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Abstract

We investigate a voltage construction for face 2-colourable triangu-

lations by Kn,n,n from the viewpoint of the underlying Latin squares.

We prove that if the vertices are relabelled so that one of the Latin

squares is exactly the Cayley table Cn of the group Zn, then the other

square can be obtained from Cn by a cyclic permutation of row, col-

umn or entry identifiers, and we identify these cyclic permutations.

As an application, we improve the previously known lower bound for

the number of nonisomorphic triangulations by Kn,n,n obtained from

the voltage construction in the case when n is a prime number.
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1 Introduction

Research into biembeddings of Latin squares, or equivalently, face 2-colourable
triangulations by complete tripartite graphs Kn,n,n, is motivated by their
connection with the Heawood map colouring theorem. To prove this result,
Ringel and Youngs constructed one minimum genus embedding of each com-
plete graph Kn [15, 16]. For n lying in certain residue classes modulo 12,
such embeddings have all their faces triangular. By varying the rotations at
the vertices of current graphs similar to those used by Ringel and Youngs,
a lower bound 2an for the number of nonisomorphic minimum genus embed-
dings of Kn was established for all sufficiently large n, where a is a positive
constant [10, 11, 12, 13, 14]. For some residue classes this lower bound was
improved to 2bn2

, where b is a positive constant [1, 6]. Recently, a lower
bound of the form ncn2

, where c is a positive constant, was established for a
very sparse class of n in both the orientable and nonorientable cases [3, 7].
A trivial upper bound is nn2/3 [7]. The lower bounds 2bn2

and ncn2

were ob-
tained using constructions first given in [1, 6] and later generalized in [3, 7].
These use face 2-colourable triangulations by complete tripartite graphs to
generate many nonisomorphic face 2-colourable triangulations by Kn. The
key step in [3, 7] was the construction of ndn2

face 2-colourable triangulations
by Kn,n,n, where d is a positive constant.

When a triangular embedding of Kn,n,n is face 2-colourable, the triangular
faces in each colour class determine a Latin square of order n by taking these
faces as the (row, column, entry) triples, where the row labels, the column
labels and the entries form the three sets of the partition. Hence, a face
2-colourable embedding of Kn,n,n can be regarded as a biembedding of two
Latin squares; if these squares are L and L′, we write L ⊲⊳ L′ to denote the
fact that the L biembeds with L′, and we also use this notation to denote
the biembedding itself, taking the faces of L to be white and those of L′ to
be black.

In [5] we generalized a well-known voltage construction for a face 2-
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colourable triangulation by Kn,n,n and we proved that the generalized con-
struction generates exponentially many nonisomorphic face 2-colourable tri-
angulations by Kn,n,n when n is prime. Since both the squares in each
of these embeddings are isotopic to the cyclic Latin square Cn defined by
Cn(i, j) = i + j, with arithmetic in Zn, the vertices can be relabelled so that
the embedding is exactly Cn ⊲⊳ Dn for some Dn. In this paper we identify
all the possibilities for Dn and we illustrate our results with two examples.
We also improve, by a factor of 3, the lower bound for the number of these
embeddings when n is a prime number.

In the next section we recall the voltage construction of [5], we state our
results and give the examples. The necessary proofs are postponed to the
last section. For background material and for notation and terminology not
defined here we refer the reader to [2, 9].

2 Results

We start with the description of the voltage construction used in [5]. Let M
be an embedding in a sphere of a graph with two vertices u and v having
n parallel edges so that each face of the embedding is a 2-gon. Further, let
a0, a1, . . . , an−1 be voltages in the clockwise rotation on the arcs emanating
from u, see Figure 1, such that {a0, a1, . . . , an−1} = {0, 1, . . . , n−1}. Then
the voltages around v in the clockwise rotation are −an−1,−an−2, . . . ,−a0.
Suppose that for each i, 0 ≤ i ≤ n−1, the differences ai − ai−1 are coprime
with n (the indices are always taken modulo n).

aa0 a1 a2 an−2 an−1

u

v

Figure 1: The embedding M .
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Now consider the lift of M with voltages in Zn. In the lift there are vertex
sets U = {u0, u1, . . . , un−1} and V = {v0, v1, . . . , vn−1}, and as all ai − ai−1

are coprime with n, each face (2-gon) of M is lifted to a 2n-gon. Hence, the
lift gives an embedding of the complete bipartite graph Kn,n in an orientable
surface in which every face is bounded by a Hamiltonian cycle. We denote this
embedding by B(u, v; α), where α is the cyclic permutation (a0, a1, . . . , an−1).
Now place into each of the n faces of B(u, v; α) a vertex and join it to all the
vertices lying on the boundary of that face, to create a triangular embedding
of the complete tripartite graph Kn,n,n in an orientable surface. More exactly,
let W = {w0, w1, . . . , wn−1} be a set of n vertices disjoint from U and V . The
vertex wi is placed into that face of B(u, v; α) which is obtained by lifting the
2-gon with voltages ai and −ai−1, 0 ≤ i ≤ n−1. In what follows, we denote
this embedding by T (u, v; α), and a permutation α = (a0, a1, . . . , an−1) of
{0, 1, . . . , n−1} such that (ai − ai−1, n) = 1, 0 ≤ i ≤ n − 1, will be called
admissible.

In [4] it was shown that a triangulation by Kn,n,n is face 2-colourable if
and only if the underlying surface is orientable. Hence, T (u, v; α) is an ori-
entable face 2-colourable triangulation by Kn,n,n. Colour white the triangles
of T (u, v; α) with anti-clockwise rotation of vertices (ui, vj , wk), and colour
black the triangles with clockwise rotation of vertices (ui, vj, wk). The two
colour classes form a pair of Latin squares, one for each colour, by taking
each triangle uivjwk of the specified colour and placing the entry k into the
i-th row and j-th column of an n × n array. Of course there are potentially
five more pairs of Latin squares that can be formed in this way by permuting
the roles of row labels, column labels and entries; for example we might place
entry j into row k, column i. In what follows, we denote by r0, r1, . . . , rn−1

(respectively, c0, c1, . . . , cn−1 and e0, e1, . . . , en−1), the row labels (column la-
bels and entries) of a Latin square of order n. If the entry k occurs in row i
and column j of a Latin square L, then we write L(i, j) = k or equivalently
(ri, cj, ek) ∈ L.

There are four operations on permutations which were used in [5] to
solve the isomorphism problem for B(u, v; α) and which we now recall. All
the arithmetic is taken in Zn. So suppose that α = (a0, a1, . . . , an−1) is a
permutation of {0, 1, . . . , n − 1}.

For e ∈ Zn put β = (a0+e, a1+e, . . . , an−1+e). Then, although α and β
are identical permutations, they are differently labelled. We say that β is a
rotation of α. We do not need to use rotations to state our results, although
rotations can relabel the triangles of T (u, v; α) as noted below.
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For f ∈ Zn denote by f + α the permutation defined by

f + α = (f + a0, f + a1, . . . , f + an−1).

For g ∈ Zn and coprime with n, denote by gα the permutation defined by

gα = (ga0, ga1, . . . , gan−1).

Finally, denote by α−1 the permutation

α−1 = (an−1, an−2, . . . , a0),

and define α1 = α. If β is a permutation obtained from α by applying
the above operations arbitrarily many times, then we say that α and β are
equivalent permutations.

The following result comes from [5]; see Lemma 4 of that paper and the
discussions immediately preceding and following it. Here X = {x0, x1, . . . ,
xn−1} and Y = {y0, y1, . . . , yn−1}.

Theorem 2.1 (a) If the admissible permutations α and β are equivalent then
T (u, v; α) and T (x, y; β) are isomorphic triangulations with an isomorphism
mapping {U, V } to {X, Y }.
(b) If α and β are admissible permutations and T (u, v; α) and T (x, y; β) are
isomorphic triangulations with an isomorphism mapping {U, V } to {X, Y }
then α and β are equivalent permutations.

¿From the proof of [5, Lemma 4], it is easily seen that if α and β are equivalent
admissible permutations then there exist f, g ∈ Zn with (g, n) = 1, and
h ∈ {−1, 1}, such that β = f + gαh.

Now we define three Latin squares of order n, namely F β
n , Gβ

n and Hβ
n ,

depending on a cyclic permutation β = (b0, b1, . . . , bn−1) of {0, 1, . . . , n − 1}.
Again, all the arithmetic is taken in Zn.

For every k and i, 0 ≤ k, i ≤ n − 1, denote by j that element of Zn for
which i = bj−1 − k. The square F β

n is defined by

F β
n (k, i) = F β

n (k, bj−1 − k) = bj .

For every k and i, 0 ≤ k, i ≤ n− 1, denote by ℓ that element of Zn for which
i = bℓ. The squares Gβ

n and Hβ
n are defined by

Gβ
n(k, i) = Gβ

n(k, bℓ) = bℓ−1 + k,

Hβ
n (i, k) = Hβ

n (bℓ, k) = bℓ−1 + k.
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Observe that if γ is obtained from β by rotation, then F β
n = F γ

n , Gβ
n = Gγ

n

and Hβ
n = Hγ

n , so that the squares are well-defined. Moreover, F β
n is obtained

from the cyclic Latin square Cn by the cyclic permutation of the entries
bt → bt+1, 0 ≤ t ≤ n − 1. Likewise, Gβ

n and Hβ
n are obtained from Cn by

the cyclic permutation bt → bt+1, 0 ≤ t ≤ n − 1, of the columns and rows,
respectively. Hence, each of F β

n , Gβ
n and Hβ

n is isotopic to Cn.
In the following results we replace the identifiers u, v and w in T (u, v; α)

by r, c and e in any one of the six possible orders and we describe the
Latin squares involved in T (r, c; α), T (c, r; α), T (r, e; α), T (e, r; α), T (c, e; α)
and T (e, c; α). Although all six of these embeddings are isomorphic, they
may yield different (but isotopic) Latin squares. Theorem 2.2 describes rela-
bellings in which either the white or the black square is taken to be Cn.

Theorem 2.2 Consider the embedding T (u, v; α) where α is an admissible
permutation. Then there are relabellings of rows, columns and entries such
that

(a) both T (r, c; α) and T (c, r; α) are represented by Cn ⊲⊳ F α
n and also by

F−α−1

n ⊲⊳ Cn,

(b) both T (r, e; α) and T (e, r; α) are represented by Cn ⊲⊳ Gα
n and also by

G−α−1

n ⊲⊳ Cn,

(c) both T (c, e; α) and T (e, c; α) are represented by Cn ⊲⊳ Hα
n and also by

H−α−1

n ⊲⊳ Cn.

The proof of Theorem 2.2 is given in Section 3. We illustrate the result
with two examples.

Example 2.1 Denote by C−

n and C+
n squares isotopic to Cn, defined by

C−

n (i, j) = i + j − 1 and C+
n (i, j) = i + j + 1, the arithmetic being in Zn

and 0 ≤ i, j ≤ n − 1. In [5] we proved that Cn ⊲⊳ C−

n is, up to isomorphism,
the unique regular triangular embedding of Kn,n,n in an orientable surface.
Observe that for α = (0, 1, . . . , n−1) we have F α

n = C+
n and Gα

n = Hα
n = C−

n .
Thus Cn ⊲⊳ C−

n and Cn ⊲⊳ C+
n are isomorphic embeddings since they are both

obtained by relabellings of the same T (u, v; α).

Example 2.2 Consider α = (a0, a1, . . . , an−1) = (0, 1, n − 1, n − 2, . . . , 2).
Then the differences are given by

(a0 − an−1, a1 − a0, . . . , an−1 − an−2) = (n − 2, 1, n − 2,−1,−1, . . . ,−1).

7



Hence, if n is odd then α is an admissible permutation, so that T (u, v; α)
is an orientable face 2-colourable triangulation by Kn,n,n. By Theorem 2.2
we have Cn ⊲⊳ F α

n , Cn ⊲⊳ Gα
n and Cn ⊲⊳ Hα

n . Figure 2 shows these squares
in the case n = 5. Observe that F α

n (Gα
n and Hα

n ) is obtained from Cn by
applying the cyclic permutation α : at → at+1, 0 ≤ t ≤ n − 1, to entry
(column and row) labels. The embedding Cn ⊲⊳ Gα

n (n odd) is employed
in [8] to demonstrate a new generalized product construction using shared
transversals.

C5 =

0 1 2 3 4
0 0 1 2 3 4
1 1 2 3 4 0
2 2 3 4 0 1
3 3 4 0 1 2
4 4 0 1 2 3

F α
5 =

0 1 2 3 4
0 1 4 0 2 3
1 4 0 2 3 1
2 0 2 3 1 4
3 2 3 1 4 0
4 3 1 4 0 2

Gα
5 =

0 1 2 3 4
0 2 0 3 4 1
1 3 1 4 0 2
2 4 2 0 1 3
3 0 3 1 2 4
4 1 4 2 3 0

Hα
5 =

0 1 2 3 4
0 2 3 4 0 1
1 0 1 2 3 4
2 3 4 0 1 2
3 4 0 1 2 3
4 1 2 3 4 0

Figure 2: The Latin squares C5, F α
5 , Gα

5 and Hα
5 .

Theorem 2.2 gives a description of some relabellings of T (u, v; α) in which
either the first or second square is Cn. However, Cn has many automor-
phisms, and so in both cases there are many possibilities for the other square.
Theorem 2.3 describes all these possibilities.

Theorem 2.3 Consider the embedding T (u, v; α) where α is an admissible
permutation. Whenever the vertices in one of the colour classes are relabelled
so that the corresponding triangles form Cn, then the triangles in the other
colour class form F β

n , Gβ
n or Hβ

n , where β = f + gαh for some f, g ∈ Zn,
(g, n) = 1, and h ∈ {−1, 1}.

The proof of Theorem 2.3 is given in Section 3. This result establishes
that whenever we have an embedding Cn ⊲⊳ Dn (or Dn ⊲⊳ Cn) which is an
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isomorphic copy of T (u, v; α) for some cyclic permutation α, then Dn is F β
n ,

Gβ
n or Hβ

n for some cyclic permutation β equivalent to α. Furthermore, it
will be shown in the proof of Theorem 2.3 that for T (r, c; α) and T (c, r; α)
we have Dn = F β

n , for T (r, e; α) and T (e, r; α) we have Dn = Gβ
n, and for

T (c, e; α) and T (e, c; α) we have Dn = Hβ
n .

It is also possible to improve Theorem 2.1 to deal with isomorphisms
that do not map {U, V } to {X, Y }. The improvement is summarized in the
following theorem where α and β are admissible permutations. The proof is
given in Section 3.

Theorem 2.4 (a) Suppose that T (u, v; α) and T (x, y; β) are isomorphic tri-
angulations with an isomorphism that does not map {U, V } to {X, Y }. Then
these triangulations are isomorphic copies of the unique regular triangulation
T (r, c; δ) given by δ = (0, 1, . . . , n − 1).
(b) The triangulations T (u, v; α) and T (x, y; β) are isomorphic if and only if
α and β are equivalent permutations.

Our last result is an application of Theorem 2.4. Again, the proof is given
in Section 3.

Theorem 2.5 If n is a prime number then there are at least (n − 2)!/2n
nonisomorphic embeddings T (u, v; α).

We remark that Theorem 2.5 improves [5, Theorem 1] by a factor of 3.
In the following table we compare ne, the number of equivalence classes
of admissible permutations on n vertices, and hence by Theorem 2.4 the
number of nonisomorphic triangulations T (u, v; α), with the bound given in
Theorem 2.5. The values of ne were found using a computer (see also [5,
Table 2]) and they indicate that the bound in Theorem 2.5 is really tight.

n 5 7 11 13
ne 2 13 16, 687 1, 537, 183

⌈

(n−2)!
2n

⌉

1 9 16, 495 1, 535, 262
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3 Proofs

The triangles of T (u, v; α) with anti-clockwise rotation of vertices (ui, vj , wk)
are coloured white, and the triangles with clockwise rotation of vertices
(ui, vj , wk) are coloured black. From Figure 1 it will be seen that the white tri-
angles are (ui, vi+a0

, w0), (ui, vi+a1
, w1), . . . , (ui, vi+an−1

, wn−1) and the black
triangles are (ui−an−1

, vi, w0), (ui−a0
, vi, w1), . . . , (ui−an−2

, vi, wn−1), where
0 ≤ i ≤ n−1. However, if β is a (non-trivial) rotation of α then the tri-
angles of T (u, v; α) and T (u, v; β) are labelled differently even though α and
β are identical permutations.

Proof of Theorem 2.2.
In T (u, v; α) the white triangles are (ui, vi+aj

, wj), while the black ones are
(ui−aj−1

, vi, wj), 0 ≤ i, j ≤ n − 1. We start by relabelling the indices of w
using the permutation j → aj . Denote the resulting set of white triangles by
A∗ and the resulting set of black triangles by B∗. Then the relabelling gives

A∗ = {(ui, vi+aj
, waj

)} B∗ = {(ui−aj−1
, vi, waj

)}, (1)

where 0 ≤ i, j ≤ n − 1. Observe now that rotating α does not cause a
relabelling of A∗ or B∗. We split the proof into two parts, (i) and (ii).

(i) We begin with the cases when the white squares of T (u, v; α) are
relabelled to form Cn. First consider the case u = r and v = c. Denote by
A′ and B′ the corresponding sets of white and black triangles, respectively.
Then (1) gives

A′ = {(ri, ci+aj
, eaj

)} B′ = {(ri−aj−1
, ci, eaj

)},

where 0 ≤ i, j ≤ n − 1. Denote by A and B the sets, obtained from A′

and B′, respectively, by applying the permutation i → −i to the row labels.
Then

A = {(r−i, ci+aj
, eaj

)} B = {(r−i+aj−1
, ci, eaj

)},

where 0 ≤ i, j ≤ n−1. If we consider A as a Latin square, then A(−i, i+aj) =
−i + i + aj , 0 ≤ i, j ≤ n − 1, so that A = Cn. On the other hand, for
every k and i, 0 ≤ k, i ≤ n − 1, there is j such that aj−1 = k + i. Then
B(−i + aj−1, i) = B(k, i) = B(k, aj−1 − k) = aj, so that B = F α

n . Hence,
T (r, c; α) is represented by Cn ⊲⊳ F α

n .
Since Cn(i, j) = Cn(j, i) and F α

n (i, j) = F α
n (j, i), 0 ≤ i, j ≤ n−1, and since

T (c, r; α) is obtained from T (r, c; α) by interchanging the rows for columns
and vice versa, the embedding T (c, r; α) is also represented by Cn ⊲⊳ F α

n .
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Now consider the case u = r and v = e. Denote by A and B the corre-
sponding sets of white and black triangles, respectively. Then (1) gives

A = {(ri, caj
, ei+aj

)} B = {(ri−aj−1
, caj

, ei)},

where 0 ≤ i, j ≤ n − 1. Thus, A(i, aj) = i + aj, which means that A = Cn.
On the other hand, putting k = i − aj−1 gives B(k, aj) = i = aj−1 + k, so
that B = Gα

n. Hence, T (r, e; α) is represented by Cn ⊲⊳ Gα
n.

Next consider the case u = e and v = r. Denote by A′ and B′ the
corresponding sets of white and black triangles, respectively. Then (1) gives

A′ = {(ri+aj
, caj

, ei)} B′ = {(ri, caj
, ei−aj−1

)},

where 0 ≤ i, j ≤ n − 1. Denote by A and B sets, obtained from A′ and B′,
respectively, by applying the permutation i → −i to the row labels and to
the entry labels. Then

A = {(r−i−aj
, caj

, e−i)} B = {(r−i, caj
, e−i+aj−1

)},

where 0 ≤ i, j ≤ n−1. Thus, A(−i−aj , aj) = −i, which means that A = Cn.
On the other hand, taking k = −i gives B(k, aj) = aj−1 +k, so that B = Gα

n.
Hence, T (e, r; α) is represented by Cn ⊲⊳ Gα

n.
Since Cn is symmetric, we have Cn(i, j) = Cn(j, i), 0 ≤ i, j ≤ n − 1.

Moreover, taking ℓ = aj gives

Hα
n (ℓ, k) = Hα

n (aj , k) = aj−1 + k = Gα
n(k, aj) = Gα

n(k, ℓ).

Since T (r, e; α) is represented by Cn ⊲⊳ Gα
n, by interchanging rows for columns

and vice versa it will be seen that T (c, e; α) is represented by Cn ⊲⊳ Hα
n .

Similarly, since T (e, r; α) is represented by Cn ⊲⊳ Gα
n, T (e, c; α) is represented

by Cn ⊲⊳ Hα
n .

(ii) We now turn to the cases when the black squares of T (u, v; α) are
relabelled to form Cn. In the sets A∗ and B∗ from (1), relabel the indices of
w by the permutation aj → −aj−1 and denote by Ā and B̄ the corresponding
sets of white and black triangles. Then

Ā = {(ui, vi+aj
, w−aj−1

)} B̄ = {(ui−aj−1
, vi, w−aj−1

)},

where 0 ≤ i, j ≤ n − 1. Recall that all the indices are considered in Zn.
Substituting −ℓ + 1 for j we get

Ā = {(ui, vi+a
−ℓ+1

, w−a
−ℓ

)} B̄ = {(ui−a
−ℓ

, vi, w−a
−ℓ

)},
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and setting bk = −a−k, 0 ≤ k ≤ n − 1, we obtain

Ā = {(ui, vi−bℓ−1
, wbℓ

)} B̄ = {(ui+bℓ
, vi, wbℓ

)},

where 0 ≤ i, ℓ ≤ n−1. With β = (b0, b1, . . . , bn−1) = −α−1, the black (white)
triangles of T (u, v; α) are exactly the white (black) triangles of T (v, u; β).
Now the result follows from part (i) of the proof.

Proof of Theorem 2.3.
The first step is to determine those permutations πr : it → t, πc : jt → t and
πe : kt → k respectively of the row labels, column labels and entries for which
π = (πr, πc, πe) fixes Cn. To do this we show that the three values i0, j0, i1
(the preimages of 0, 0, 1 respectively in πr, πc, πr) determine π uniquely. Put
d = i1 − i0.

First we find j1. Since

Cn(i0, j1) = Cn(i1, j0) = Cn(i0 + d, j0) = i0 + j0 + d,

we get j1 = j0 + d. Similarly,

Cn(i0, j2) = Cn(i1, j1) = Cn(i0 + d, j0 + d) = i0 + j0 + 2d,

and so j2 = j0 + 2d. Proceeding in this way gives jt = j0 + td, 0 ≤ t ≤ n− 1.
Since {jt : 0 ≤ t ≤ n − 1} = {0, 1, . . . , n − 1} it follows that d must be
coprime with n.

Interchanging the rows for columns and arguing as above gives it = i0+td,
0 ≤ t ≤ n − 1. It then follows that for every s and t, 0 ≤ s, t ≤ n − 1,

Cn(is, jt) = Cn(i0 + sd, j0 + td) = i0 + j0 + (s + t)d = ks+t.

In particular, kℓ = i0 + j0 + ℓd, 0 ≤ ℓ ≤ n − 1.
Hence, if π fixes Cn as described, then it is determined by i0, j0 and

d = i1 − i0, where d is coprime with n. In such a case, since d is coprime
with n, there is g ∈ Zn such that g · d = 1. Then (g, n) = 1 and we have
πr(q) = g(q− i0), πc(q) = g(q− j0) and πe(q) = g(q− i0 − j0), 0 ≤ q ≤ t− 1.

We can now examine the effect of applying such a mapping π to the second
square in one of our embeddings. By Theorem 2.2 it suffices to consider F γ

n ,
Gγ

n and Hγ
n , where γ ∈ {α,−α−1}. We discuss only the case γ = α here as

the case γ = −α−1 is analogous.
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First consider F α
n . We have F α

n (k, aj−1 − k) = aj , 0 ≤ j, k ≤ n − 1.
Applying π to F α

n gives the Latin square B where

B(g(k − i0), g(aj−1 − k − j0)) = g(aj − i0 − j0).

Set x = g(k − i0) and f = g(−i0 − j0). Then

B(x, f + gaj−1 − x) = f + gaj.

Hence, B = F β
n , where β = f + gα.

Next consider Gα
n. We have Gα

n(k, aj) = aj−1 + k, 0 ≤ j, k ≤ n − 1.
Applying π to Gα

n gives the Latin square B where

B(g(k − i0), g(aj − j0)) = g(aj−1 + k − i0 − j0).

Set x = g(k − i0) and f = g(−j0). Then

B(x, f + gaj) = f + gaj−1 + x.

Hence, B = Gβ
n, where β = f + gα.

Finally consider Hα
n . We have Hα

n (aj , k) = aj−1 + k, 0 ≤ j, k ≤ n − 1.
Applying π to Hα

n gives the Latin square B where

B(g(aj − i0), g(k − j0)) = g(aj−1 + k − i0 − j0).

Set x = g(k − j0) and f = g(−i0). Then

B(f + gaj, x) = f + gaj−1 + x.

Hence, B = Hβ
n , where β = f + gα.

Proof of Theorem 2.4.
(a) Denote by Z = {z0, z1, . . . , zn−1} the third part of the embedded

graph in T (x, y; β). Suppose that there is an isomorphism taking T (u, v; α)
to T (x, y; β) which does not map {U, V } to {X, Y }. Then {U, V } must be
mapped to {X, Z} or {Y, Z}. We will assume that {U, V } is mapped to
{X, Z}, as the other case can be solved analogously by replacing G by H in
the argument below.

We will make use of our preceding results by representing T (u, v; α) and
T (x, y; β) as biembeddings of Latin squares. To do this, relabel x, y and z as
r, c and e respectively so that T (x, y; β) becomes T (r, c; β). Since the original
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isomorphism maps {U, V } to {X, Z}, (u, v) may be relabelled as either (r, e)
or (e, r), so that T (u, v; α) becomes either T (r, e; α) or T (e, r; α).

By Theorem 2.2, T (r, c; β) can be represented by Cn ⊲⊳ F β
n , and conse-

quently either T (r, e; α) or T (e, r; α) can also be represented by Cn ⊲⊳ F β
n .

However, by Theorem 2.3 and the remark which follows it, whenever the
vertices of T (r, e; α) or T (e, r; α) are relabelled so that one colour class of
triangles forms Cn, then the triangles in the other class form Gγ

n where γ
is a permutation equivalent to α. Hence, F β

n = Gγ
n for some admissible

permutation γ. Let us solve this last equation.
Put t = F β

n (0, 0) = Gγ
n(0, 0). Then

Gγ
n(k, 0) = Gγ

n(0, 0) + k = t + k.

For any k and i, choosing j so that i = bj−1 − k, we get

F β
n (k, i) = F β

n (k, bj−1 − k) = bj .

Setting i = 0, so that k = bj−1, gives

F β
n (k, 0) = F β

n (bj−1, 0) = bj = Gγ
n(k, 0) = t + k.

Hence, bj = t + bj−1 and consequently β = (0, t, 2t, . . . , (n−1)t). But then
t must be coprime with n because β is admissible. It follows that β =
t(0, 1, . . . , n−1), so that β is equivalent to δ = (0, 1, . . . , n−1). Consequently,
by applying Theorem 2.1(a), T (x, y, β) (and therefore also T (u, v; α)) is iso-
morphic to the unique regular triangulation by Kn,n,n described in Example
2.1.

(b) If the triangulations T (u, v; α) and T (x, y; β) have an isomorphism
mapping {U, V } to {X, Y } then, by Theorem 2.1, α and β are equivalent.
By part (a), if they have an isomorphism that does not map {U, V } to {X, Y },
then β is equivalent to δ and, by reversing the roles of the two triangulations,
α is also equivalent to δ. Hence in both cases, α and β are equivalent.
Already by Theorem 2.1 we have the converse: if α and β are equivalent
then T (u, v; α) and T (x, y; β) are isomorphic.

Proof of Theorem 2.5.
By Theorem 2.4, the number of nonisomorphic triangulations T (u, v; α) is
equal to the number of equivalence classes of cyclic permutations of n ele-
ments α = (a0, a1, . . . , an−1), for which {a0, a1, . . . , an−1} = {0, 1, . . . , n−1}
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and (ai − ai−1, n) = 1, 0 ≤ i ≤ n − 1. However, as n is a prime num-
ber, any cyclic permutation α of {0, 1, . . . , n−1} satisfies (ai − ai−1, n) = 1.
Since α and β are equivalent whenever there are f, g ∈ Zn, (n, g) = 1, and
h ∈ {−1, 1}, such that β = f + gαh, the equivalence class of permutations
has at most 2n(n− 1) elements. As there are (n− 1)! cyclic permutations of
order n, the number of equivalence classes of cyclic permutations is at least
(n − 1)!/2n(n − 1).
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