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Abstract

For each integer n ≥ 3, n 6= 4, for each odd integer m ≥ 3, and for any λ ∈ Zn

of (multiplicative) order m
′ where m

′ | m, we construct a biembedding of Latin
squares in which one of the squares is the Cayley table of the metacyclic group
Zm ⋉λ Zn. This extends the spectrum of Latin squares known to be biembeddable.

The best existing lower bounds for the number of triangular embeddings of a
complete graph Kz in an orientable surface are of the form z

z2(a−o(1)) for suitable
positive constants a and for restricted infinite classes of z. Using embeddings of
Z3 ⋉λ Zn, we extend this lower bound to a substantially larger class of values of z.

Keywords: triangular embedding; Latin square; complete graph; complete tripar-
tite graph; metacyclic group

1 Introduction

In proving Heawood’s conjecture in the late 1960s, Ringel and Youngs [20, 21] constructed
one triangular embedding of a complete graph Kz in a nonorientable surface for every z ≡
0, 1 (mod 3), z ≥ 9, and one triangular embedding of Kz in an orientable surface for every
z ≡ 0, 3, 4, 7 (mod 12), z ≥ 3. It was subsequently shown that there are large numbers of
such embeddings. Korzhik and Voss obtained a ·2bz nonisomorphic triangular embeddings
of complete graphs Kz (a and b being positive constants) in both the orientable and
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nonorientable cases, providing that z is sufficiently large, see [15, 16, 17, 18, 19]. Better
bounds were obtained for some classes of values of z using orientable embeddings of
complete tripartite graphs and product constructions; these produce face 2-colourable
triangular embeddings of Kz. Face 2-colourability requires z ≡ 1, 3, 7, 9 (mod 12) in the
nonorientable case, and z ≡ 3, 7 (mod 12) in the orientable case. In the papers [2, 7] (see
also [3] for a survey) the authors constructed a ·2bz2

nonisomorphic triangular embeddings
of Kz (a and b being positive constants) in both the orientable and nonorientable cases,
provided that z is sufficiently large and lies in certain congruence classes.

As mentioned in [9], an upper bound for the number of nonisomorphic triangular
embeddings of Kz is zz2/3. By modifying the product construction for complete tripartite
graphs, in [4, 6, 9] the authors obtained a lower bound of the form zaz2

(where a is
a positive constant) for certain sparse but infinite classes of values of z, these classes
comprising values zs that are exponential in s. These results can be summarized as
follows:

Theorem 1. Suppose that z = m(t − 1)α(s) + 1 where t ≡ 3, 7 (mod 12), t ≥ 7, m is
odd, m > 1, and α(s) = 3(22s+1 − 1) in the orientable case (respectively, α(s) = 2s in the
nonorientable case). Then, as s→ ∞, there are at least

z
z2

(

t−3
96m2(t−1)

−o(1)
)

nonisomorphic face 2-colourable triangular embeddings of Kz in an orientable (respec-
tively, nonorientable) surface.

Further triangular embeddings of complete graphs in both orientable and nonorientable
surfaces for other sparse classes where zs is exponential in s and the bound is zz2(a−o(1))

can be found in [10].
For nonorientable surfaces, Theorem 1 was further improved in [11] and we obtained

a linear class of z’s achieving the very same bound:

Theorem 2. Suppose that z = 2ms(t− 1) + 1 where t ≡ 3, 7 (mod 12), t ≥ 7, and that
either s ≡ 1 (mod 6) and m ≡ 3, 5 (mod 6), or s ≡ 5 (mod 6) and m ≡ 1, 3 (mod 6).
Then, as s→ ∞, there are at least

z
z2

(

t−3
96m2(t−1)

−o(1)
)

nonisomorphic face 2-colourable triangular embeddings of Kz in a nonorientable surface.

Theorem 2 was obtained by using face 2-colourable triangular embeddings of complete
tripartite graphs; these are equivalent to biembeddings of Latin squares. The key step
was to construct such a biembedding in which one of the Latin squares is the Cayley table
of a dihedral group.

At the present time we are unable to give an analogous statement for orientable sur-
faces. However, using a biembedding of Latin squares in which one of the squares is the
Cayley table of the semidirect product of cyclic groups, Z3 ⋉λ Zn, where λ has order 3
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in Zn, we are able to construct zz2(a−o(1)) triangular embeddings of Kz in an orientable
surface for an infinite sequence {zs}, such that |{zs ≤ n}| ≥ c n

log n
for a positive constant c.

This is shown in Corollary 19 below, while a more general result is given in Corollary 18.
To obtain our results, we further generalize the product construction using so-called

nonstandard bridging described in [4, 10]. In a particular instance of this construction we
give a precise description of the Latin squares involved which generalizes the result given
in [6]. By this means, biembeddings of Latin squares are constructed, in which one of the
squares is a Cayley table of Zm ⋉λ Zn, m being odd, thereby extending the spectrum of
Latin squares known to be biembeddable.

As mentioned above, a main ingredient is the construction of many differently labelled
triangular embeddings of the complete regular tripartite graph Kw,w,w. The next section
is devoted to such graphs. Complete graphs are dealt with in the subsequent section.
The colours of a face 2-colourable triangular embedding are always taken to be black and
white. The reader is referred to [13] for terminology undefined in the paper.

2 Complete tripartite graphs

Suppose that ρ is a face 2-colourable triangular embedding of Kn,n,n. As shown in [5],
such an embedding is necessarily in an orientable surface. If the tripartition of Kn,n,n is
taken to define the row, column and entry labels of an n × n array, then in each of the
two colours, every prescribed pair of row and column labels is in a triangle with a unique
entry label; every pair of row and entry labels is in a triangle with a unique column label;
and every pair of column and entry labels is in a triangle with a unique row label. Hence,
the triangles of each colour class determine a Latin square. Denote by R and R′ the two
Latin squares obtained from ρ in this way. Then we say that R biembeds with R′ and we
write R ⊲⊳ R′. With a slight abuse of notation we also write ρ = R ⊲⊳ R′. The triangles
corresponding to R will be taken to be coloured white, while those corresponding to R′

will be taken to be black.
Let R be a Latin square of order r. A transversal in R is a set of r distinct entry

labels occurring in r distinct rows and r distinct columns. In an embedding ρ = R ⊲⊳ R′,
a transversal in R (R′) corresponds to a parallel class of faces, i.e., to a set of r vertex
disjoint triangles coloured white (black).

In [7], see also [6], there is a product construction which creates a face 2-colourable
triangular embedding ofKmn,mn,mn from face 2-colourable triangular embeddings ofKn,n,n

and Km,m,m. We now recall a simplified form of this construction.
Take m copies of a face 2-colourable triangular embedding of Kn,n,n, ϕt = L ⊲⊳ L′,

0 ≤ t ≤ m − 1, m > 1. These embeddings have identical sets of white (black) triangles.
To be able to distinguish the vertices of these triangular embeddings, suppose that the
vertex set of ϕt is Rt ∪ Ct ∪ Et, where Rt = {rt

0, r
t
1, . . . , r

t
n−1}, Ct = {ct0, c

t
1, . . . , c

t
n−1} and

Et = {et
0, e

t
1, . . . , e

t
n−1} are the three sets forming the tripartition of Kn,n,n. We assume

that the vertices of Rt, Ct and Et correspond to rows, columns and entries, respectively,
of both L and L′. For each t, 0 ≤ t ≤ m− 1, (rt

i , c
t
j, e

t
k) is a white (black) triangle of ϕt if

and only if the triple (r0
i , c

0
j , e

0
k) is a white (black) triangle of ϕ0 .
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Now take n2 copies of a face 2-colourable triangular embedding of Km,m,m, ψi,j = Q ⊲⊳
Q′, 0 ≤ i, j ≤ n−1, in which the square Q′ has a transversal T , corresponding to a parallel
class of black triangles in ψi,j . We suppose that the vertex set of ψi,j is R∗∪C∗∪E∗, where
R∗ = {r∗0, r

∗

1, . . . , r
∗

m−1}, C
∗ = {c∗0, c

∗

1, . . . , c
∗

m−1} and E∗ = {e∗0, e
∗

1, . . . , e
∗

m−1} are the three
sets forming the tripartition of Km,m,m. We assume that the vertices of R∗, C∗ and E∗

correspond to rows, columns and entries, respectively, of both Q and Q′. Suppose that the
parallel class of black triangles, common to all ψi,j , is T = {(r∗αt

, c∗βt
, e∗γt

); 0 ≤ t ≤ m−1},
where α, β and γ are suitable permutations of {0, 1, . . . , m − 1}. There is no need to
distinguish the vertices of ψi1,j1 from those of ψi2,j2, because in the final embedding of
Kmn,mn,mn only the names of vertices appearing in ϕt, 0 ≤ t ≤ m− 1, will be used.

Consider one white triangle of ϕ0, say (r0
i , c

0
j , e

0
k), and cut out this triangle from ϕ0

and its copies (rt
i, c

t
j, e

t
k) from ϕt, 1 ≤ t ≤ m − 1. This results in m surfaces with m

disjoint boundaries. Similarly, cut out the m black triangles (r∗αt
, c∗βt

, e∗γt
) of the parallel

class T from the map ψi,j . Observe that the indices i and j of ψi,j are the same as the
indices of the vertices r0

i and c0j . Now glue the boundaries of (rt
i, c

t
i, e

t
i) and (r∗αt

, c∗βt
, e∗γt

),
0 ≤ t ≤ m− 1, so that r∗αt

, c∗βt
and e∗γt

are identified with rt
i , c

t
j and et

k, respectively.
Repeat the procedure with each of the white triangles of ϕ0 in turn. At each subsequent

step after the first, cutting out the white triangles leaves a single surface but still with m
disjoint boundaries. Denote the resulting embedding by ρ. The names of vertices of ρ are
inherited from ϕt, 0 ≤ t ≤ m− 1, so that the resulting embedded graph is tripartite with
tripartition ∪m−1

t=0 Rt, ∪
m−1
t=0 Ct and ∪m−1

t=0 Et. Every edge r0
i c

0
j , r

0
i e

0
k or c0je

0
k is in a unique

white triangle in ϕ0, say (r0
i , c

0
j , e

0
k). Hence, for every s and t, 0 ≤ s, t ≤ m− 1 and s 6= t,

the edge rs
i c

t
j (rs

i e
t
k, c

s
je

t
k) is added just once in the construction, namely when gluing

ψi,j . Thus the underlying graph of the triangular embedding is the complete tripartite
graph Kmn,mn,mn. Observe that the triangular embedding ρ is face 2-colourable because
the holes in ϕ’s come from white triangles while those in ψ’s come from black triangles.
Consequently, ρ triangulates an orientable surface. The following result from [6] gives an
easy description of the two Latin squares involved in ρ.

Theorem 3. Suppose that L ⊲⊳ L′, where L and L′ are Latin squares of order n, and
suppose also that Q ⊲⊳ Q′, where Q and Q′ are Latin squares of order m and the square Q′

has a transversal T . Define Q(L) and Q′(L, T , L′), Latin squares of order mn, with row,
column and entry labels {0, 1, . . . , mn−1}, so that for every u, v, i and j, 0 ≤ u, v ≤ m−1
and 0 ≤ i, j ≤ n− 1, we have

Q(L)(nu+ i, nv + j) = nQ(u, v) + L(i, j),

Q′(L, T, L′)(nu+ i, nv + j) = nQ′(u, v) + k,

where k =

{

L(i, j) if (ru, cv, ew) 6∈ T for any w,
L′(i, j) if there exists w such that (ru, cv, ew) ∈ T .

Then Q(L) ⊲⊳ Q′(L, T , L′).

The embedding Q(L) ⊲⊳ Q′(L, T , L′) is isomorphic to ρ described above. The square
Q(L) is partitioned into n×n subsquares which are just relabelled copies of L. The square
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Q′(L, T , L′) has a similar structure but the subsquares corresponding to the transversal
T are relabelled copies of L′. Note that if L′ has a transversal, then among the relabelled
copies of L′ one can find a transversal inQ′(L, T , L′). This feature facilitates re-application
of the construction.

Observe that if Q and L are Cayley tables of groups Q and L, represented respectively
on {0, 1, . . . , m − 1} and {0, 1, . . . , n − 1}, then Q(L) is the Cayley table of the direct
product Q×L represented on {0, 1, . . . , mn−1}. Using the product construction described
above, in [8] we showed that the Cayley table of each Abelian group, with the single
exception of C2

2 , appears in a biembedding of Latin squares. In this paper we present an
analogous result for certain metacyclic groups. To do this, we change the gluing process
in the product construction.

Suppose that the Latin square L contains a subsquare K of order k. For nota-
tional convenience, assume that this subsquare contains the rows 0, 1, . . . , k− 1, columns
0, 1, . . . , k−1 and entries 0, 1, . . . , k−1, so that K(a, b) = L(a, b), 0 ≤ a, b ≤ k−1. Denote
by P the set of k2 white triangles corresponding to this subsquare of L in ϕ0 = L ⊲⊳ L′.
Next choose m − 1 permutations π1, π2, . . . , πm−1 of {0, 1, . . . , k − 1}. We change the
gluing process on the triangles of P using column permutations πt, 1 ≤ t ≤ m − 1. As
previously, cut out all the white triangles of ϕt, 0 ≤ t ≤ m − 1, and cut out all the
black triangles of the transversals T in all ψi,j , 0 ≤ i, j ≤ m− 1. If (r0

i , c
0
j , e

0
k) is a white

triangle of ϕ0 which does not belong to P , then do the gluing as above. However, if
(r0

a, c
0
b , e

0
K(a,b)) is any one of the p2 triangles of P , then take ψa,b and identify (r∗α0

, c∗β0
, e∗γ0

)

with (r0
a, c

0
b , e

0
K(a,b)), as earlier, while for t with 1 ≤ t ≤ m− 1, identify (r∗αt

, c∗βt
, e∗γt

) with

(rt
a, c

t
πt(b)

, et
K(a,πt(b))

). Clearly, such an identification leads to face 2-colourable triangular
embedding in a surface. The question is, what is the underlying graph? We show that it
is Kmn,mn,mn.

Obviously, if (r0
i , c

0
j , e

0
k) is a triangle which is not in P , then in the resulting embedding,

exactly as previously, we have edges rs
i c

t
j, r

s
i e

t
k and csje

t
k for all s and t. So consider the

case when (r0
i , c

0
j , e

0
k) is a triangle of P . Clearly these edges are present when s = t since

they appear in the embedding ϕs. When s 6= t and 0 ≤ s, t ≤ m − 1, the following table
describes how these edges are formed. To simplify the notation, we define π0 to be the
identity.

rs
xc

t
y: ψx,π−1

t (y) connects (rs
x, c

s
πs(π

−1
t (y))

, es
K(x,πs(π

−1
t (y)))

) with (rt
x, c

t
y, e

t
K(x,y)).

rs
xe

t
y: Denote by z a value, 0 ≤ z ≤ k− 1, such that K(x, z) = y. Then ψx,π−1

t (z) connects

(rs
x, c

s
πs(π

−1
t (z))

, es
K(x,πs(π

−1
t (z)))

) with (rt
x, c

t
z, e

t
y).

csxe
t
y: Denote by z a value, 0 ≤ z ≤ k− 1, such that K(z, πt(π

−1
s (x))) = y. Then ψz,π−1

s (x)

connects (rs
z, c

s
x, e

s
K(z,x)) with (rt

z, c
t
πt(π

−1
s (x))

, et
y).

Hence, every edge of Kmn,mn,mn appears at least once. It is obvious that no edge
can appear more than once due to the fact that the original gluing procedure led to an
embedding of Kmn,mn,mn and the number of edges created by the new gluing process is
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the same as that for the original. Let us call this gluing on triangles of P nonstandard,
while the gluing mentioned before Theorem 3 we will call standard. We remark that a
simplified version of nonstandard gluing, when K is a cyclic square and all permutations
πt are identities, 0 ≤ t ≤ m− 2, while πm−1(x) = x+ 1 (mod k), was considered in [10].

Now we state a result which interprets the above construction in terms of Latin squares
in the case when K = L. Using relabellings, there are many pairs of Latin squares that
can be used to represent an embedding. Theorem 4 gives, what appears to us, the most
useful representation.

Theorem 4. Suppose that L ⊲⊳ L′, where L and L′ are Latin squares of order n, and
suppose also that Q ⊲⊳ Q′, where Q and Q′ are Latin squares of order m and the square
Q′ has a transversal T . Suppose that for each t, 1 ≤ t ≤ m − 1, πt is a permutation of
{0, 1, . . . , n − 1}, and let π0 be the identity permutation on the same set. Define A and
A′, Latin squares of order mn with row, column and entry labels {0, 1, . . . , mn− 1}, such
that for each u, v, i and j, 0 ≤ u, v ≤ m− 1 and 0 ≤ i, j ≤ n− 1, we have

A(nu+ i, nv + j) = nQ(u, v) + L(i, πγ−1
w

(π−1

β−1
v

(j))), where w = Q(u, v)

A′(nu+ i, nv + j) = nQ′(u, v) + k,

where k =

{

L′(i, j) if there exists w such that (ru, cv, ew) ∈ T
L(i, πγ−1

w
(π−1

β−1
v

(j))) otherwise (here w = Q′(u, v)).

Then A ⊲⊳ A′.

Proof. Throughout the proof and subsequent discussions, we take the triangles determined
by L, Q and A to be white, and those determined by L′, Q′ and A′ to be black. We use
the notation as previously described. For 0 ≤ t ≤ m− 1, ϕt is a copy of L ⊲⊳ L′ with row,
column and entry labels rt

i, c
t
i and et

i, where 0 ≤ i ≤ n − 1. For 0 ≤ i, j ≤ n − 1, ψi,j is
a copy of Q ⊲⊳ Q′ and the triangles of T are taken to be (r∗αu

, c∗βu
, e∗γu

), where α, β and
γ are permutations of {0, 1, . . . , m− 1}. Without loss of generality, we may take α to be
the identity, i.e., αu = u for each u.

For each of the n2 pairs (i, j), we remove the black triangles of T from ψi,j and we
remove the white triangles (rt

i, c
t
πt(j)

, et
L(i,πt(j))

) from ϕt. Then we glue the holes according
to the description given above. Since we retain the vertex labelling from the ϕ’s, this
leads to a relabelling of the triangles contributed by the ψi,j’s in the resulting embedding.
For each of the n2 pairs (i, j), we relabel the vertices of ψi,j so that each row label r∗αt

is renamed as rt
i, each column label c∗βt

is renamed as ctπt(j)
, and each entry label e∗γt

is

renamed as et
L(i,πt(j))

.
Now consider the triangles of ρ. All the white triangles come from ψi,j . Hence the

triple (ru
i′ , c

v
j′, e

w
k′) is a white triangle of ρ coming from ψi,j if and only if i′ = i, j′ = πv(j),

k′ = L(i, πw(j)) and γw = Q(αu, βv). On the other hand, a triple (ru
i′, c

v
j′, e

w
k′) is a black

triangle of ρ coming from ψi,j if and only if i′ = i, j′ = πv(j), k
′ = L(i, πw(j)), γw =

Q′(αu, βv) and u 6= v. The black triangles corresponding to (rt
i, c

t
πt(j)

, et
L(i,πt(j)))

) were cut

out from ψi,j and in their place we have in ρ the black triangles (rt
i, c

t
j, e

t
L′(i,j)), which come

from ϕt.

7



Take a typical white triangle of ρ having the edge {ru
i , c

v
j}. This triangle comes from

the embedding ψi,π−1
v (j), so that the third vertex is ew

k , where k = L(i, πw(π−1
v (j))) and

γw = Q(αu, βv).
The black triangles of ρ are of two types: those from the embeddings ϕu, and those

from the embeddings ψi,j. The former have an edge {ru
i , c

u
j }, and the third vertex is eu

k

where k = L′(i, j). The latter have an edge {ru
i , c

v
j} where v 6= u, and the third vertex is

ew
k , where k = L(i, πw(π−1

v (j))) and γw = Q′(αu, βv).
Now we relabel the rows, columns and entries of ρ. Define A and A′, Latin squares of

order mn, such that

A(nαu + i, nβv + j) = nγw + k ⇔ (ru
i , c

v
j , e

w
k ) is a white triangle of ρ

A′(nαu + i, nβv + j) = nγw + k ⇔ (ru
i , c

v
j , e

w
k ) is a black triangle of ρ

where u, v, w ∈ {0, 1, . . . , m − 1} and i, j, k ∈ {0, 1, . . . , n − 1}. Then A ⊲⊳ A′ is an
embedding isomorphic to ρ and

A(nu+ i, nv + j) = nQ(u, v) + L(i, πγ−1
w

(π−1

β−1
v

(j))), where w = Q(u, v)

A′(nu+ i, nv + j) = nQ′(u, v) + k,

where k =

{

L′(i, j) if there exists w such that (ru, cv, ew) ∈ T
L(i, πγ−1

w
(π−1

β−1
v

(j))) otherwise (here w = Q′(u, v)).

This completes the proof.

Denote by Cm the Cayley table of the cyclic group Zm, so that Cm consists of the triples
(ri, cj, ei+j) with subscript arithmetic in Zm. Denote by C+

m the Latin square obtained
from Cm by adding 1 (modulo m) to the subscript of every entry element of Cm. In [5]
we have the following result.

Theorem 5. For each positive integer m, Cm ⊲⊳ C+
m.

If m is odd, then T = {(ri, ci, e2i+1); 0 ≤ i ≤ m−1} is a transversal of C+
m (the addition

in the subscript being modulo m). Although the cyclic squares of even order do not have
a transversal, in [12] we have

Theorem 6. If m ≥ 3 and m 6= 4 then Cm ⊲⊳ Hm for some Latin square Hm having a
transversal.

Consider the embedding A ⊲⊳ A′ described in Theorem 4, using the notation of that
result. Suppose that L and L′ are of order n and that L ⊲⊳ L′. Suppose also that m is odd
and that Q = Cm and Q′ = C+

m, so that by Theorem 5, we have Cm ⊲⊳ C+
m. Choose the

transversal in C+
m on the main diagonal, i.e., T = (r∗u, c

∗

u, e
∗

2u+1), so that αu = βu = u and
γu = 2u+ 1 (mod m). Take π be a permutation of order m′ on the set {0, 1, . . . , n− 1},
where m′ | m, and put πu = πu for 1 ≤ u ≤ m− 1.
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We concentrate on A. Since βv = v, we have β−1
v = v. Thus, π−1

β−1
v

(j) = π−1
v (j) =

π−v(j). Furthermore, since 2 is coprime with m, there is k such that 2k ≡ 1 (mod m).
Hence, γ−1

w = k(w − 1). If w = u+ v + 1 (mod m) then

πγ−1
w

(π−1

β−1
v

(j)) = πkw−k−v(j) = πk(u+v+1)−k−v(j) = πku+(kv−v)(j).

Now relabel the columns of A to obtain B, so that A(nu + i, nv + j) = B(nu + i, nv +
πkv−v(j)). Then

B(nu+ i, nv + j) = n(u⊕m v) + L(i, πku(j)),

where ⊕m denotes addition in Zm. Since k is divisor of 1 in Zm, πk is a permutation of
order m′. Put ζ = πk. Then

B(nu+ i, nv + j) = n(u⊕m v) + L(i, ζu(j)).

Observe that ζ2 = π2k = π, so that ζ is a square root of π and π is square of ζ .
Now we recall the definition of a semidirect product of two groups G = (G; ◦) and

H = (H ; ∗), of orders m and n respectively. Suppose that there exists a homomorphism
ξ : G → Aut(H). Then the semidirect product G⋉ξH is a group defined on G×H so that
for every u, v ∈ G and i, j ∈ H we have (u, i) · (v, j) = (u ◦ v, i ∗ ξu(j)). We remark that
many authors define the semidirect product with the order of coordinates reversed and
denote it by H ⋊ξ G. However the order we use emerges naturally from the construction
described above.

We will restrict ourselves to the case when G = (Zm;⊕m) and H = (Zn;⊕n). Then
G ⋉ξ H is an example of a metacyclic group. Put ξ1 = ζ so that ξk = ζk, 0 ≤ k ≤ m− 1,
and consequently ξm′ = ζm′

= π2m′

= (πm′

)2 is the identity. Thus ζ is an automorphism
of H = (Zn;⊕n) of order m′ such that m′ | m. Since H = (Zn;⊕n), every automorphism ζ
of H is of the form ζ(x) = λx, where λ ∈ Zn is coprime with n. In this case λ determines
ζ and hence also ξ, and vice-versa. Consequently, we can write ⋉λ instead of ⋉ξ. The
automorphism ζ(x) = λx has order m′ if and only if m′ is the (multiplicative) order of λ
modulo n. If λ = 1 then ζ and ξ are identities and G ⋉λ H is the direct product G ×H.

The following result is an important consequence of Theorem 4. It extends the spec-
trum of Latin squares known to be biembeddable. For given n and m it generalizes the
results of [6] since for λ = 1 we get the direct product of Zn with Zm. The squares involved
in Theorem 7 turn out to be very useful.

Theorem 7. Suppose that n ≥ 3, n 6= 4, and that m ≥ 3 is odd. Suppose also that λ ∈ Zn

is coprime with n and has order m′ where m′ | m. Form a semidirect product Zm ⋉λ Zn,
so that for every u, v ∈ Zm and i, j ∈ Zn we have (u, i) ·(v, j) = (u⊕m v, i⊕nλ

uj). Denote
by B the Cayley table of Zm ⋉λ Zn. Then B ⊲⊳ B′ for some Latin square B′ having a
transversal.

Proof. Set ζ(x) = λx for x ∈ Zn, π = ζ2, and put πu = πu, 1 ≤ u ≤ m− 1. Further, let
L = Cn and L′ = Hn, where Cn ⊲⊳ Hn is the embedding guaranteed by Theorem 6. Finally,
set Q = Cm, Q′ = C+

m and let T be the transversal in C+
m given by {(r∗u, c

∗

u, e
∗

2u+1); 0 ≤

9



u ≤ m − 1}. Then construct the embedding A ⊲⊳ A′ described in Theorem 4. Since Hn

has a transversal, among the copies of Hn in A′ one can find a transversal in A′.
Now relabel the columns ofA andA′ by the same permutation, so thatA is transformed

to the square B described immediately before the statement of Theorem 7. Then

B(nu+ i, nv + j) = n(u⊕m v) + Cn(i, λuj) = n(u⊕m v) + i⊕n λ
uj.

Thus B is the Cayley table of Zm ⋉λ Zn, when the pair (u, i), 0 ≤ u ≤ m − 1 and
0 ≤ i ≤ n− 1, is represented as an integer nu+ i from the interval [0, mn− 1].

One reason for constructing biembeddings of Latin squares in which one of the squares
is the Cayley table of Zm ⋉λ Zn, is that this Cayley table often has a cubic number of
Cm-subsquares. We establish conditions for this in the next theorem. This feature can
then be exploited to provide estimates of the numbers of various biembeddings. If λ has
order m′ > 1 where m′ | m, we have λ 6= 1 and λm = 1, and consequently

∑m−1
ℓ=0 λℓ = 0 in

Zn. It can happen that
∑m−1

ℓ=0 λℓ = 0 in Zn even when λ = 1; this will be the case when
m is a multiple of n and in such a case Zm ⋉λ Zn is just the direct product Zm ×Zn. Our
next two theorems are predicated on this sum being zero, although our main interest is
in the case when λ 6= 1. If

∑m−1
ℓ=0 λℓ = 0 in Zn then it is certainly the case that λm = 1

and so λ has order m′ for some m′ | m.

Theorem 8. Suppose that m,n ≥ 2 and that B is a Cayley table of the metacyclic group
Zm ⋉λ Zn, defined by λ ∈ Zn where

∑m−1
ℓ=0 λℓ = 0 in Zn. Then there are n3 different m×m

subsquares S of B, each isotopic to Cm. Moreover, for every u, v, 0 ≤ u, v ≤ m− 1, each
such subsquare S has exactly one triple of the form (rnu+i, cnv+j , enw+k) for some i, j
where nw + k = B(nu+ i, nv + j), 0 ≤ w ≤ m− 1 and 0 ≤ i, j, k ≤ n− 1.

Proof. First choose a0, b0 and b1 such that 0 ≤ a0, b0, b1 ≤ n − 1. There are n3 possible
choices for (a0, b0, b1). Define

au = a0 + (b1 − λb0)
∑u−1

ℓ=0 λ
ℓ for u ≥ 1;

bv = b0 + (b1 − b0)
∑v−1

ℓ=0 λ
ℓ for v ≥ 2;

dw = a0 + (b1 − λb0)
∑w−1

ℓ=0 λ
ℓ + λwb0 for w ≥ 1;

and d0 = a0 + b0, all arithmetic being in Zn. Observe that

dm = a0 + λmb0 = a0 + b0 = d0, and for w ≥ 1

dm+w = a0 + (b1 − λb0)
∑w−1

ℓ=0 λ
ℓ + (b1 − λb0)λ

w
∑m+w−1

ℓ=w λℓ−w + λwλmb0 = dw.

Hence, for every w we have dm+w = dw.
We will now show that B(nu+ au, nv+ bv) = n(u⊕m v) + du⊕mv for 0 ≤ u, v ≤ m− 1.

This will establish that the m × m subarray of B defined by the rows rnu+au
and the

columns cnv+bv
is indeed a Latin square isotopic to Cm and with exactly one triple of the

10



form (rnu+i, cnv+j , enw+k) for each (u, v). To prove this we must show that au ⊕n λ
ubv =

du⊕mv. We assume first that u ≥ 1 and v ≥ 2. Then

au ⊕n λ
ubv = a0 + (b1 − λb0)

u−1
∑

ℓ=0

λℓ + λu

(

b0 + (b1 − b0)
v−1
∑

ℓ=0

λℓ

)

= a0 + (b1 − λb0)
u+v−1
∑

ℓ=0

λℓ + λu+vb0

= du+v = du⊕mv,

with arithmetic in Zn. The remaining cases when u = 0 or v = 0, 1 are left to the
reader.

We say that a set S of Cm-subsquares of a Latin square B is an independent set of Cm-
subsquares if no two elements of S share a common triple. Note that this independence
relates to triples and not to row, column or entry labels. Now we could use Theorem 2.5 of
[10] to obtain a large number of independent sets of Cm-subsquares in B. However, since
the squares described in the proof of Theorem 8 have a special pattern, we can obtain a
better bound.

Theorem 9. Suppose that m,n ≥ 2 and that B is a Cayley table of the metacyclic group
Zm ⋉λ Zn, defined by λ ∈ Zn where

∑m−1
ℓ=0 λℓ = 0 in Zn. Then the number of distinct

independent sets of Cm-subsquares in B is at least

(

m2n+ 1
)

(

n2

m2 −1
)

.

Proof. We consider only Latin Cm-subsquares of B described in the proof of Theorem 8.
We first show that for given u and v (0 ≤ u, v ≤ m − 1) and given au and bv (0 ≤
au, bv ≤ n − 1), there are precisely n of these Cm-subsquares that contain the triple
(rnu+au

, cnv+bv
, enw+dw

), where nw + dw = B(nu + au, nv + bv). This is obviously true if
u = v = 0 since there are n choices for b1. It will follow in the general case if it can be
shown that the values of au, bv and bv+1 determine a0, b0 and b1. (Here, if v = m− 1 then
v + 1 is taken to be 0.)

From the expression for bv we have bv+1−bv = (b1−b0)λ
v (for all v including v = m−1).

So b1 − b0 = (bv+1 − bv)λ
−v. Combining this with the expression for bv gives

b0 = bv − (bv+1 − bv)λ
−v

v−1
∑

ℓ=0

λℓ.

Then b1 = b0 + (bv+1 − bv)λ
−v gives

b1 = bv − (bv+1 − bv)λ
−v

( v−1
∑

ℓ=0

λℓ − 1

)

.

11



Finally, the expression for au gives

a0 = au − (b1 − λb0)
u−1
∑

ℓ=0

λℓ,

where b0 and b1 are already determined above. Thus au, bv and bv+1 determine a0, b0 and
b1.

Now suppose that P is the set of triples of a Cm-subsquare of B. Since P has m2

triples, a triple of P occurs in at most m2n of the Cm-subsquares of B having the form
described in the proof of Theorem 8. Denote by Iq the number of independent sets of
these Cm-subsquares that contain exactly q of these Cm-subsquares. By Theorem 8, we
have

Iq ≥ n3
(

n3 −m2n
)(

n3 − 2m2n
)

. . .
(

n3 − (q − 1)m2n
)

/

q!.

Put Q =
⌊

n2

m2

⌋

. Then from the above we deduce

Iq ≥
(

m2n
)q

Q
(

Q− 1
)(

Q− 2
)

. . .
(

Q− (q − 1)
)/

q! =
(

m2n
)q

(

Q

q

)

.

Of course, if q > Q then we have just the trivial bound Iq ≥ 0. Now summing Iq for all
q ≤ Q gives the bound on the number of independent sets of Cm-subsquares as

Q
∑

q=0

Iq ≥

Q
∑

q=0

(

m2n
)q

(

Q

q

)

=
(

m2n + 1
)Q

≥
(

m2n+ 1
)

(

n2

m2 −1
)

.

Theorems 8 and 9 require that λ satisfies
∑m−1

ℓ=0 λℓ = 0 in Zn. We will concentrate on
the case m = 3. This equation then becomes λ2 + λ + 1 = 0. Since we aim to construct
orientable embeddings of Kz, we assume that n is odd. In such a case the equation has a
solution if and only if −3 is a square in Zn. The following three theorems can be used to
determine when this happens.

Theorem 10 ([14, Theorem 96]). −3 is quadratic residue (i.e., a non-zero square modulo
p) of every prime p of the form p = 6k+ 1, but it is not quadratic residue of any prime p
of the form p = 6k + 5.

Theorem 11 ([1, Theorem 5.30]). Let p be a prime number and α ≥ 2. Suppose that f(x)
is a polynomial with integer coefficients, such that f(x) ≡ 0 (mod pα−1) has a solution r.
If f ′(r) 6≡ 0 (mod p) then there is a solution of f(x) ≡ 0 (mod pα).

Theorem 12 ([1, Theorem 5.28]). Let n = n1n2 . . . nt, where n1, n2, . . . , nt are relatively
prime, and suppose that f(x) is a polynomial with integer coefficients. Then the congru-
ence f(x) ≡ 0 (mod n) has a solution if and only if each of the congruences f(x) ≡ 0
(mod ni), 1 ≤ i ≤ t, has a solution.

12



With the aid of these three theorems, we can determine when −3 is a square in Zn.

Theorem 13. Suppose that n is odd and that n = pα1
1 p

α2
2 . . . pαt

t is its factorization into
prime powers where p1 < p2 < · · · < pt. Then −3 is a square in Zn if and only if each pi

is of the form 6ki + 1, 1 ≤ i ≤ t, with the possible exception of p1, in which case p1 = 3
and α1 = 1.

Proof. Suppose first that x2 ≡ −3 (mod n), i.e., x2 + 3 ≡ 0 (mod n). Then there is an
integer z, such that x2 + 3 = zn. Consequently, for each i, 1 ≤ i ≤ t, there is an integer
zi such that x2 + 3 = zipi, and hence x2 ≡ −3 (mod pi). Hence, −3 is a square in Zpi

, so
that by Theorem 10, either pi = 6ki + 1 for some ki, or pi = 3.

Now suppose that 9 | n. If x = 3k + 1 or x = 3k − 1, then for some integer z we have
x2 ≡ 3z + 1 6≡ −3 (mod n). On the other hand if x = 3k then x2 = 9k2 6≡ −3 (mod n).
Hence, −3 is not a square if 9 | n, so that if p1 = 3 then α1 = 1. Thus, the condition in
the statement is necessary. Next we prove its sufficiency.

So suppose that n satisfies the conditions of the theorem. If p1 = 3 then 0 is a solution
of congruence x2 + 3 ≡ 0 (mod p1). In all other cases we have pi = 6ki + 1 and by
Theorem 10 there is a solution of x2 + 3 ≡ 0 (mod pi).

Now suppose that αi > 1. In such a case pi 6= 3, so that pi = 6ki + 1. Let xi be
a solution of f(x) = x2 + 3 ≡ 0 (mod pi) as guaranteed above. Since pi > 3, we have
xi 6= 0. Hence, f ′(xi) = 2xi 6≡ 0 (mod pi) because 2 and n are coprime. By Theorem 11,
there is a solution of x2 + 3 ≡ 0 (mod p2

i ). Using the same argument repeatedly we find
that there is a solution of x2 + 3 ≡ 0 (mod pαi

i ).
Thus, for every i, 1 ≤ i ≤ t, there is a solution of x2 + 3 ≡ 0 (mod pαi

i ). Since
pα1

1 , p
α2
2 , . . . , p

αt

t are relatively prime, Theorem 12 guarantees a solution of x2 + 3 ≡ 0
(mod n).

Now the question is: what is the proportion of numbers n satisfying Theorem 13?
Clearly there is not a linear class of these numbers. Let N denote the number of integers
n having the form described in Theorem 13 which are at least 7 and at most n∗. The
following table gives an indication of the value of N for low values of n∗.

n∗ N
1 000 150
3 000 424
10 000 1 331
30 000 3 769

By the strong version of Dirichlet’s theorem on arithmetic progressions, see for example
[1, page 154], the number of primes of the form 6k + 1, which are not greater than n∗, is
asymptotically equal to n∗/(2 logn∗). Hence, for any constant c > 2 and n∗ sufficiently
large, there are at least n∗/(c logn∗) numbers n not exceeding n∗ and satisfying the
assumptions of Theorem 13. This provides an asymptotic lower bound for N .
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Now we return to the embedding B ⊲⊳ B′ described in Theorem 7, where B is the
Cayley table of the metacyclic group Zm ⋉λ Zn. Here n ≥ 3, n 6= 4, m ≥ 3 is odd, λ ∈ Zn

is coprime with n and has order m′ where m′ | m. We will assume that
∑m−1

ℓ=0 λℓ = 0 in
Zn; this ensures that B has many independent sets of Cm-subsquares. Recall also that B′

has a transversal.
We will apply a product construction using the embeddings B ⊲⊳ B′ and Cℓ ⊲⊳ C

+
ℓ , the

latter taken from Theorem 5. Here we only consider the special case ℓ = m. This will give
a face 2-colourable triangular embedding of the complete tripartite graph Kw,w,w where
w = m2n. Let T be a transversal in C+

m and let I be an independent set of Cm-subsquares
in B.

On white triangles which do not belong to a square in I we glue copies of Cm ⊲⊳ C+
m

through T in a standard way, while on white triangles which do belong to a square in I
we glue copies of Cm ⊲⊳ C+

m through T in a nonstandard way as explained before Theorem
4. For every square S in I, for the nonstandard gluing we set π1, π2, . . . , πm−2 to be
the identity and πm−1 to be a column permutation defined by πm−1(ji) = ji+1, where
cj0, cj1, . . . , cjm−1 are the columns of S in the natural order and the addition in the index
is modulo m.

Theorem 14 below establishes that different independent sets, I and I ′, of
Cm-subsquares in B give rise to differently labelled face 2-colourable triangular embed-
dings of the resulting complete tripartite graph. There are two ways in which I and I ′

can differ. Firstly, there may be a triple (ri, cj, ek) of some Cm-subsquare lying in I which
is not a triple of any Cm-subsquare lying in I ′, or vice-versa. If this is not the case then
every triple covered by I is also covered by I ′ and vice-versa, but these triples are par-
titioned into different Cm-subsquares. In this latter case there will be Cm-subsquares S
and S ′, lying in I and I ′ respectively, with S 6= S ′, but both containing a common triple
(ri, cj, ek).

Theorem 14. Suppose that n ≥ 3, n 6= 4, that m ≥ 3 is odd, and that B is a Cayley
table of the metacyclic group Zm ⋉λ Zn, defined by λ ∈ Zn where

∑m−1
ℓ=0 λℓ = 0 in Zn. Let

S be one of the Cm-subsquares described in Theorem 8 with triple (ri, cj, ek). Take ρ1 to
be any map obtained from the construction by applying nonstandard gluing to S. Take ρ2

to be any map obtained from the construction either by

(a) applying standard gluing to (ri, cj, ek), or

(b) taking another Cm-subsquare S ′ described in Theorem 8 and containing the triple
(ri, cj, ek), and applying nonstandard gluing on S ′.

Then ρ1 and ρ2 are differently labelled face 2-colourable triangular embeddings of
Km2n,m2n,m2n. Moreover, both ρ1 and ρ2 have an identically labelled parallel class of black
triangles.

Proof. We use the labelling of vertices of ϕt and ψi,j described above, taking T =
{(r∗αt

, c∗βt
, e∗γt

) : 0 ≤ t ≤ m − 1}. Using the notation of the proofs of Theorems 8 and 9,
we may take i = nu+ au, j = nv + bv and k = n(u⊕m v) + du+v.
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Consider the map ψi,j where 0 ≤ i, j ≤ p − 1. In ψi,j there is a black triangle
(r∗α(m−1)

, c∗β(m−1)
, e∗γ(m−1)

), and this triangle is adjacent to a white triangle

(r∗α(m−1)
, c∗β(m−1)

, e∗γq
) for some q, 0 ≤ q < m− 1. Note that q 6= m− 1.

If (ri, cj, ek) is glued in a standard way, then in the gluing of ψi,j the borders of
(rm−1

nu+au
, cm−1

nv+bv
, em−1

n(u⊕mv)+du+v)) and (r∗α(m−1)
, c∗β(m−1)

, e∗γ(m−1)
) are identified, as are also the

borders of (rq
nu+au

, cqnv+bv
, eq

n(u⊕mv)+du+v)) and (r∗αq
, c∗βq

, e∗γq
). Hence if ρ2 is obtained by

standard gluing, then this process yields a white triangle (rm−1
nu+au

, cm−1
nv+bv

, eq
n(u⊕mv)+du+v

) in

the resulting map (in which vertices inherit the names of vertices of ϕt, 0 ≤ t ≤ m− 1).
Now consider the nonstandard method of gluing on S. Assume that in S the col-

umn next to cnv+bv
is cn(v⊕m1)+bv+1

. In the gluing of ψi,j the borders of (rq
i , c

q
j , e

q
k)

and (r∗αq
, c∗βq

, e∗γq
) are identified as above. However, we now identify the borders of

(rm−1
nu+au

, cm−1
n(v⊕m1)+bv+1

, en(u⊕mv⊕1)+du+v+1) and (r∗α(m−1)
, c∗β(m−1)

, e∗γ(m−1)
). This process yields

a white triangle (rm−1
nu+au

, cm−1
n(v⊕m1)+bv+1

, eq
n(u⊕mv)+du+v

) in the resulting map ρ1. Hence in

case (a), the maps ρ1 and ρ2 have a differently labelled white triangle containing the edge
rm−1
i eq

k.
Next suppose that case (b) applies, that is to say that ρ2 is obtained by applying

nonstandard gluing to S ′ ( 6= S) when both S and S ′ contain the triangle (r0
i , c

0
j , e

0
k). By

the proof of Theorem 9, in S ′ the column next to cnv+bv
cannot be cn(v⊕m1)+bv+1 because

this would give S ′ = S. So assume that this column is cn(v⊕m1)+b′v+1
where b′v+1 6= bv+1.

As in the previous case, there is a white triangle (rm−1
nu+au

, cm−1
n(v⊕m1)+b′v+1

, eq
n(u⊕mv)+du+v

) in

the resulting map ρ2. As a consequence in case (b), the maps ρ1 and ρ2 have differently
labelled white triangles containing the edge rm−1

i eq
k.

In both cases (a) and (b), note that ρ1 and ρ2 are not equivalent under exchange of
colours, since any black triangle containing the edge rm−1

i cm−1
ℓ , 0 ≤ ℓ ≤ n − 1, has the

form (rm−1
i , cm−1

ℓ , em−1
h ) for some h.

As described above, both ρ1 and ρ2 are face 2-colourable triangular embeddings of
Km2n,m2n,m2n. Since B′ has a transversal, each ϕt, 0 ≤ t ≤ m − 1, has a parallel class of
black triangles. Since the black triangles of ϕt are neither cut out nor relabelled, there is
a parallel class of identically labelled black triangles in both ρ1 and ρ2.

Using Theorems 9 and 14, the following result is easily obtained.

Theorem 15. Suppose that n ≥ 3, n 6= 4, m ≥ 3 is odd, and there exists λ such that
∑m−1

ℓ=0 λℓ = 0 in Zn. Put w = m2n. Then there are at least

(

w + 1
)

(

w2

m6 −1
)

differently labelled face 2-colourable triangular embeddings of Kw,w,w, all of which have a
common parallel class of black triangles. Furthermore, there are at least

(

w + 1
)

(

w2

m6 −1
)

/

6
(

w!
)3

nonisomorphic face 2-colourable triangular embeddings of Kw,w,w.
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Proof. The first part is a direct consequence of the previous discussion. The second part
follows from the fact that the maximum possible size of an isomorphism class of any
embedding of Kw,w,w is 6(w!)3.

As one can see, the best bound in Theorem 15 is obtained when m = 3. In such a
case, Theorem 13 gives the following.

Corollary 16. Suppose that n is an odd number not divisible by 9 and not divisible by a
prime of the form 6k + 5. Put w = 9n. Then, as n→ ∞, there are at least

ww2
(

1
729

−o(1)
)

nonisomorphic face 2-colourable triangular embeddings of Kw,w,w, all of which have an
identically labelled parallel class of black triangles.

As mentioned above, for every c > 2 and w∗ sufficiently large, there are at least
w∗/(9c logw∗) numbers w not exceeding w∗ and satisfying the assumptions of Corollary 16.

3 Complete graphs

We now turn our attention to face 2-colourable triangular embeddings of complete graphs.
The following result can be deduced from [7, Construction 5] and [4, Theorem 3.1], see
also [10, Theorem 3.1].

Theorem 17. Suppose that t ≡ 1, 3, 7, 9 (mod 12) and w ≡ 0, 1, 3, 4 (mod 6), where
at least one of w and t−1

2
is odd. Moreover, suppose that there is a face 2-colourable

triangular embedding of Kt, a face 2-colourable triangular embedding of K2w+1, and that
there are r differently labelled face 2-colourable triangular embeddings of Kw,w,w, all having
an identically labelled parallel class of black triangles. Then there are at least

r
(t−1)(t−3)

6

differently labelled face 2-colourable triangular embeddings of Kw(t−1)+1. If either the em-
bedding of Kt or that of K2w+1 is nonorientable, then the embeddings of Kw(t−1)+1 are
nonorientable. If the embeddings of both Kt and K2w+1 are orientable, then the embed-
dings of Kw(t−1)+1 are orientable.

It was shown by Ringel [20] that for t ≡ 3 (mod 12), and by Youngs [21] that for t ≡ 7
(mod 12), there exists a face 2-colourable triangular embedding of Kt in an orientable
surface. The statement 2w+1 ≡ 3, 7 (mod 12) is equivalent to w ≡ 1, 3 (mod 6). Hence,
we have the following corollary of Theorems 15 and 17.

16



Corollary 18. Suppose that z = m2n(t − 1) + 1, where t ≡ 3, 7 (mod 12), m2n ≡ 1, 3
(mod 6), m,n ≥ 3, and there exists λ such that

∑m−1
ℓ=0 λℓ = 0 in Zn. Then there are at

least

(m2n+ 1)

(

n2

m2 −1
)(

(t−1)(t−3)
6

)

z!

nonisomorphic face 2-colourable triangular embeddings of Kz in an orientable surface.

For large n the expression in Corollary 18 is z
z2

(

t−3
6m6(t−1)

−o(1)
)

. The best bound is
obtained when m = 3. By Corollary 16 we obtain the following result.

Corollary 19. Suppose that z = 9n(t− 1) + 1 where t ≡ 3, 7 (mod 12), n is odd, and n
is not divisible by 9 and not divisible by any prime of the form 6k + 5. Then, as n→ ∞,
there are at least

zz2
(

t−3
4374(t−1)

−o(1)
)

nonisomorphic face 2-colourable triangular embeddings of Kz in an orientable surface.

The bound in Corollary 19 is better when t is large, but in such a case the class of
corresponding values z is more sparse. Fix t such that t ≡ 3 or 7 (mod 12). Then for
every c > 2 and z∗ sufficiently large, there are at least z∗/(9c(t− 1) log z∗) numbers z not
exceeding z∗ and satisfying the assumptions of Corollary 19.

Using the approach explained in this paper one can also construct a large number of
nonorientable embeddings of complete graphs Kz. However, this method does not yield
a linear class of values z satisfying the bound, and the bound itself is not as good as the
current best bound for the nonorientable case presented in [11], which does apply to a
linear class of values of z.
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