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Abstract

Complex networks, such as small world networks, are the focus of

recent interest because of their potential as models for the interaction

networks of complex systems. Most of the well-known models of small

world networks are stochastic. The randomness makes it more difficult

to gain a visual understanding of how networks are shaped, and how

different vertices relate to each other. In this paper, we present and

study a method for constructing deterministic small worlds using the

line graph operator. This operator introduces cliques at every vertex

of the original graph, which may imply larger clustering coefficients.

On the other hand, this operator can increase the diameter at most

by one and assure the small world property.
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1 Introduction

The Neural networks, transportation systems, biological and chemical sys-
tems, social networks, the Internet and the World Wide Web, are only a few
examples of systems composed of a large number of highly interconnected dy-
namic units. A widely used approach for capturing global properties of large
networks is to model them as graphs, whose vertices represent the objects or
individuals and whose edges describe pairwise connections. Of course, this
is a restrictive representation, since the interaction between two objects or
individuals depends also on time, space and many other factors. From a
practical point of view, such a representation provides a simple but still very
informative model of the real network.

In this representation, real networks are characterized by correlations in
the vertex degrees, by having relatively short paths between any two vertices,
and by the presence of a large number of short cycles or specific motifs. This
feature of having a relatively short path between any two vertices within a
network, despite of its large size, is known as the small world property. It
was first investigated, in the social context, by Milgram [12] in the 1960s in
a series of experiments to estimate the actual number of steps in a chain of
acquaintances.

The small world property has been observed in a variety of other real net-
works, including biological and technological ones, and is an obvious math-
ematical property in some network models, e.g., in random graphs. In con-
trast to random graphs, the small world property in real networks is often
associated with the presence of clustering, indicated by high values of the
clustering coefficient. For this reason, Watts and Strogatz [18] proposed to
define small world networks as networks having both a short diameter, like
random graphs, and a high clustering coefficient, like regular lattices. Thus,
their model of a large network is situated between an ordered finite lattice
and a random graph, presenting the small world property and high cluster-
ing coefficient. Soon after the appearance of [18], Barthélémy and Amaral [4]
studied the origins of the small world behaviour, while Barrat and Weigt [3]
addressed analytically as well as numerically the structure properties of the
Watts–Strogatz model. Since then the study of complex networks, including
small world networks, has experienced considerable progress as an interdis-
ciplinary subject. Several excellent general reviews and books are available
and we refer to them for the reader who would like to obtain more informa-
tion on the topic [1, 2, 5, 13, 15, 16, 17]. In 2000, Kleinberg [10] extended
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the Watts–Strogatz model by explaining another important aspect of small
world networks. He showed that the short paths not only exist but can be
found using a simple greedy strategy with limited local information only.
However, in our work we concentrate strictly on the basic properties of the
Watts-Strogatz model and we leave these further improvements for future
research.

Most well-known models of small world networks are stochastic. But
deterministic models have the strong advantage that it is often possible to
compute analytically their properties, for example, degree distribution, clus-
tering coefficient, average path length, diameter, etc. Deterministic networks
can be created by various techniques. We can modify regular graphs [6], or
we can use standard graph operations such as the addition or the product of
graphs [7], one can use recursive or iterative techniques based on the existence
of cliques in a given network [8, 19, 20], and other mathematical methods.

In this paper, we focus on the small world network topology generated in a
deterministic way, using the line graph operator. This deterministic approach
enables one to obtain the relevant network parameters: degree distribution,
clustering coefficient and diameter. We show that a network obtained in this
way has strong clustering and a small diameter.

2 Definitions and notations

In this section we briefly introduce the important terms underlying our work
and three axioms that must be satisfied by every Watts–Strogatz model of a
small world network.

We consider only simple undirected connected graphs. Let G be a graph
with vertex set V (G) and edge set E(G). We set n = |V (G)| and m = |E(G)|.
A line graph L(G) has vertices corresponding to edges of G. That is, for every
edge e ∈ E(G) we have a vertex ve ∈ V (L(G)). Two vertices of L(G) are
adjacent if and only if the corresponding edges in G share a common vertex.
Denote n′ = |V (L(G))| and m′ = |E(L(G))|. In the sequel we often use the
fact that n′ = m. We remark that the number of edges of L(G) depends on
the degree distribution in G.

The diameter of G is the greatest distance between two vertices in G:

diam(G) = max
u,v∈V (G)

d(u, v). (1)
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Recall that the distance d(u, v) is the number of edges in a shortest path
starting at u and terminating at v. Regarding the diameter of line graphs,
we will use the following statement given in [14]:

Theorem 1. Let G be a connected graph with at least one edge. Then,

diam(G) − 1 ≤ diam(L(G)) ≤ diam(G) + 1.

A clustering coefficient is a measure of the degree to which vertices in a
graph tend to cluster together and its value is always between 0 and 1. We
can define a local and a global clustering coefficient. The (local) clustering
coefficient of a vertex v of G, CCG(v), is the ratio of the total number of
existing connections between the neighbours NG(v) of v and the number of
all possible connections between them. (Since G has no loops, v /∈ NG(v).)
We remark that if v has degree 0 or 1, then we set CCG(v) = 0. A (global)
clustering coefficient can then be obtained by averaging the local clustering
coefficients of all vertices of G, that is,

CC(G) =
1

|V (G)|
∑

v∈V (G)

CCG(v). (2)

There are two more definitions we need to include here. An edge is an
(a, b)-edge if it has one endvertex of degree a and the other of degree b. An
edge is good if it either has at least one endvertex of degree at least 3, or it
lies in a triangle. Otherwise, it is a bad edge.

Now we state axioms for a graph G to be a Watts–Strogatz model for a
small world network, see [9, 16]:

(A1) The graph G is sparse. We require |E(G)| ∈ O(n lgn), that is,
|E(G)|/|V (G)| ∈ O(lg |V (G)|).

(A2) The diameter of G is small. We require diam(G) ∈ O(lg |V (G)|).

(A3) The clustering coefficient CC(G) is large. We require CC(G) ≥ c for a
positive constant c.

We remark that some authors prefer slightly different axioms. For exam-
ple, they consider average distance instead of the diameter, or use Θ notation
instead of our O notation, etc. In what follows, we study sufficient conditions
under which these axioms are satisfied by line graphs.
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3 Line graph operator and axioms of small

worlds

Here we study which of the properties (A1), (A2) and (A3) are preserved by
the line graph operator. First, we consider the second axiom.

Proposition 2. If G satisfies (A2), then also L(G) satisfies (A2).

Proof. Since the graph G is connected, |V (L(G))| = m ≥ n − 1. By The-
orem 1, diam(L(G)) ≤ diam(G) + 1. Hence, diam(L(G)) ∈ O(lgn) + 1 ⊆
O(lgm).

In order to prove an analogue of Proposition 2 for (A3), we first state two
lemmas.

Lemma 3. Let e be an edge in G. Then,

(a) If e is a bad edge, then CCL(G)(ve) = 0;

(b) If e is a good edge, then CCL(G)(ve) ≥ 1
3
.

Proof. Denote by u and v the endvertices of e. Further, denote by a (resp.
b) the number of edges adjacent with e at u (resp. v). Without loss of
generality we may assume that a ≤ b. Observe that degG(u) = a + 1 and
degG(v) = b + 1, so that e is an (a+1, b+1) edge, and degL(G)(ve) = a + b.
The vertex ve is in two disjoint cliques in L(G). The sizes of these cliques
are a + 1 and b + 1, so there are at least

(

a
2

)

+
(

b
2

)

edges among the vertices
in NL(G)(ve). In fact, if e is not in a triangle in G, then there are exactly
(

a
2

)

+
(

b
2

)

edges among the vertices in NL(G)(ve). Thus,

CCL(G)(ve) ≥
(

a
2

)

+
(

b
2

)

(

a+b
2

) .

If a ≤ 1, b ≤ 1 and e is not in a triangle, then the edge e is bad and
(

a
2

)

+
(

b
2

)

= 0. Hence, for every bad edge the clustering coefficient is zero.
On the other hand, if the endvertices of e have degrees at most 2 and e

is in a triangle in G, then these endvertices have degrees exactly 2 and the
two neighbours of ve are adjacent in L(G). That is, CCL(G)(ve) = 1.

Now suppose that e has at least one endvertex of degree at least three,
that is, b ≥ 2. Since a = 0 and b = 2 implies CCL(G)(ve) = 1, we may assume
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that a + b ≥ 3. Denote δ = ⌊a+b
2
⌋. If a < b then

(a

2)+(b

2)
(a+b

2 )
≥ (a+1

2 )+(b−1

2 )
(a+b

2 )
. This

means that

CCL(G)(ve) ≥















(δ

2)+(δ

2)
(2δ

2 )
, a + b is even.

(δ

2)+(δ+1

2 )
(2δ+1

2 )
, a + b is odd.

If a+ b is even then a+ b ≥ 4 and δ ≥ 2, so that CCL(G)(ve) ≥ 1
3
. On the

other hand, if a+b is odd then a+b ≥ 3 and δ ≥ 1, and again CCL(G)(ve) ≥ 1
3
.

Therefore, the clustering coefficient of good edges is always greater than or
equal to 1

3
.

Bad edges in G can cause small CC(L(G)), and by Lemma 3, only vertices
of degree at most 2 in G which do not lie in triangles can be the endpoints
of bad edges. The next lemma uses this fact to bound the number of bad
edges.

Lemma 4. Let S be the set of vertices of degree at most 2 in G which do
not lie in a triangle. Further, let S ′ be the set of vertices of L(G) which
correspond to bad edges in G. Then, |S ′| ≤ |S|.
Proof. For a subset T of vertices of a graph, say H , by 〈T 〉 we denote the
subgraph of H induced by vertices of T . Observe that the subgraph 〈S〉 of
G, as well as the subgraph 〈S ′〉 of L(G), is a collection of paths and cycles.
We will consider connected components of 〈S ′〉, and we show that each such
component on t vertices in L(G) corresponds to t edges in G that cover at
least t vertices of S in G, where these sets of covered vertices are mutually
disjoint. This gives |S ′| ≤ |S|.

Let P ′ be a component of 〈S ′〉. Since all the vertices of P ′ correspond to
(1, 2)-edges and (2, 2)-edges, we have P ′ = L(P ), where V (P ) ⊆ S. Since P
is either a cycle or a path, it has at most |V (P )| edges. Hence, the vertices
of P ′ correspond to edges in G which cover at least |V (P ′)| vertices of S.

Theorem 5. Let G be a connected graph satisfying (A3). Then, L(G) satis-
fies (A3) as well.

Proof. Let S be the set of vertices of degree at most 2 in G which do not lie
in a triangle. Obviously, CCG(v) = 0 if v ∈ S. Thus,

CC(G) =
1

n

∑

v∈V (G)

CCG(v) ≤ 1

n
|V (G) \ S| = 1 − 1

n
|S|.
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Further, let S ′ be the set of vertices of L(G) which correspond to bad edges
in G. By Lemma 3, we have

CC(L(G)) =
1

m

∑

e∈E(G)

CCL(G)(ve) ≥
1

3m
|E(G) \ S ′| =

1

3

(

1 − 1

m
|S ′|

)

.

Since G is connected, we have m ≥ n − 1. But since trees do not satisfy
(A3), we infer m ≥ n. Further, |S ′| ≤ |S| by Lemma 4. Thus,

1

n
|S| ≥ 1

m
|S ′| which gives 1 − 1

n
|S| ≤ 1 − 1

m
|S ′|.

Consequently, CC(G) ≤ 3 CC(L(G)).

In what follows, we prove that no subset of the assumptions (A1), (A2),
(A3) for G guarantees that a particular property (Aj) holds in L(G), except
that (A2) in G is a sufficient condition for (A2) in L(G) (Proposition 2) and
(A3) in G is a sufficient condition for (A3) in L(G) (Theorem 5).

Proposition 6. There exist graphs satisfying (A1) and (A2), but their line
graphs do not satisfy (A3).

Proof. Let G be a graph obtained from the star K1,2r/r by subdividing each
edge r − 1 times. Then |V (G)| = n = 2r + 1 and diam(G) = 2r ∈ O(lgn).
Hence, (A2) holds for G. The graph obviously satisfies (A1).

Notice that the graph L(G) consists of a clique of size 2r/r and 2r/r
paths of length r − 1 attached to vertices of the clique. Each vertex of the
clique has clustering coefficient at most 1 and any vertex not in the clique
has clustering coefficient 0. Since |V (L(G))| = 2r, we obtain

CC(L(G)) =
1

2r

∑

ve∈V (L(G))

CCL(G)(ve) ≤
1

2r
· 2r

r
=

1

r
∈ O

(

1

lg n

)

.

The next proposition gives an example which shows that the assumptions
(A1) and (A3) for G do not assure (A2) in L(G).

Proposition 7. There exist graphs satisfying (A1) and (A3), but their line
graphs do not satisfy (A2).
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Proof. Let G = P 2
n , that is, the graph G is the second power of the n-path,

where n is a large integer. Then, |V (G)| = n, |E(G)| = m = 2n − 3 and
diam(G) = ⌊n

2
⌋. Hence, the graph G has diameter which grows linearly with

the number of vertices n. However, the clustering coefficient of G is at least
1
2
, as every vertex has clustering coefficient at least 1

2
. Therefore, (A3) holds

for G. Obviously, G satisfies also (A1).
The graph L(G) consists of n′ = |V (L(G))| = 2n − 3 vertices and

diam(L(G)) = diam(G). Hence, diam(L(G)) = ⌊n
2
⌋ = ⌊n′+3

4
⌋, so that (A2)

does not hold for L(G).

As regards (A1), even if a graph satisfies all (A1), (A2) and (A3), its line
graph does not necessarily satisfy (A1):

Proposition 8. There exist small worlds, whose line graphs are not small
worlds. In particular, these line graphs do not satisfy (A1).

Proof. Let G be obtained from K1,k by attaching a 3-cycle at every leaf.
Thus, G has n = 3k + 1 vertices, m = 4k edges and diameter 4. Obviously,
G satisfies (A1) and (A2).

Regarding the degree distribution in G observe that 2k vertices are of
degree 2, k others are of degree 3 and one (the central vertex) is of degree k.
Moreover, each vertex of degree 2 has clustering coefficient 1, each vertex of
degree 3 has clustering coefficient 1

3
, and the vertex of degree k has clustering

coefficient 0. Thus,

CC(G) =
2k · 1 + k · 1

3
+ 1 · 0

3k + 1
=

7k

9k + 3
=

7

9
− o(1).

As CC(G) is large enough, we conclude that G is a small world. However,
its line graph L(G) does not satisfy (A1) since it has m = 4k vertices and
(

k
2

)

+ 5k edges, which implies that |E(L(G))| > 1
32
|V (L(G))|2.

4 Line graphs as small worlds

Now we pose assumptions on G under which L(G) is a small world.

Theorem 9. Let G be a graph in which all vertices are of degree O(
√

lgm)
except a constant number of them, and these exceptional vertices are of degree
at most O(

√
m lgm). Suppose that diam(G) ∈ O(lgm) and that G has at

most cm bad edges, where c < 1 is some prescribed constant. Then, L(G) is

a small world with clustering coefficient at least (1−c)
3

.
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Proof. Since edges in L(G) correspond to pairs of adjacent edges in G, we
easily infer that

|E(L(G))| =
∑

u∈V (G)

(

deg(u)

2

)

≤ c1 n lgm + c2m lgm ∈ O(m lgm),

where c1 and c2 are constants. Hence, L(G) satisfies (A1). By Theorem 1,

diam(L(G)) ≤ diam(G) + 1 ∈ O(lgm),

so L(G) satisfies (A2) as well. Finally, by Lemma 3, CC(L(G)) ≥ 1
3
(1 − c).

Since c < 1, L(G) also satisfies (A3).

If G does not have vertices of “big” degree, we can prove the following
statement.

Theorem 10. Let G be a graph whose all vertices are of degree O(lgm).
Suppose that diam(G) ∈ O(lgm) and G has at most cm bad edges, where c <
1 is some prescribed constant. Then, L(G) is a small world with clustering

coefficient at least (1−c)
3

.

Proof. If e is an edge whose endvertices have degrees a and b in G, then the
vertex ve corresponding to e has degree a+ b−2 in L(G). Hence, all vertices
of L(G) have degrees in O(lgm). Consequently, |E(L(G))| ∈ O(m lgm), so
that L(G) satisfies (A1). The properties (A2) and (A3) follow analogously
as in the proof of Theorem 9.

For regular graphs we obtain the following consequence of Theorem 10:

Corollary 11. If a regular graph satisfies (A1) and (A2), then its line graph
is a small world.

Proof. Denote by k the degree of vertices in G. Observe that there are 1
2
kn

edges in G. Since G satisfies (A1), we have 1
2
kn ∈ O(n lgn) and consequently

k ∈ O(lgn). The graph G is connected and so m ≥ n−1. Hence, k ∈ O(lgm).
Since G satisfies (A2), we have diam(G) ∈ O(lgn), and hence also

diam(G) ∈ O(lgm). Finally, G is not a cycle since it satisfies (A2). Hence,
G has no vertices of degree at most 2, so that all edges of G are good. This
means that G satisfies all the assumptions of Theorem 10, and so L(G) is a
small world.
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Although Theorems 9 and 10 cover many cases (see the next section),
they yield just sufficient conditions on G, under which L(G) is a small world.
Therefore, we pose here the following general problem.

Problem 1. Characterize graphs, whose line graphs are small worlds.

5 Line graphs of some common networks

Theorem 10 (or 9) can be applied to graphs which have “many” vertices and
“small” diameter and degrees. Such graphs can be found among models of
parallel computers. In this section we briefly mention some of these struc-
tures, as well as some other classes of graphs, satisfying the assumptions of
Theorem 10.

Complete t-ary trees Tt,d. These are rooted trees where every non-leaf
vertex has precisely t sons and every leaf has distance d from the root.

Notice that Tt,d has n = 1+t+t2+ . . .+td = (td+1−1)/(t−1) vertices and
the number of edges is one less, i.e. m = n− 1. The diameter is 2d. Hence,
diam(Tt,d) ∈ O(lgm) and also the maximum degree t + 1 ∈ O(lgm). Since
t ≥ 2, the tree Tt,d has no bad edges. Consequently, Theorem 10 implies that
L(Tt,d) is a small world.

Toroidal graphs Cd
a . These graphs are defined to be Cartesian products

of fixed length cycles, i.e., Cd
a = Ca2Ca2 · · ·2Ca.

The numbers of vertices and edges of Cd
a are equal to n = ad and m =

ad·2d
2

= ad · d. Hence, m/n = ad·d
ad

∈ O(lgn). The diameter of Cd
a satisfies

diam(Cd
a) = d⌊a

2
⌋ and hence, diam(Cd

a) ∈ O(lgn), since we consider a to be
a constant. Therefore, Cd

a satisfies (A1) and (A2). Since Cd
a is a regular

graph of degree 2d, by Corollary 11 we obtain that L(Cd
a) is a small world.

Grid powers P d
a . These graphs are Cartesian products of fixed length

paths, P d
a = Pa2Pa2 · · ·2Pa, where a is a fixed number. They generalize

hypercubes as Qd = P d
a for a = 2. The graph P d

a has n = ad vertices,
diameter d(a − 1), its maximum degree is 2d and its minimum degree is d.
By Theorem 10, we conclude that L(P d

a ) is a small world.
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Butterfly Bd. Vertices are pairs (w, i) where 0 ≤ i ≤ d and w is a d-bit
binary number. Two vertices (w, i) and (w′, i′) are adjacent if and only if
i′ = i + 1 and either w = w′ or w and w′ differ in precisely the i′th bit, see
[11, pg 440].

The graph Bd has n = 2d(d+1) vertices whose degree is either 2 or 4. If
d ≥ 2 then it has no bad edges. Its diameter is in O(lgn), see [11, pg 442].
By Theorem 10, L(Bd) is a small world.

We remark that the line graph of the wrapped butterfly is a small world
as well.

Two-dimensional mesh of trees Md. This graph is constructed from a
2d×2d grid of isolated vertices by adding 2 ·2d complete binary trees (one for
each row and one for each column) each with 2d leaves which are identified
with all the vertices of one row (one column) of the grid, see [11, pg 280].

The number of vertices of Md is n = 3 · 22d − 2d+1. It is easy to see that
diam(Md) = 4d ∈ O(lg(n)), the maximum degree is 3 and Md has no bad
edges. By Theorem 10, L(Md) is a small world.

We remark that higher dimensional meshes of trees satisfy the assump-
tions of Theorem 10 as well.

Cube-connected-cycles CCCd. This graph is constructed from the d-
dimensional hypercube, where d ≥ 3, by replacing every vertex of the hy-
percube with a cycle of length d. Observe that CCCd is 3-regular graph
with n = d2d vertices. The diameter of CCCd is in Θ(lgn), see [11, pg 451].
Hence, by Corollary 11, L(CCCd) is a small world.

Shuffle-exchange graph Sd. The vertices of this graph are binary num-
bers of length d. Two vertices, say u and v, are adjacent if and only if either
u and v differ precisely in the last digit or u is a left or right cyclic shift of v.

Obviously, Sd has n = 2d vertices. The maximum degree of Sd is 3 and
although it has vertices of degree 1, it does not have bad edges. The diameter
of Sd is in Θ(lg n), see [11, pg 474]. Thus, by Theorem 10, L(Sd) is a small
world.

Analogously, the underlying graph of de Bruijn digraph satisfies all the
assumptions of Theorem 10.
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6 Conclusion and future work

Line graph operator is an excellent tool for creating small world networks as
it splits the neighborhood of every vertex into two cliques and it increases the
diameter at most by 1. In this paper we study under which conditions the
line graph operator creates a (Watts-Strogatz) model of small world network,
that is, a network with properties (A1), (A2) and (A3). In the future we
expect to study other properties of complex networks, such as the scale-
freeness, correlation coefficient and for specific networks, like those discussed
in section 5, even the routing.
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