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Abstract

Randić index, R, also known as the connectivity or branching index, is an important
topological index in chemistry. In order to attack some conjectures concerning Randić
index, Dvořák et al. [5] introduced a modification of this index, denoted by R′. In this
paper we present some of the basic properties of R′. We determine graphs with minimal
and maximal values of R′, as well as graphs with minimal and maximal values of R′

among the trees and unicyclic graphs. We also show that if G is a triangle-free graph on
n vertices with minimum degree δ, then R′(G) ≥ δ. Moreover, equality holds only for the
complete bipartite graph Kδ,n−δ.

1 Introduction

Molecular descriptors are invariants that are calculated from the topological information
contained in the structure of the graph of a molecule [14]. Topological information of a
molecule comprises the position and sometimes the type of the atoms defined in relation to
the bonds that connect them. Such topological descriptors correlate with certain compound
properties and activities. In studying branching properties of alkanes, several numbering
schemes for the edges of the associated hydrogen-suppressed graph were proposed based on
the degrees of the endvertices of an edge. In 1975 Randić [13] introduced the topological

connectivity index R(G) of a graph G defined as the sum of weights (degG(u)degG(v))
− 1

2

over all edges uv of G, i.e.,

R(G) =
∑

uv∈E(G)

1
√

degG(u)degG(v)
,

where degG(v) is the degree of the vertex v in G. Originally this index was named “branching
index” or “molecular connectivity index” and it has been proved to be suitable for measuring
the extent of branching of the carbon-atom skeleton of saturated hydrocarbons. Nowadays
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this parameter is known as Randić index. Later, in 1998 Bollobás and Erdös [1] generalized
this index by replacing −1

2 with any real number α to obtain the general Randić index Rα.
Thus,

Rα(G) =
∑

uv∈E(G)

(degG(u)degG(v))
α.

Randić has shown that there exists a correlation of the Randić index with several physico-
chemical properties of alkanes such as boiling points, chromatographic retention times, en-
thalpies of formation, parameters in the Antoine equation for vapor pressure, Kovats con-
stants, calculated surface areas and others [9, 13]. According to Caprossi and Hansen [2],
Randić index together with its generalizations is certainly the molecular-graph-based structure-
descriptor, that found many applications in organic chemistry, medicinal chemistry, and phar-
macology, and therefore is an interesting topic in graph theory. For more results concerning
Randić index see [11].

Recently Dvořák et al. [5] have shown that for every connected graph G we have R(G) ≥
rad(G)/2, where rad(G) is the radius of G. The main idea in their work was introducing a
new index R′(G) defined as:

R′(G) =
∑

uv∈E(G)

1

max{degG(u), degG(v)}
.

Although no application of the index R′ in chemistry is known so far, still this index
turns out to be very useful, especially from mathematical point of view, as it is much easier
to follow during graph modifications than Randić index. Using this index, Cygan et al. [4]
proved that for any connected graph G of maximum degree at most four which is not a
path with even number of vertices, R(G) ≥ rad(G). As a consequence, they resolve the
conjecture R(G) ≥ rad(G) − 1 given by Fajtlowicz [6] in 1988 for the case when G is a
chemical graph. They actually showed that for all connected chemical graphs G the inequality
R′(G) ≥ rad(G)− 1

2 holds.

Motivated by some already known results concerning Randić index, in this paper we
present some basic properties of the newly introduced index R′. We show that for every non
empty graph G on n vertices, R′(G) is at least 1 but no more than n

2 , and these bounds are
attained by stars and regular graphs, respectively. Then we determine graphs with minimal
and maximal value of R′ among all trees and unicyclic graphs. It turns out that the same
trees and unicyclic graphs attain minimal (maximal) values of R′ and Randić index. In the
last part we prove that if G is a triangle-free graph on n vertices with minimum degree δ,
then R′(G) ≥ δ. Equality holds only for complete bipartite graph Kδ,n−δ.

Now, we define terms and symbols used in the sequel. Let G = (V (G), E(G)) be a simple
graph on n = |V (G)| vertices and m = |E(G)| edges. The degree of a vertex v in G is denoted
by degG(v), and the set of neighbors of v in G is denoted by NG(v). By δ(G) and ∆(G) we
denote the minimum and maximum degree in G, respectively. The set of vertices of degree
a in G is denoted by Va(G). A diameter of connected graph G, diam(G), is the maximum
distance between vertices of G, i.e., diam(G) = max{dG(u, v) |u, v ∈ V (G)}.

Let v be a vertex of a graph G. The graph G− v is obtained from G when v and all edges
incident to v are removed. By G÷ we denote a graph obtained from G by adding one edge
joining two vertices of degree 1. If G is a tree then G÷ is a unicyclic graph. Observe that G÷

is not determined uniquely. A subdivision of an edge is a replacement of this edge by a path
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of positive length. Of course, all internal vertices of this new path have degrees 2. A graph
H is a subdivision of G if H arises by subdivision of some edges of G.

A star with n vertices, Sn, is called an n–star. Similarly, a path Pn and a cycle Cn are
called an n–path and an n–cycle, respectively, if they have n vertices.

2 Basic properties of R′

Here we present some basic properties of R′. From the definition of R′, it is obvious that if
G is not connected, then R′(G) is the sum of the R′ indices of its components. Therefore, in
what follows we consider only connected graphs. We start with upper and lower bounds for
R′ in general graphs.

Proposition 2.1. For every graph G on n vertices, n > 1, the inequality R′(G) ≤ R(G) ≤ n
2

holds. Moreover, R′(G) = n
2 if and only if G is a regular graph.

Proof. From the definitions of R and R′ it is obvious that R(G) ≥ R′(G). It is known that
among all connected graphs of order n, regular graphs attain the maximum Randić index [3],
and in that case R′(G) = R(G) = n

2 . Now, let R
′(G) = n

2 . Then R(G) = n
2 as well, and using

the result in [3] we obtain the statement.

To obtain a lower bound for R′ we need the following lemma. Recall that all our graphs
are connected.

Lemma 2.2. Let G be a graph on at least 2 vertices. Further, let S be an independent set

of vertices of G, such that for every u, v ∈ V (G), where v ∈ S and uv ∈ E(G), we have

degG(u) ≤ degG(v). Denote by ES̄ those edges xy of G for which neither x nor y is in S.
Then

R′(G) = |S|+
∑

uv∈E
S̄

1

max{degG(u), degG(v)}
.

Proof. Let v ∈ S. Denote by Ev the edges of G incident to v. Then {Ev : v ∈ S} ∪ {ES̄} is a
partition of E(G). Since every edge of Ev contributes to R′(G) precisely 1/degG(v) and since
there are degG(v) edges in Ev, we have

R′(G) =
∑

v∈S

(

∑

uv∈Ev

1

max{degG(u),degG(v)}

)

+
∑

uv∈E
S̄

1

max{degG(u),degG(v)}

= |S|+
∑

uv∈E
S̄

1

max{degG(u),degG(v)}
.

Since the contribution of every edge to R′ is positive, Lemma 2.2 can be used to bound
R′.

Corollary 2.3. Let G be a graph on at least 2 vertices. Further, let S be an independent

set of vertices of G, such that for every u, v ∈ V (G), where v ∈ S and uv ∈ E(G), we have

degG(u) ≤ degG(v). Then R′(G) ≥ |S|.

We can now obtain the following consequence of Corollary 2.3 and Lemma 2.2.
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Corollary 2.4. For every graph G on at least 2 vertices we have R′(G) ≥ 1. Moreover,

R′(G) = 1 if and only if G is the star Sn.

Proof. Let S consist of a single vertex v of maximum degree in G. Then degG(u) ≤ degG(v) for
every uv ∈ E(G), so that R′(G) ≥ 1 for every graph G on at least 2 vertices by Corollary 2.3.

On the other hand, if R′(G) = 1 then all the edges of G must be incident to v, by
Lemma 2.2. Hence, if R′(G) = 1 then G is a star.

By using different methods, Bollobás and Erdös [1], and Pavlović and Gutman [12] in-
dependently showed that among all graphs of order n without isolated vertices, the star Sn

attains the minimum Randić index as well, and R(Sn) =
√
n− 1.

Lemma 2.2 gives an interesting bound for trees with small diameter.

Corollary 2.5. Let T be a tree of order n, n ≥ 3, and let v be an internal vertex of T with

minimal degree. Denote k = degT (v) and denote by l the number of leaves adjacent to v.
Then, R′(G) ≥ k − l + l

k
.

Proof. Denote T0 = T−v. Then T0 is a disconnected graph and k−l components of T0 have at
least one edge. Denote these components by T1, T2, . . . , Tk−l. As v is the internal vertex with
minimal degree, each Ti, 1 ≤ i ≤ k − l, contains a vertex ui such that degT (ui) ≥ degT (x)
for every vertex x such that xui ∈ E(T ). As uiuj /∈ E(T ) for 1 ≤ i < j ≤ k − l, the
set S = {u1, u2, . . . , uk−l} satisfies the assumptions of Lemma 2.2. Since the pendant edges
incident with v contain none of u1, u2, . . . , uk−l, we have R

′(T ) ≥ (k−l)+ l
k
by Lemma 2.2.

Observe that in Table 1 bellow we attain the bound of Corollary 2.5. Next lemma shows
that removing a vertex of degree 1 does not increases the value of R′.

Lemma 2.6. Let G1 be a graph on at least 3 vertices and let v ∈ V (G1) such that degG1
(v) =

1. Denote G2 = G1 − v. Let u be the unique neighbor of v. Denote a = degG1
(u) and denote

by l the number of neighbors of u whose degree is at least a. Then

R′(G1)−R′(G2) =
l

a(a− 1)
.

Proof. When v is removed, the degree of u decreases by 1 while the vertices of V (G1) \ {u, v}
have the same degree in G2 as in G1. Hence, only edges incident with u affect the difference
R′(G1) − R′(G2). Let x1, x2, . . . , xl be neighbors of u such that degG1

(xi) ≥ degG1
(u) for

i = 1, 2, . . . , l. Then

R′(G1)−R′(G2) =
a− l

a
+

(

1

degG1
(x1)

+
1

degG1
(x2)

+ · · · + 1

degG1
(xl)

)

−
(

a− l − 1

a− 1
+

(

1

degG2
(x1)

+
1

degG2
(x2)

+ · · ·+ 1

degG2
(xl)

))

=
a− l

a
− a− l − 1

a− 1
=

l

a(a− 1)
,

which completes the proof.

Using the previous result we describe a situation when a leaf is removed from his position
and it is attached to another leaf. Next lemma shows that in this case the value of R′ is not
decreasing.
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Lemma 2.7. Let a graph G1 have at least four vertices, let v be a vertex of degree 1 in G1

and let u be its neighbor. Denote a = degG1
(u) and denote by l the number of neighbors of u

whose degree is at least a. Denote G2 = G1 − v. Let w be a vertex of degree 1 in G2 and let

G3 be a graph obtained by attaching a pendant edge to w. Then

R′(G3)−R′(G1) =
1

2
− l

a(a− 1)
≥ 0.

Proof. By Lemma 2.6, R′(G1)−R′(G2) =
l

a(a−1) . Now we calculate R′(G3)− R′(G2). Since
G2 has at least 3 vertices, there is a unique neighbor of w whose degree is at least 2 in G3.
Since the degree of w is 2 in G3, by Lemma 2.6 we have R′(G3)−R′(G2) =

1
2 . Hence,

R′(G3)−R′(G1) =
(

R′(G3)−R′(G2)
)

−
(

R′(G1)−R′(G2)
)

=
1

2
− l

a(a− 1)
≥ 1

2
− 1

a
≥ 0,

as a > l ≥ 0 and a ≥ 2.

3 Trees and unicyclic graphs

Here we determine trees and unicyclic graphs attaining the smallest (the greatest) values of
R′. We start with their definition.

By Dk,n we denote a double star on n vertices, i.e., a tree having one vertex of degree k,
one vertex of degree n − k and n − 2 leaves. By Sk,n we denote a tree of order n which is
a subdivision of the star Sk. Hence, Sk,n has one vertex of degree k − 1, every other vertex
has degree either 1 or 2. Observe that the graph of double star D3,6 resembles the letter
H. Therefore by Hk,n we denote a subdivision of D3,6 on n vertices in which the vertices of
degree 3 are joined by a path of length k.

By BS
k,n we denote a unicyclic graph obtained from a triangle by identifying centers of two

stars, Sk and Sn−k−1, with two different vertices of the triangle. Observe that BS
k,n has one

vertex of degree k + 1, one vertex of degree n− k, one vertex of degree 2 and n− 3 vertices
of degree 1. Note that BS

k,n = BS
l,n for l = n − k − 1. Analogously, by BP

n (and DP
n ) we

denote a unicyclic graph on n vertices obtained from a triangle (a quadrangle) by identifying
endvertices of two paths with two different vertices of the triangle (with two nonadjacent
vertices of the quadrangle). Then both BP

n and DP
n have 2 vertices of degree 3, 2 vertices

of degree 1 and n− 4 vertices of degree 2. Finally, by Y P
n we denote a unicyclic graph on n

vertices obtained from a triangle by identifying endvertices of three distinct paths with three
distinct vertices of the triangle. Then Y P

n has 3 vertices of degree 3, 3 vertices of degree 1
and n− 6 vertices of degree 2.

First we discuss trees on n vertices, n ≥ 2, with smallest value of R′. By Corollary 2.4,
the star Sn attains the minimal value of R′ and R′(Sn) = 1. For the next smallest values of
R′ we use the following proposition.

Proposition 3.1. Let T be a tree on at least 2 vertices. Then, R′(T ) ≥ 2 if and only if

diam(T ) > 3. Moreover, if diam(T ) = 3 then R′(T ) = 2 − 1
a
, where a is the smallest degree

in T which is greater than 1.

Proof. We distinguish three cases. Suppose first that diam(T ) ≤ 2. Since T has at least 2
vertices, T is a star Sn and R′(Sn) = 1 by Corollary 2.4.
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Suppose now that diam(T ) = 3. Then T has exactly 2 vertices, say u and v, whose degree
is greater than 1, and moreover, these two vertices are adjacent. All the other vertices have
degree 1. Hence, T is a double star. Assume that degT (u) ≥ degT (v). Then

R′(T ) =
∑

ux∈E(T )

1

degT (u)
+

∑

vy∈E(T )\{vu}

1

degT (v)
= 2− 1

degT (v)
.

Finally, suppose that diam(T ) ≥ 4. Then there are vertices x and y such that dG(x, y) = 4.
Therefore, there is a path P : xv1v2v3y of length 4 in T . Applying Lemma 2.6, we can remove
vertices from T , one by one, until we obtain the path P . By Lemma 2.6, R′(T ) ≥ R′(P ).
Since for S = {v1, v3} we get R′(P ) = 2 by Lemma 2.2, we have R′(T ) ≥ 2.

By Proposition 3.1, if T is not a star and R′(T ) < 2, then diam(T ) = 3. Hence, the trees
with smallest values of R′ and the corresponding values of R′ are given in Table 1, where
k = ⌊n/2⌋. We remark that the next value of R′(T ) is 2 but there are more types of trees
attaining this value.

G Sn Sn−1,n D3,n D4,n D5,n . . . Dk,n

R′(G) 1 3/2 5/3 7/4 9/5 . . . (2k − 1)/k

Table 1. Trees with smallest values of R′.

As mentioned above, Sn attains minimum Randić index among all trees on n vertices and
R(Sn) =

√
n− 1.

For unicyclic graphs we use the following proposition.

Proposition 3.2. Let C be the unique cycle in a unicyclic graph G. If the length of C is at

least 4, or if G has a vertex at distance at least 2 to C, or if the length of C is 3 and all the

vertices of C have degrees at least 3 in G, then R′(G) ≥ 2. On the other hand, R′(S÷
n ) =

3
2

and R′(BS
k,n) =

2k+1
k+1 , where 2 ≤ k ≤ n− k − 1.

Proof. Denote G0 = G. Remove a vertex of degree 1 from G0 and denote the resulting graph
by G1. Repeat removing of vertices of degree 1 to obtain G2, G3, . . . until we get a graph
Gr = C. By Lemma 2.6, we have R′(G0) ≥ R′(G1) ≥ · · · ≥ R′(Gr). By Proposition 2.1, if C
has length c then R′(Gr) = R′(C) = c

2 . Hence, if c ≥ 4 then R′(Gr) ≥ 2 and consequently
R′(G) ≥ 2. In what follows suppose that C has length 3. Then R′(Gr) = R′(C) = 3

2 .
If G = S÷

n then all vertices of degree 1 are adjacent to one vertex, say u, of C. Since there
is a unique edge which is not incident with u in G and both endvertices of this edge have
degrees 2, we have R′(S÷

n ) =
3
2 by Lemma 2.2.

If there is a vertex at distance at least 2 from C, then there is Gt, 0 ≤ t < r, such that to
obtain Gt+1 we remove a vertex adjacent to a vertex of degree 2. Then R′(Gt)−R′(Gt+1) =

1
2 ,

by Lemma 2.6, and hence R′(G) ≥ 2. Thus, in the following we may assume that all the
vertices of V (G)− V (C) have degree 1 and are adjacent to a vertex of C.

Suppose that there are exactly two vertices of C, say u and v, whose degrees are greater
than 2. Assume that degG(u) ≥ degG(v). Then all the edges of G are incident to u or v, so
that

R′(G) =
∑

ux∈E(T )

1

degT (u)
+

∑

vy∈E(T )\{vu}

1

degT (v)
= 2− 1

degT (v)
,
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i.e., R′(BS
k,n) =

2k+1
k+1 with 2 ≤ k ≤ n− k − 1. Observe that in any case R′(G) ≥ 2− 1

3 .
Finally, suppose that all the vertices of C have degree at least 3 in G. Then there is

Gt+1 such that Gt+1 = BS
k,n for some k. By Lemma 2.6 we have R′(Gt)−R′(Gt+1) =

1
3 . As

R′(Gt+1) ≥ 2− 1
3 , we have R′(G) ≥ 2.

By Proposition 3.2, in Table 2 we have unicyclic graphs with greatest values of R′ and
the corresponding values of R′. In the last column k = ⌊(n− 1)/2⌋. We remark that the next
value of R′ in a unicyclic graph is 2, but as it can be seen from the proof of Proposition 3.2,
there are more types of unicyclic graphs G for which R′(G) = 2.

Gao and Lu [8] show that among all unicyclic graphs, S÷
n also attains minimum for Randić

index, R(S÷
n ) =

n−3+
√
2√

n−1
+ 1

2 .

G S÷
n BS

2,n BS
3,n BS

4,n BS
5,n . . . BS

k,n

R′(G) 3/2 5/3 7/4 9/5 11/6 . . . (2k + 1)/(k + 1)

Table 2. Unicyclic graphs with smallest values of R′.

Now we turn our attention to trees with greatest values of R′. Caporossi et al. [3] prove
that among all trees on n vertices, the path Pn attains the maximum value of Randić index.
In the same paper they prove that S4,n attains the second maximum value of Randić index,
R(Pn) =

n−1
2 +

√
2− 1.

Next proposition shows that the same holds for R′ as well.

G Pn S4,n H1,n Hk,n, S5,n

R′(G) (n− 1)/2 (n− 2)/2 (n − 2)/2 − 1/3 (n− 3)/2

Table 3. Trees with greatest values of R′.

Proposition 3.3. The trees listed in Table 3, where k ≥ 2, attain the greatest values of R′.
All the remaining trees on n vertices have R′ smaller than (n− 3)/2.

Proof. Let T = T0 be any tree on n vertices different from the trees present in Table 3, and
let P 0 be a longest path in T0. Take a leaf u0 which is not on P 0, remove it from T0, join
it by an edge to an endvertex of P 0 and denote the resulting graph by T1. Repeating this
process we get a sequence of trees T0, T1, . . . , Tr, such that Tr = Pn. By Lemma 2.7, we have
R′(T0) ≤ R′(T1) ≤ · · · ≤ R′(Tr). Moreover, by Lemma 2.7 again, if ui is adjacent to a vertex
of degree 2 in Ti, 0 ≤ i < r, then R′(Ti) = R′(Ti+1), otherwise R′(Ti) < R′(Ti+1). Since ur−1

is adjacent to a vertex of degree 3 in Tr−1, the path Pn = Tr is the unique tree on n vertices
achieving the maximum value of R′. As ∆(Pn) = 2 and every edge of Pn is incident to a
vertex of degree 2, we have R′(Pn) =

n−1
2 .

From the discussion above it is obvious that the tree with the second greatest value of
R′ is Tr−1. By Lemma 2.7 if a leaf incident to a vertex of degree 2 is removed and joined
to another leaf, then the value of the R′ index is not changing. Hence, all trees with one
vertex of degree 3, and all others of degree 2 and 1 attain the second greatest value of R′.
Let s be the greatest value, 0 ≤ s < r − 1, such that us is adjacent to a vertex of degree at
least 3. Then Ts+1, Ts+2, . . . , Tr−1 all are subdivisions of S4. Since R′(S4,n) =

n−2
2 , we have

R′(Ts+1) = R′(Ts+2) = · · · = R′(Tr−1) =
n−2
2 and R′(Ts) < R′(Ts+1).
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Now, we are going backwards in the sequence of trees Ts, Ts−1, . . . , T0. Since S4,n, a
subdivision of the star S4, attains the second greatest value of R′, it is clear that the third
greatest value will be attained for a tree with two vertices, v1 and v2, of degree 3, or one
vertex of degree 4 and all others of degree 2 and 1. So, candidates for graph attaining the
third greatest value of R′ are H1,n, if v1 and v2 are adjacent, Hk,n where k ≥ 2, if v1 and v2
are nonadjacent, and S5,n.

Let t be the greatest value, 0 ≤ t < s, such that ut is adjacent to a vertex of degree
at least 3. Denote by vt the unique neighbor of ut in Tt. As R′(H1,n) = n−2

2 − 1
3 and

R′(Hk,n) = R′(S5,n) = n−3
2 if k ≥ 2, to finish the proof it suffices to show that R′(Tt) <

n−3
2 . Since R′(Tt) < R′(Ts), we can assume that Ts = H1,n. If the degree of vt is 4, then

R′(Ts) − R′(Tt) = R′(Tt+1) − R′(Tt) =
1
2 , by Lemma 2.7, as no neighbor of vt has degree at

least 4 in Tt. Thus, R′(Tt) = (n−2
2 − 1

3)− 1
2 < n−3

2 . On the other hand if the degree of vt is
3, then R′(Ts)−R′(Tt) ≥ 1

2 − 1
6 , by Lemma 2.7, as at most one neighbor of vt has degree at

least 3 in Tt. Thus, R
′(Tt) ≤ (n−2

2 − 1
3 )− 1

2 + 1
6 < n−3

2 .

Finally, we consider unicyclic graphs with the greatest values of R′. Caparossi et al. [3]
also considered the maximum values of Randić index in the class of unicyclic graphs. They
show that among all unicyclic graphs of order n the cycle Cn attains the maximum value, n

2 .
We show that the same holds for R′.

G Cn S÷
4,n H÷

1,n, B
P
n H÷

k,n, S
÷
5,n, D

P
n , Y

P
n

R′(G) n/2 (n− 1)/2 (n− 1)/2 − 1/3 (n− 2)/2

Table 4. Unicyclic graphs with greatest values of R′.

Proposition 3.4. The unicyclic graphs listed in Table 4, where k ≥ 2, attain the greatest

values of R′. All the remaining unicyclic graphs on n vertices have R′ smaller than (n−2)/2.

Proof. First observe that if R′(G) = ℓ then R′(G÷) = ℓ+ 1
2 . Therefore R

′(Cn) = R′(P÷
n ) = n

2 ,
R′(S÷

4,n) = n−1
2 , R′(H÷

1,n) = n−1
2 − 1

3 and R′(H÷
k,n) = R′(S÷

5,n) = n−2
2 if k ≥ 2. As BP

n has
5 edges incident to vertices of degree 3 while every other vertex is incident to a vertex of
degree 2, we have R′(BP

n ) = 5
3 + n−5

2 . Finally, as both DP
n and Y P

n have 6 edges incident
to vertices of degree 3 while every other vertex is incident to a vertex of degree 2, we have
R′(DP

n ) = R′(Y P
n ) = 6

3 +
n−6
2 .

Let G be a unicyclic graph with the unique cycle C. If the length of C is n then G = Cn.
Hence, suppose that the length of C is smaller than n. Denote G0 = G and denote by P 0

a longest path in G0. Then at least one vertex of P 0 has degree 1. Let u0 be a vertex
of degree 1 which is not on P 0. Remove u0 from G0, join it by an edge to an endvertex
of P 0 which degree is 1 and denote the resulting graph by G1. Repeating this process we
get a sequence of unicyclic graphs G0, G1, . . . , Gr with R′(G0) ≤ R′(G1) ≤ · · · ≤ R′(Gr),
by Lemma 2.7. Observe that Gr consists of the cycle C with a path, attached to C by an
endvertex. Analogously as in the proof of Proposition 3.3 we get R′(Gr−1) < R′(Gr). As
Gr = S÷

4,n, among unicyclic graphs with cycles of length strictly smaller than n, S÷
4,n has the

greatest value of R′.
Now considerGr−1 and denote by vr−1 the unique vertex adjacent to ur−1. If degGr−1

(vr−1)

is 4, then Gr−1 = S÷
5,n. Now, suppose that degGr−1

(vr−1) = 3. Denote by w the other vertex
of degree 3 in Gr−1. We distinguish six cases:
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• vr−1 ∈ V (C), dGr−1
(w, vr−1) = 1 and C = C3: Then Gr−1 = BP

n .

• vr−1 ∈ V (C), dGr−1
(w, vr−1) = 1 and C 6= C3: Then Gr−1 = H÷

1,n.

• vr−1 ∈ V (C), dGr−1
(w, vr−1) = 2 and C = C4: Then Gr−1 = DP

n .

• vr−1 ∈ V (C) and either dGr−1
(w, vr−1) > 2 or dGr−1

(w, vr−1) = 2 and C 6= C4: Then
Gr−1 = H÷

k,n for k ≥ 2.

• vr−1 /∈ V (C) and dGr−1
(w, vr−1) = 1: Then Gr−1 = H÷

1,n.

• vr−1 /∈ V (C) and dGr−1
(w, vr−1) > 1: Then Gr−1 = H÷

k,n for k ≥ 2.

Observe that in any case, Gr−1 is a graph presented in Table 4.

Let t be the greatest value, 0 ≤ t < r − 1, such that ut is adjacent to a vertex, say vt,
of degree at least 3. Then R′(Gt+1) = R′(Gt+2) = · · · = R′(Gr−1) and R′(Gt) < R′(Gt+1)
by Lemma 2.7. To finish the proof we have to find all Gt with R′(Gt) ≥ n−2

2 in the case
when Gr−1 = H÷

1,n or Gr−1 = BP
n , see Table 4. If degGt

(vt) = 4 then R′(Gr−1) − R′(Gt) =

R′(Gt+1) − R′(Gt) =
1
2 as there is no vertex in Gt − vt of degree at least 4. Hence, assume

that degGt
(vt) = 3. Observe that R′(Gt+1) =

n−1
2 − 1

3 and so n−2
2 −R′(Gt+1) =

1
6 . Hence, if

R′(Gt) ≥ n−2
2 , then 1

2 − l
a(a−1) ≤ 1

6 by Lemma 2.7, where a = degGt
(vt) and l is the number

of neighbors of vt whose degree is at least 3. This gives l = 2 and R′(Gt+1) − R′(Gt) =
1
6 .

Therefore Gt+1 = BP
n and vt is a vertex of C = C3. Consequently, Gt = Y P

n , which finishes
the proof.

4 Triangle-free graphs

Favaron et al. [7], showed that for any triangle-free graph G with m edges, we have R(G) ≥√
m. Later Li and Liu [10] proved the following: For any triangle-free graph G of order n

and minimum degree δ(G) = k ≥ 1, we have R(G) ≥
√

k(n− k). Equality holds if and only
if G = Kk,n−k.

In this section we show that if a graph G on n vertices has maximum degree at most
n− δ(G), then the lower bound for R′(G) is δ(G). Consequently, this gives a lower bound for
triangle-free graphs, and this bound is attained by Kk,n−k.

Theorem 4.1. Let G be a simple graph on n vertices with δ(G) = k, k ≥ 1, ∆(G) ≤ n− k,
n > 2k, and such that when satisfying all these conditions, R′(G) is as small as possible.

Then R′(G) = k and G = Kk,n−k.

In order to prove Theorem 4.1, we extend it to graphs with multiple edges. Hence,
suppose that G is a graph on n vertices, possibly with multiple edges, with δ(G) = k, k ≥ 1,
∆(G) ≤ n − k, n > 2k, not necessarily connected, and such that when satisfying all these
conditions, the parameter R′(G) is as small as possible. In the following two lemmas we
prove that G is a bipartite graph with bipartition (Vn−k(G), Vk(G)). Observe that since
R′(Kk,n−k) = k, we already have R′(G) ≤ k.

Lemma 4.2. If |V (G)| ≤ |Vn−k(G)|+ |Vk(G)|+1, then |V (G)| = |Vn−k(G)|+ |Vk(G)| and G
is a bipartite graph with bipartition (Vn−k(G), Vk(G)).
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Proof. First assume that |V (G)| = |Vn−k(G)| + |Vk(G)| + 1. Let v be the vertex such that
k < degG(v) < n− k. Then v has neighbors only in Vk(G) and Vn−k(G). Denote l = degG(v)
and α = |NG(v)∩ Vk(G)|. Then |NG(v)∩ Vn−k(G)| = l−α. Further, denote a = |Vk(G)| and
b = |Vn−k(G)|. Finally, assume that there are s and t edges whose both endvertices are in
Vn−k(G) and Vk(G), respectively. Counting the number of edges in two ways, namely through
their endvertices of “higher”, respectively “smaller” degree gives

|E(G)| = b(n− k)− s+ α+ t = ak − t+ (l − α) + s.

Since a+ b = n− 1, after dividing by n we obtain

b = k − 2α

n
+

l − k

n
+

2s

n
− 2t

n
.

Now we evaluate R′(G). There are b(n− k)− s edges with an endvertex in Vn−k(G), α edges
connecting v with a vertex of Vk(G) and t edges connecting two vertices of Vk(G). Hence,

R′(G) =
b(n− k)− s

n− k
+

α

l
+

t

k
,

and after substituting for b the previous expression we obtain

R′(G) = k + α
n− 2l

nl
+

l − k

n
+ s

n− 2k

n(n− k)
+ t

n− 2k

nk
.

Since n− 2k > 0, we have s n−2k
n(n−k) + tn−2k

nk
≥ 0, and as l > k, we have l−k

n
> 0. Consider two

cases.

• n ≥ 2l: Then αn−2l
nl

≥ 0, so that R′(G) ≥ k + l−k
n

> k.

• n < 2l: Since α ≤ l, we have αn−2l
nl

≥ ln−2l
nl

. As l < n − k, we have R′(G) ≥
k + n−2l

n
+ l−k

n
= k + n−k−l

n
> k.

In both cases we have a contradiction as R′(G) ≤ k.
Now consider the case |V (G)| = |Vn−k(G)|+ |Vk(G)|. Using the notation as above we get

|E(G)| = b(n− k)− s+ t = ak − t+ s.

Since a+ b = n, after dividing by n we obtain

b = k +
2s

n
− 2t

n
.

For R′(G) we get

R′(G) =
b(n− k)− s

n− k
+

t

k
,

and after substituting for b the previous expression we obtain

R′(G) = k + s
n− 2k

n(n− k)
+ t

n− 2k

nk
.

Obviously, R′(G) ≥ k with equality only if s = t = 0. Hence, G is a bipartite graph with
bipartition (Vn−k(G), Vk(G)), as required.
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We remark that, although G is bipartite if the assumptions of Lemma 4.2 are satisfied,
G can possibly have multiple edges and does not need to be connected. This assumption is
important as in the proof of the next lemma we possibly create multiple edges and we may
disconnect the graph.

Lemma 4.3. We have |V (G)| = |Vn−k(G)| + |Vk(G)|.

Proof. By Lemma 4.2, we cannot have |V (G)| = |Vn−k(G)| + |Vk(G)| + 1. Thus, by way of
contradiction, suppose that there are u, v ∈ V (G), such that k < degG(u) ≤ degG(v) < n−k.
Moreover, assume that among the vertices of V (G) \ (Vk(G) ∪ Vn−k(G)), the vertex u has
the smallest degree and v has the greatest degree. Denote A(u) = {wu ∈ E(G); degG(w) <
degG(u)} and A(v) = {vz ∈ E(G); degG(v) < degG(z)}. Let a = min{|A(u)|, |A(v)|}. Re-
move a edges wu ∈ A(u) and replace them by a edges wv; remove a edges vz ∈ A(v) and
replace them by a edges uz; and denote the resulting graph by G0. Then degG(x) = degG0

(x)
for every x ∈ V (G). Since degG(u) ≤ degG(v), we have R′(G0) ≤ R′(G).
Denote A0(u) = {wu ∈ E(G0); degG0

(w) < degG0
(u)} and A0(v) = {vz ∈ E(G0); degG0

(v) <
degG0

(z)}. Then either A0(u) = ∅ or A0(v) = ∅. Consider two cases:

• A0(u) 6= ∅: Choose wu ∈ A0(u), remove this edge from G0, replace it by wv and denote
the resulting graph by G1. Now degG1

(u) = degG0
(u)− 1 and degG1

(v) = degG0
(v)+1.

Since A0(u) 6= ∅, we have A0(v) = ∅, and as v has the maximum degree among the
vertices of V (G) \ (Vk(G) ∪ Vn−k(G)), edges incident with v in G0 contribute by 1
to R′(G0), and analogously edges incident with v in G1 contribute by 1 to R′(G1).
Therefore, to count R′(G0) − R′(G1) it suffices to consider the edges incident with u.
Denote l = |A0(u)| and d = degG0

(u). As u has the minimum degree among the

vertices of V (G) \ (Vk(G) ∪ Vn−k(G)), we have R′(G1) = R′(G0) − l
d
+ l−1

d−1 . Since

− l
d
+ l−1

d−1 = l−d
d(d−1) ≤ 0, we have R′(G1) ≤ R′(G0) with equality only if d = l.

• A0(u) = ∅: Choose uw ∈ E(G0), such that uw 6= uv, remove this edge from G0, replace
it by vw and denote the resulting graph by G1. Analogously as in the previous case,
degG1

(u) = degG0
(u) − 1 and degG1

(v) = degG0
(v) + 1. As A0(u) = ∅ and u has the

minimum degree among the vertices of V (G) \ (Vk(G) ∪ Vn−k(G)), the edges incident
with u contribute to R′ by the same value in G0 as in G1, with the possible exception of
the edge uw, which is now replaced by vw, and its contribution to R′(G1) is not greater
as its contribution to R′(G0). Denote l = |{vz ∈ E(G0); degG0

(z) ≤ degG0
(v)}| and

d = degG0
(v). Then R′(G1) ≤ R′(G0) − l

d
+ l

d+1 ≤ R′(G0) with equality only if l = 0
(and degG0

(w) > degG0
(v)).

Now define A1(u) and A1(v) analogously as A0(u) and A0(v). Observe that if A0(u) 6= ∅
then A1(v) = ∅ and if A0(u) = ∅ then A1(u) = ∅. Hence, repeat the process described in the
previous cases to obtain G2, G3, . . . until we get a graph Gr such that either degGr

(u) = k or
degGr

(v) = n − k. In this way we decreased the number of vertices x which degree is in the
open interval (k, n − k).

Now repeat the process with other pair of vertices whose degree is in the interval (k, n−k)
and yet another and so on. At the end we have either a single vertex with degree in (k, n−k),
which contradicts Lemma 4.2, or exactly two such vertices. Thus, we can assume that G has
exactly two vertices, say u and v, with k < deg(u) ≤ deg(v) < n−k. By Lemma 4.2, we have
u ∈ Vk(Gr) and v ∈ Vn−k(Gr). If R′(Gr) < R′(G), that finishes the proof of the lemma. So,
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we may assume that R′(G) = R′(G0) = · · · = R′(Gr). Analogously as above, consider two
cases:

• A0(u) 6= ∅: Then A0(v) = ∅ and degG0
(u) = d = l, see the analogous case above,

so that both u and v have neighbors only in Vk(G0). This means that also in Gr the
vertex u has neighbors only in Vk(Gr). Hence, Vk(Gr) is not an independent set, which
contradicts Lemma 4.2.

• A0(u) = ∅: Then l = 0, see the analogous case above, so that uv /∈ E(G0) and both u
and v have neighbors only in Vn−k(G0). This means that in Gr the vertex v has neigh-
bors only in Vn−k(Gr). Hence, Vn−k(Gr) is not an independent set, which contradicts
Lemma 4.2.

Observe that in the final contradiction of the previous proof we use the fact that Lemma 4.2
is stated for graphs which may be disconnected and which may have multiple edges.

Proof of Theorem 4.1. By Lemmas 4.2 and 4.3, G is a bipartite graph with bipartition
(Vn−k(G), Vk(G)), possibly with multiple edges.

Denote a = |Vk(G)| and b = |Vn−k(G)|. Then |E(G)| = ak = b(n−k), so that (a+b)k = bn.

As a + b = n, we get b = k and consequently a = n − k. Hence, R′(G) = b(n−k)
n−k

= b = k.
Since there is a unique simple graph satisfying |Vk(G)| = n − k and |Vn−k(G)| = k, namely
Kk,n−k, the theorem is proved.

Corollary 4.4. Let G be a triangle-free graph on n vertices with δ(G) = k, k ≥ 1. Then

R′(G) ≥ k with equality if and only if G = Kk,n−k.

Proof. Suppose that there is a vertex v in G such that degG(v) > n− k. Let u be a neighbor
of v. Since G is triangle-free, NG(u) ∩ NG(v) = ∅, so that NG(u) ⊆ V (G) \ NG(v). Hence,
degG(u) < k, a contradiction. Thus, ∆(G) ≤ n− k. As δ(G) ≤ ∆(G), we have k ≤ n− k, so
that n ≥ 2k. Now, consider two cases:

• n > 2k: By Theorem 4.1 we have R′(G) ≥ k with equality if and only if G = Kk,n−k.

• n = 2k: As n−k = k, G is a regular graph. Since |E(G)| = kn
2 , we have R′(G) = kn

2k = k.
Choose two vertices, say u and v, such that uv ∈ E(G). Since both NG(u) and NG(v)
are disjoint independent sets of k vertices each, we have G = Kk,k.
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index, Comput. Biol. Chem., 27 (2003), 85–90.
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[7] O. Favaron, M. Mahéo, J. F. Saclé, Some eigenvalue properties in graphs (Conjecture of
Grati - II), Discrete Math. 111 (1993), 197–220.
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