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Abstract

We construct several infinite families of trees which have a unique branch-

ing vertex of degree 4 and whose Wiener index equals the Wiener index of

their quadratic line graph. This solves an open problem of Dobrynin and

Mel’nikov.
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1 Introduction

We consider only finite, undirected, connected graphs without loops or multiple
edges. Let G be a graph. By V (G) and E(G) we denote its vertex and edge sets,
respectively. The sum of distances between all pairs of vertices of G is the Wiener

index W (G), that is,

W (G) =
∑

{u,v}⊆V (G)

d(u, v).

Wiener index was introduced by Wiener in 1947, see [17]. This graph invariant
belongs to the molecular structure-descriptors, called topological indices, that are
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used for the design of molecules with desired properties, see e.g. [11], therefore
it is widely studied by chemists. It attracted the attention of mathematicians in
1970’s and it was reintroduced under the name of transmission and the distance of
a graph, see [8] and [16]. Recently, several special issues of journals were devoted to
(mathematical properties of) Wiener index, see [9] and [10]; for surveys see [3] and
[4].

The line graph L(G) of a graph G has vertices corresponding to the edges of G;
two vertices being adjacent in L(G) if and only if the corresponding edges have a
common endvertex in G. The graph L(L(G)) = L2(G) is called the quadratic line

graph of G and Lt(G) = L(Lt−1(G)) for t ≥ 3. In [1], the following theorem was
proved.

Theorem 1.1 If T is a tree on n vertices, then W (L(T )) = W (T )−
(

n

2

)

.

Thus, there is no tree with nonempty line graph for which W (L(T )) = W (T )
holds. However, there are trees T with property

W (L2(T )) = W (T ), (1)

see [2, 5, 6]. There is also a unique class of trees T with propertyW (L3(T )) = W (T ),
see [12]. However, for all trees on at least two vertices we have W (Li(T )) 6= W (T )
for every i ≥ 4, see [15] and also [13, 14]. Thus, the last unsettled case is the case
of quadratic line graphs.

In [7] there are considered trees having a unique vertex of degree greater than
2. Such trees are called generalized stars (starlike trees). More precisely, generalized
t-star is a tree obtained from the star K1,t, t ≥ 3, by replacing all its edges by paths
of positive lengths. In [7] the following theorem is proved.

Theorem 1.2 Let S be a generalized t-star with q edges and branches of length

k1, k2, . . . , kt. Then,

W (L2(S)) = W (S) +
1

2

(

t− 1

2

)( t
∑

i=1

k2
i + q

)

− q2 + 6

(

t

4

)

. (2)

Based on this theorem, it is proved in [7] that W (L2(S)) < W (S) if S is a
generalized 3-star, and W (L2(S)) > W (S) if S is a generalized t-star where t ≥ 7.
Thus, property (1) can hold for generalized t-stars only when t ∈ {4, 5, 6}. In [7],
for every t ∈ {4, 5, 6} there are found several generalized t-stars with property (1),
and for t ∈ {5, 6} there are constructed infinite families of these generalized t-stars.
The problem of existence of an analogous infinite family of generalized 4-stars is left
open in [7]. In this paper we solve this problem and we construct several infinite
families of generalized 4-stars with property (1). Hence, we can state the following
theorem.
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Theorem 1.3 For every t ∈ {4, 5, 6} there exist infinite families of generalized t-
stars T with property (1). On the other hand, if t /∈ {4, 5, 6}, t ≥ 3, then there is

no generalized t-star T with property (1).

Two trees are homeomorphic if supressing all their vertices of degree 2 yields
isomorphic trees. It is easy to find several mutually non-homeomorphic trees which
all have property (1). However, we state here two conjectures.

Conjecture 1.4 There exists a finite set of trees, S, such that if a tree T has

property (1) then T is homeomorphic to a tree from S.

Conjecture 1.5 If a tree T has property (1), then there are infinitely many trees

homeomorphic to T such that all these trees have property (1).

2 The constructions

Let S be a generalized 4-star with branches of lengths k1, k2, k3 and k4. Suppose
that W (L2(S)) = W (S). Then (2) is transformed to

2(k1 + k2 + k3 + k4)
2 = 3(k2

1 + k2
2 + k2

3 + k2
4) + 3(k1 + k2 + k3 + k4) + 12. (3)

We present here three constructions yielding infinite sequences of quadruples (k1, k2, k3, k4)
satisfying (3).

Construction 1. Solving (3) in k4 gives

k4 =
4(k1 + k2 + k3)− 3±

√

[3− 4(k1 + k2 + k3)]2 + 4ρ

2
,

where ρ = 2(k1+k2+k3)
2−3(k2

1+k2
2+k3

3)−3(k1+k2+k3)−12. We have to choose
k1, k2 and k3 so that the square root will be an odd integer. The simplest choice is
to set ρ = 0. Since k4 cannot be 0, this choice implies k4 = 4(k1 + k2 + k3)− 3 and
(3) reduces to ρ = 0, that is

2(k1 + k2 + k3)
2 = 3(k2

1 + k2
2 + k2

3) + 3(k1 + k2 + k3) + 12. (4)

Now we proceed analogously with k3. Solving (4) in k3 gives

k3 =
4(k1 + k2)− 3±

√

[3 − 4(k1 + k2)]2 + 4σ

2
,

where σ = 2(k1 + k2)
2 − 3(k2

1 + k2
2) − 3(k1 + k2) − 12. Setting σ = 0 implies

k3 = 4(k1 + k2)− 3 and (4) reduces to σ = 0, that is

k2
1 + k2

2 − 4k1k2 + 3k1 + 3k2 + 12 = 0. (5)
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Since (5) is quadratic, for one k1 there are two values of k2 and vice-versa. Hence,
we can construct a sequence {ai}i∈Z, such that for every i, the pair (ai, ai+1) is a
solution for (k1, k2) in (5).

For pairs (ai, ai+1) and (ai+1, ai+2), (5) transforms to

a2i + a2i+1 − 4aiai+1 + 3ai + 3ai+1 + 12 = 0 (6)

a2i+1 + a2i+2 − 4ai+1ai+2 + 3ai+1 + 3ai+2 + 12 = 0 (7)

and subtracting (6) from (7) yields

a2i+2 − a2i − 4ai+1(ai+2 − ai) + 3(ai+2 − ai) = 0,

that is
(ai+2 + ai)(ai+2 − ai)− 4ai+1(ai+2 − ai) + 3(ai+2 − ai) = 0. (8)

Since we like to obtain different solutions, for fixed ai+1 we require ai+2 6= ai. Di-
viding (8) by (ai+2 − ai) results in a recurence relation

ai+2 − 4ai+1 + ai + 3 = 0. (9)

Since the roots of characteristic equation for (9) are 2−
√
3 and 2 +

√
3, we have

ai = c1(2−
√
3)i + c2(2 +

√
3)i + c3 (10)

for suitable constants c1, c2 and c3 depending on a0 and a1. Observe that quadruple
(4, 5, 33, 165) satisfies (3), 33 = 4(4 + 5)− 3 and 165 = 4(4 + 5 + 33)− 3. Thus, we
may choose a0 = 4 and a1 = 5. Substituting (10) for i = 0, 1, 2 to (9) gives c3 = 3/2
and consequently we can evaluate c1 and c2 from (10) when i ∈ {0, 1}. We get

ai =
5 +

√
3

4
(2−

√
3)i +

5−
√
3

4
(2 +

√
3)i +

3

2
. (11)

In Table 1 we present quadruples (ai, ai+1, k3, k4) for i, where −3 ≤ i ≤ 3.

. . . (a−3, a−2, k3, k4) (a−2, a−1, k3, k4) (a−1, a0, k3, k4)

. . . (89, 25, 453, 2263) (25, 8, 129, 645) (8, 4, 45, 225)

(a0, a1, k3, k4) (a1, a2, k3, k4) (a2, a3, k3, k4) (a3, a4, k3, k4) . . .
(4, 5, 33, 165) (5, 13, 69, 345) (13, 44, 225, 1125) (44, 160, 813, 4065) . . .

Table 1: Quadruples (ai, ai+1, k3, k4) for i ∈ {−3,−2,−1, 0, 1, 2, 3}.

By (11), lim
i→∞

ai = ∞ (and also lim
i→−∞

ai = ∞). Hence, we have an infinite se-

quence of quadruples (ai, ai+1, 4ai+4ai+1−3, 20ai+20ai+1−15) satisfying (3) which
solves the problem of Dobrynin and Mel’nikov. However, with a slight modification
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of the construction we can find many different infinite sequences of quadruples sat-
isfying (3).

Construction 2. Another infinite sequences we can obtain from (4) when we fix
k1. Thus, set k1 = p, to denote that k1 is a parameter. Then (4) can be rewritten
as

k2
2 + k2

3 − 4k2k3 + (3− 4p)(k2 + k3) + p2 + 3p+ 12 = 0. (12)

Since (12) is quadratic, similarly as above we can construct a sequence {ai}i∈Z,
such that for every i, the pair (ai, ai+1) is a solution for (k2, k3) in (12). Considering
(12) for pairs (ai, ai+1) and (ai+1, ai+2), we get

a2i+2 − a2i − 4ai+1(ai+2 − ai) + (3− 4p)(ai+2 − ai) = 0, (13)

and dividing (13) by (ai+2 − ai) results in a recurence relation

ai+2 − 4ai+1 + ai + 3− 4p = 0. (14)

Analogously as above, the roots of characteristic equation for (14) are 2 −
√
3 and

2 +
√
3 and an easy calculation shows that

ai =
α + β

√
3

12
(2−

√
3)i +

α− β
√
3

12
(2 +

√
3)i +

3− 4p

2
, (15)

where α = 6a0 + 12p − 9 and β = 4a0 − 2a1 + 4p − 3. (Observe that if p, a0 and
a1 are integers, then by (14), every ai is an integer number, i ∈ Z.) In Table 2 we
present a starting pair (a0, a1) for small values of p, 1 ≤ p ≤ 6, such that the triple
(p, a0, a1) satisfies (12), and also the explicit formula for ai according to (15).

p a0 a1 ai
1 2 3 1

12
(15 + 3

√
3)(2−

√
3)i + 1

12
(15− 3

√
3)(2 +

√
3)i − 1

2

2 1 3 1
12
(21 + 3

√
3)(2−

√
3)i + 1

12
(21− 3

√
3)(2 +

√
3)i − 5

2

3 1 2 1
12
(33 + 9

√
3)(2−

√
3)i + 1

12
(33− 9

√
3)(2 +

√
3)i − 9

2

4 5 33 1
12
(69− 33

√
3)(2−

√
3)i + 1

12
(69 + 33

√
3)(2 +

√
3)i − 13

2

5 4 33 1
12
(75− 33

√
3)(2−

√
3)i + 1

12
(75 + 33

√
3)(2 +

√
3)i − 17

2

6 1 2 1
12
(69 + 21

√
3)(2−

√
3)i + 1

12
(69− 21

√
3)(2 +

√
3)i − 21

2

Table 2: Explicit formulae for given p, a0 and a1.

For these six values of p, quadruples (p, ai, ai+1, k4) for i, where −3 ≤ i ≤ 3, are
present in the following two tables.
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i p = 1 p = 2 p = 3
...

...
...

...
−3 (1, 87, 23, 441) (2, 111, 28, 561) (3, 206, 52, 1041)
−2 (1, 23, 6, 117) (2, 28, 6, 141) (3, 52, 11, 261)
−1 (1, 6, 2, 33) (2, 6, 1, 33) (3, 11, 1, 57)
0 (1, 2, 3, 21) (2, 1, 3, 21) (3, 1, 2, 21)
1 (1, 3, 11, 57) (2, 3, 16, 81) (3, 2, 16, 81)
2 (1, 11, 42, 213) (2, 16, 66, 333) (3, 16, 71, 357)
3 (1, 42, 158, 801) (2, 66, 253, 1281) (3, 71, 277, 1401)
...

...
...

...

Table 3: Quadruples (p, ai, ai+1, k4) for p ∈ {1, 2, 3}.

and

i p = 4 p = 5 p = 6
...

...
...

...
−3 (4, 45, 8, 225) (5, 69, 13, 345) (6, 446, 112, 2253)
−2 (4, 8, 0, 45) (5, 13, 0, 69) (6, 112, 23, 561)
−1 (4, 0, 5, 33) (5, 0, 4, 33) (6, 23, 1, 117)
0 (4, 5, 33, 165) (5, 4, 33, 165) (6, 1, 2, 33)
1 (4, 33, 140, 705) (5, 33, 145, 729) (6, 2, 28, 141)
2 (4, 140, 540, 2733) (5, 145, 564, 2853) (6, 28, 131, 657)
3 (4, 540, 2053, 10305) (5, 564, 2128, 10785) (6, 131, 517, 2613)
...

...
...

...

Table 4: Quadruples (p, ai, ai+1, k4) for p ∈ {4, 5, 6}.

Observe that when p ∈ {4, 5} then for i ∈ {−2,−1} we have 0’s in Table 4.
The corresponding quadruples satisfy (3) but since they form generalized 3-stars
instead of generalized 4-stars, the equation (3) cannot be applied to them. Hence,
in these cases we have no solution. This failure is caused by the fact that although
both c1 and c2 are positive in all the formulae in Table 2, c3 is a negative constant.
Consequently, it is obvious that in all the other cases we get positive quadrangles.
Since lim

i→∞
ai = ∞ in all the formulae in Table 2, we get another six infinite classes

of generalized 4-stars S with W (L2(S)) = W (S). Observe that these classes can be
combined. For instance, in Table 3 we see that (1, 3, 11, 57) satisfies (3). Hence, we
can set p = 11 and find another infinite sequence of quadruples satisfying (3).

Construction 3. In our first construction there is no number which is in all quadru-
ples of the sequence, while in the second construction every sequence contains one
number which is in all quadruples. In our last construction, every sequence contains
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two numbers which are in all quadruples. Choose k1 and k2 to be constants, say p
and r, respectively. Then (3) is transformed to

k2
3 + k2

4 − 4k3k4 + (3− 4(p+ r))(k3 + k4) + c = 0, (16)

where c is a constant depending on p and r. Thus, there exists a sequence {ai}i∈Z,
such that for every i, the pair (ai, ai+1) is a solution for (k3, k4) in (16). Analogously
as above we get a recurrence relation

ai+2 − 4ai+1 + ai + 3− 4(p+ r) = 0, (17)

and so

ai =
α + β

√
3

12
(2−

√
3)i +

α− β
√
3

12
(2 +

√
3)i +

3− 4(p+ r)

2
, (18)

where α = 6a0 + 12p + 12r − 9 and β = 4a0 − 2a1 + 4p + 4r − 3. In Table 5 we
present three starting pairs (a0, a1) for two pairs p and r, such that the quadruple
(p, r, a0, a1) satisfies (3), and also the explicit formula for ai according to (18).

p r a0 a1 ai
1 2 3 21 1

12
(45− 21

√
3)(2−

√
3)i + 1

12
(45 + 21

√
3)(2 +

√
3)i − 9

2

4 5 9 72 1
12
(153− 75

√
3)(2−

√
3)i + 1

12
(153 + 75

√
3)(2 +

√
3)i − 33

2

4 5 33 165 1
12
(297− 165

√
3)(2−

√
3)i + 1

12
(297 + 165

√
3)(2 +

√
3)i − 33

2

Table 5: Explicit formulae for given p, r, a0 and a1.

For these three choices, quadruples (p, r, ai, ai+1) for i, where −3 ≤ i ≤ 3, are
present in the following table.

i [1, 2, 3, 21] [4, 5, 9, 72] [4, 5, 33, 165]
...

...
...

...
−3 (1, 2, 33, 6) (4, 5, 84, 12) (4, 5, 33, 0)
−2 (1, 2, 6, 0) (4, 5, 12,−3) (4, 5, 0, 0)
−1 (1, 2, 0, 3) (4, 5,−3, 9) (4, 5, 0, 33)
0 (1, 2, 3, 21) (4, 5, 9, 72) (4, 5, 33, 165)
1 (1, 2, 21, 90) (4, 5, 72, 312) (4, 5, 165, 660)
2 (1, 2, 90, 348) (4, 5, 312, 1209) (4, 5, 660, 2508)
3 (1, 2, 348, 1311) (4, 5, 1209, 4557) (4, 5, 2508, 9405)
...

...
...

...

Table 6: Quadruples (p, r, ai, ai+1) determined by [p, r, a0, a1].
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When (p, r) = (1, 2) then for i ∈ {−2,−1} we have 0’s in Table 6. Such 0’s
correspond to branches of length 0, which is impossible. In the case (p, r) = (4, 5),
when (a0, a1) = (9, 72) then for i ∈ {−2,−1} we get even negative numbers, and
when (a0, a1) = (33, 165) then we get 0’s for i ∈ {−3,−2,−1}. This is caused
by c3 < 0. However, as c1 and c2 are positive in all the formulae in Table 5,
in all the other cases we get positive lengths of branches. Hence, all the other
quadruples generated by the way described above correspond to positive quadruples
(k1, k2, k3, k4) satisfying (3). Since lim

i→∞
ai = ∞ in all the formulae in Table 5, we

get another three infinite classes of generalized 4-stars S with W (L2(S)) = W (S),
although in the last case for nonnegative i we get the same quadruple as for −i− 4.
Analogously as in the second construction, these classes can be combined to obtain
arbitrarily many infinite sequences of quadruples satisfying (3).

The methods used in Constructions 1, 2 and 3 above do not work for generalized
5-stars and generalized 6-stars. For generalized 5-stars, solving (2) in k5 gives k5 =
(c ±

√

c2 + ρ)/4, so it is not enough to let ρ = 0. On the other hand, if one
fixes k1, k2, k3 and tries to find {ai}i∈Z so that (k1, k2, k3, ai, ai+1) is a solution,
then the recurrence relation is 2ai+2 − 2ai+1 + 2ai + σ = 0, where σ is an odd
number. This forces ai to be fractions. For generalized 6-stars, solving (2) in k6
gives k6 = (c±

√

c2 + ρ)/8, while for fixed k1, k2, k3 and k4 the recurrence relation
is 4ai+2 − 2ai+1 + 4ai + σ = 0, where σ is odd.
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