Lemma 4, if
GT contains neither parallel edges nor loops, then the underlying graph for T is
simple.

Let Γ be a group and let S be a set of elements that generates Γ and such that
a−1 ∈ S whenever a ∈ S. Then a Cayley graph G = Cay(Γ, S) has V (G) = Γ and
xy ∈ E(G) if and only if y = xa for some a ∈ S. A Cayley map is an embedding
of a Cayley graph on a surface such that every face is homeomorphic to an open
disc and there is an ordering (a1, a2, . . . , as) of the s elements of S such that when
traversing around x ∈ V (G) on a small circle, we intersect edges with one vertex
x and the other (xa1, xa2, . . . , xas), always in this circular order. To simplify the
notation, we denote the Cayley map as Cay(Γ, (a1, a2, . . . , as)).

In our proof, we use Cayley maps to give construction for fullerenes. In a few
cases, for small values of α, we have used the program CGF ([8], available from [1])
that allows to enumerate maps, polyhedral or not, of a fixed genus with a fixed
combination of face sizes.

3 Hyperbolic fullerenes of face-type (6, 9)

Theorem 5. If g = 2 and α ≤ 5 or g = 3 and α ≤ 2, then there are no hyperbolic 9-gonal
fullerenes of genus g having exactly α hexagonal faces. On the other hand, if g = 2 and α ≥ 6
or g = 3 and α ≥ 3 or g ≥ 4 and α ≥ 0, then there exists a hyerbolic 9-gonal fullerene of

genus g having exactly α hexagonal faces.

Proof. First we prove the negative results. If g = 2 then a (hyperbolic) 9-gonal fullerene
has exactly four 9-gonal faces, by (1). By polyhedral properties (p2 and p3), every 9-gon is
bounded by another nine distinct faces, and so the number of hexagonal faces satisfies α ≥ 6.
Analogously, if g = 3 then a nonagonal fullerene has exactly eight 9-gons and so α ≥ 2.

Now suppose that g = 3 and α = 2. If there exists a required 9-gonal fullerene, then it
contains (8 · 9 + 2 · 6)/2 = 42 edges. Since there are

(

8
2

)

= 28 pairs of 9-gons and each pair
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1 : 2 3 4 7 : 3 15 11 13 : 6 21 22 19 : 10 29 30 25 : 15 24 16
2 : 1 5 6 8 : 3 16 17 14 : 6 23 24 20 : 12 28 27 26 : 15 23 22
3 : 1 7 8 9 : 4 12 18 15 : 7 25 26 21 : 13 30 17 27 : 16 30 20
4 : 1 9 10 10 : 4 19 11 16 : 8 27 25 22 : 13 18 26 28 : 17 29 20
5 : 2 11 12 11 : 5 10 7 17 : 8 21 28 23 : 14 26 29 29 : 19 23 28
6 : 2 13 14 12 : 5 9 20 18 : 9 22 24 24 : 14 18 25 30 : 19 21 27

Table 1: A rotation scheme for a hyperbolic 9-gonal fullerene of genus 2 with α = 3.

shares at most one edge, there are at least 42− 28 = 14 edges which are bounding hexagonal
faces. But since α = 2, the number of edges bounding hexagonal faces cannot exceed 12, a
contradiction. Hence, there is no 9-gonal fullerene of genus 3 with α hexagons if α ≤ 2.

Figure 2: The graph M8 with two 4-holes [0, 1, 3, 2] and [4, 5, 7, 6].

Now we construct the required hyperbolic fullerenes. We use a triangulation of torus by
Cayley map Mn = Cay(Zn, (1, 3, 2,−1,−3,−2)), n ≥ 7, see Figure 2 for M8. Another way of
obtaining this triangulation is to cut out a parallelogram from a plane tesselation by regular
triangles and join opposite sides to obtain a torus. It is obvious that the underlying graph
for Mn is simple for n ≥ 7. In Mn we cut out several 4-holes. A hole containing edges
ab, bc, cd, da, from which we cut out the edge ac, will be denoted by [a, b, c, d], see Figure 2
for the 4-holes [0, 1, 3, 2] and [4, 5, 7, 6].

We distinguish three cases.
Case 1: g = 2 and α ≥ 6. Take two maps, M7 and Mα+1, and cut out the 4-hole [0, 1, 3, 2]

in each. Then glue these holes properly. By Lemma 4, the resulting map T triangulates
orientable surface of genus 2 and has α vertices of degree 6 while the remaining vertices have
degree 9. Since the underlying graphs for both M7 and Mα+1 are simple (recall that α ≥ 6)
and the associated graph for T is a path of length 1, the underlying graph for T is simple, by
Lemma 4. Hence, the dual of T is a 9-gonal fullerene of genus 2 with exactly α hexagons, by
Proposition 3.

Case 2: g = 3 and α ≥ 3. In the case α = 3, the CGF program ([1]) found three polyhedral
maps. A rotation scheme for one of them is given in Table 1.

Now suppose that α ≥ 4. Take two maps, M8 and Mα+8. To distinguish the vertices,
denote those of Mα+8 by {0′, 1′, . . . , (α+7)′}. Cut out 4-holes [0, 1, 3, 2] and [4, 5, 7, 6] from
M8, and [0′, 1′, 3′, 2′] and [6′, 7′, 9′, 8′] from Mα+8. Then glue pairs of these holes properly so
that the following identifications are made: 0 ≡ 2′, 1 ≡ 3′, 3 ≡ 1′, 2 ≡ 0′, 4 ≡ 7′, 5 ≡ 6′, 7 ≡ 8′

and 6 ≡ 9′. By Lemma 4, the resulting map T triangulates an orientable surface of genus 3
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and has α vertices of degree 6 while the remaining vertices have degree 9. Since in Mα+8 the
only possible edges between the vertices of the holes are (3′, 6′) and (0′, 9′), and since neither
(1, 5) nor (2, 6) is an edge in M8, the underlying graph for T is simple. By Proposition 3, the
dual of T is a 9-gonal fullerene of genus 3 with exactly α hexagons.

Case 3: g ≥ 4 and α ≥ 0. Take g − 2 copies of M8 and one copy of Mα+8. Then in each
of the triangulations cut out two 4-holes, namely [0, 1, 3, 2] and [4, 5, 7, 6]. Glue these holes in
pairs properly so that the associated graph is a (g−1)-cycle and denote the resulting map by
T . By Lemma 4, T is a triangulation of an orientable surface of genus g by a simple graph,
in which there are α vertices of degree 6 while the remaining vertices have degree 9. Hence,
the dual of T is a 9-gonal fullerene of genus g with exactly α hexagons, by Proposition 3.

4 Hyperbolic fullerenes of face-type (6, 10)

Lemma 6. If g = 2 and α ≤ 7 or g = 3 and α ≤ 6 or g = 4 and α ≤ 2, then there are no

hyperbolic 10-gonal fullerenes of genus g with exactly α hexagonal faces.

Proof. We prove the statement for the dual embeddings. Let G be a simple graph with
vertices of degree 6 or 10 which triangulates an orientable surface of genus g. Denote by α
the number of vertices of degree 6 in G.

If g = 2, then G has 3 vertices of degree 10, see (1). Thus every vertex of degree 10 in G
must be adjacent to at least 8 vertices of degree 6, and so α ≥ 8.

If g = 3, then G has 6 vertices of degree 10. Thus in G, every vertex of degree 10 must
be adjacent to at least 5 vertices of degree 6, and hence α ≥ 5. Suppose α = 5. This implies
that in G, every vertex of degree 10 is adjacent to every vertex of degree 6, and so G must
be isomorphic to K11 − K5. But it is known that K11 − K5 has no orientable triangular
embedding, see [11]. It only remains to show that there is no hyperbolic 10-gonal fullerene of
genus 3 with exactly 6 hexagons. The CGF program ([1]) exhausted all the possibilities, and
showed that there is no required 10-gonal fullerene.

If g = 4, then there are 9 vertices of degree 10 in G. Thus in G, every vertex of degree 10
must be adjacent to at least two vertices of degree 6, and hence there are at least 9× 2 edges
in G that connect a vertex of degree 10 to a vertex of degree 6. This implies that there must
be at least 3 vertices of degree 6 in G.

Theorem 7. If g = 2 and α ≥ 8 or g = 3 and α ≥ 7 or g = 4 and α ≥ 3 or g = 5 and α ≥ 4
or g ≥ 6 and α ≥ 0, then there exists a hyperbolic 10-gonal fullerene of genus g with exactly

α hexagonal faces.

Proof. In the constructions we use the Cayley map Mn = Cay(Zn, (1, 3, 2,−1,−3,−2)) anal-
ogously as in the proof of Theorem 5.

Case 1: g = 2 and α ≥ 8. Take two maps, M7 and Mα−1, and cut out the 3-hole [0, 1, 3]
in each. Then glue these holes properly and denote the resulting map by T . By Lemma 4, T
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triangulates an orientable surface of genus 2 and has α vertices of degree 6 while the remaining
vertices have degree 10. Since the underlying graphs for both M7 and Mα+1 are simple and
the associated graph for T is a path of length 1, the underlying graph for T is simple, by
Lemma 4. Hence, the dual of T is a 10-gonal fullerene of genus 2 with exactly α hexagons,
by Proposition 3.

Case 2: g = 3 and α ≥ 7. Take two maps, M8 and Mα+4. To distinguish the vertices,
denote those of Mα+4 by {0′, 1′, . . . , (α+3)′}. Cut out the 3-holes [0, 1, 3] and [4, 5, 7] from
M8, and [0′, 1′, 3′] and [8′, 7′, 5′] from Mα+4. Then glue pairs of these holes properly so that
the following identifications are made: 0 ≡ 0′, 1 ≡ 3′, 3 ≡ 1′, 4 ≡ 8′, 5 ≡ 5′ and 7 ≡ 7′. The
resulting map T triangulates an orientable surface of genus 3 and has α vertices of degree 6
while the remaining vertices have degree 10. Since inMα+4 the only edges between the vertices
of the holes are (3′, 5′) and (0′, 8′) (the latter only in the case α = 7), and since neither (1, 5)
nor (0, 4) is an edge in M8, the underlying graph for T is simple. By Proposition 3, the dual
of T is a 10-gonal fullerene of genus 3 with exactly α hexagons.

Case 3: g ∈ {4, 5} and α ≥ g − 1. Take g − 2 copies of M7 and one copy of Mα+8−g.
Then in each of the triangulations cut out two 3-holes, namely [0, 1, 3] and [2, 5, 4]. Glue these
holes in pairs properly so that the associated graph is a (g−1)-cycle and denote the resulting
map by T . By Lemma 4, T is a triangulation of an orientable surface of genus g by a simple
graph in which there are α vertices of degree 6 while the degrees of the remaining vertices
are 10. Hence, the dual of T is a 10-gonal fullerene of genus g with exactly α hexagons, by
Proposition 3.

Case 4: g ≥ 6 and α ≥ 0. TakeM = M6(g−1)+α and cut out 2(g−1) 3-holes [0, 1, 3], [2, 5, 4],
[6, 7, 9], [8, 11, 10], . . . , [6(g−2), 6(g−2) + 1, 6(g−2) + 3], [6(g− 2) + 2, 6(g−2) + 5, 6(g−2) + 4].
Let S be the set of vertices of these 3-holes. By Lemma 4, if we glue the holes in pairs
properly, then the resulting map is a triangulation of an orientable surface of genus g with
α vertices of degree 6 while the remaining vertices have degree 10. To make the map sim-
ple, glue the holes so that for every i, 0 ≤ i ≤ g − 2, the following identification is made:
6i ≡ 6i+11, 6i+1 ≡ 6i+8, 6i+3 ≡ 6i+10, the arithmetic being modulo 6(g−1). Denote by T
the resulting map. Observe that this gluing produces an orientable surface since the triangles
(6i, 6i+1, 6i+3) and (6i+11, 6i+8, 6i+10) are oriented in the opposite way. Denote by G the
underlying graph for T . We claim that G is simple. First, there is no loop in G, because
every pair of vertices in S that are identified (in T ) share no edge. Also, for every such pair,
say u and v, there is no common neighbor in M since |u− v| > 6. Thus if a vertex is not in
S, it can not be the end point of a multiple edge in G. This implies that if there is a multiple
edge in G, then its endpoints correspond to pairs of identified vertices from S. First suppose
that α = 0. For every v in S, let Sv be the set of its 4 neighbors in M that don’t lie on the
same 3-hole as v. Then Sv ⊂ {v−3, v−2, v−1, v+1, v+2, v+3}, the arithmetics being modulo
6(g−1). Below we list Sv in a form in which the identifications are easily recognizable.

1. S6i = {6(i−1) + 3, 6(i−2) + 10, 6(i−2) + 11, 6(i−1) + 8},
S6i+11 = {6(i+1) + 3, 6(i+2), 6(i+2) + 1, 6(i+1) + 8}
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2. S6i+1 = {6(i−2) + 10, 6(i−2) + 11, 6(i−1) + 8, 6(i−1) + 10},
S6i+8 = {6(i−1) + 11, 6(i+1), 6(i+1) + 1, 6(i+1) + 3}

3. S6i+3 = {6(i−1) + 8, 6(i−1) + 10, 6(i−1) + 11, 6(i+1)},
S6i+10 = {6(i+1) + 1, 6(i+1) + 3, 6(i+2), 6(i+2) + 1}

Since g ≥ 6, the values 6(i−2) + j, 6(i−1) + j, 6i + j, 6(i+1) + j and 6(i+2) + j, for fixed
i and j where 0 ≤ i ≤ g − 2, 0 ≤ j ≤ 11, are distinct modulo 6(g − 1). Therefore if two
vertices u, v ∈ S are identified in T , then no two vertices of Su and Sv are identified together.
To demonstrate this, let u = 6i and v = 6i+ 11. Then the elements in Su are identified with
{6(i−1)+10, 6(i−2)+3, 6(i−2)+0, 6(i−1)+1} and this set has no element in common with
Sv. Similar check can be done for the other two types of vertices, which implies that there is
no multiple edge in G provided that α = 0.

Now suppose that α > 0. Since the neighbours of v are ‘consecutive’ vertices v−3, v−2,
v−1, v+1, v+2, v+3, the arithmetics being modulo 6(g−1)+α, Sv in this case is just a subset
of Sv for the case α = 0 described above. Consequently, theree is no multiple edge in T even
when α > 0. By Proposition 3, the dual of T is the required 10-gonal fullerene of genus g
with exactly α hexagons.

The cases g = 5 and α ∈ {0, 1, 2, 3} are covered by neither Lemma 6 nor Theo-
rem 7. At the moment we are not able to determine if there is a 10-gonal fullerene
for these parameters, so these four cases are left open. All of our attempts to find
constructions for these cases have failed. We ran the CGF program ([1]) for quite
a long time but no hyperbolic fullerenes were found, and to run the program
exhaustively seems to be beyond our computer capacities. Observe that if the
required 10-gonal fullerenes exist, then the underlying graph for the dual map
is K12 minus a perfect matching in the case α = 0. However, already in the case
α = 1 there are 15 possibilities for the underlying graph of the dual map and this
number increases for α ∈ {2, 3}.
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[9] L. Heffter, Über das Problem der Nachbargebiete, Math. Ann. 38 (1891)
477–508.
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