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Abstract

Let G be a graph. Denote by Li(G) its i-iterated line graph and denote
by W (G) its Wiener index. Dobrynin and Melnikov conjectured that there
exists no nontrivial tree T and i ≥ 3, such that W (Li(T )) = W (T ). We prove
this conjecture for trees which are not homeomorphic to the claw K1,3 and
H, where H is a tree consisting of 6 vertices, 2 of which have degree 3.

This is a preprint of an article accepted for publication in Dis-
crete Mathematics c©2012 (copyright owner as specified in the jour-
nal).

1 Introduction

Let G be a graph. For any two of its vertices, say u and v, by d(u, v) we denote the
distance from u to v in G. The Wiener index of G, W (G), is defined as

W (G) =
∑

u 6=v

d(u, v),

where the sum is taken through all unordered pairs of vertices of G. Wiener index
was introduced by Wiener in 1947, see [15]. In the next decades, it was inten-
sively studied by chemists, as it is related to many physical properties of organical
molecules, see [9]. Graph theoretists reintroduced this parameter as the distance in
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1970 and transmission in 1984, see [6] and [14], respectively. Recently, graph theo-
retic aspects of Wiener index are intensively studied, see e.g. [7] and [8], or surveys
[3] and [4].

By definition, if G has a unique vertex, that is, if G = K1, then W (G) = 0. In
this case we say that the graph G is trivial. We set W (G) = 0 also when the set of
vertices (and therefore also the set of edges) of G is empty.

The line graph of G, L(G), has vertex set identical with the set of edges of G.
Two vertices of L(G) are adjacent if and only if the corresponding edges are adjacent
in G. Iterated line graphs are defined inductively as follows:

Li(G) =

{

G if i = 0,
L(Li−1(G)) if i > 0.

In [1], the following theorem was proved.

Theorem 1.1 [1] If T is a tree on n vertices, then W (L(T )) = W (T )−
(

n

2

)

.

Since
(

n

2

)

> 0 if n ≥ 2, there is no nontrivial tree for which W (L(T )) = W (T ).
However, there are trees T satisfying W (L2(T )) = W (T ), see for example [2]. In [5]
the following conjecture was posed (see also [3]).

Conjecture 1.2 [5] Let T be a nontrivial tree and i ≥ 3. Then W (Li(T )) 6= W (T ).

Denote by Pn a path on n vertices. If n ≥ 2, then W (Pn) > W (Pn−1). Since
L(Pn) = Pn−1 if n ≥ 2, while L(P1) is an empty graph, it follows that W (Li(Pn)) <
W (Pn) for every i ≥ 1 provided that n ≥ 2. Hence, Conjecture 1.2 is trivially true
for paths of length at least 1.

In [11], we prove that for every graph G the function W (Li(G)) is convex in
variable i. The following corollary is a straightforward consequence of this fact.

Corollary 1.3 Let T be a tree such that W (L3(T )) > W (T ). Then for every i ≥ 3
the inequality W (Li(T )) > W (T ) holds.

Let G be a graph. A pendant path (or a ray for short) R′ in G is a (directed)
path, the first vertex of which has degree at least 3, its last vertex has degree 1, and
all of its internal vertices (if any exist) have degree 2 in G. Observe that if R′ has
length t, t ≥ 2, then the edges of R′ correspond to vertices of a ray R in L(G) of
length t− 1. In [11] we proved the following theorem.

Theorem 1.4 [11] Let T be a tree distinct from a path and the claw K1,3 such that

all of its rays have length 1. Then W (L3(T )) > W (T ).

Here we extend this statement to trees with arbitrarily long rays. Denote by H
a tree on 6 vertices, two of which have degree 3 and four of which have degree 1.
(That is, H is the graph which “looks” like the letter H.) The main result of this
paper is the following theorem.
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Theorem 1.5 Let T be a tree not homeomorphic to a path, claw K1,3 and H. Then

W (L3(T )) > W (T ).

Recall that graphs G1 and G2 are homeomorphic if and only if the graphs ob-
tained from them by repeatedly removing a vertex of degree 2 (and making its two
neighbours adjacent) are isomorphic. Combining Corollary 1.3 and Theorem 1.5 we
obtain the following corollary, which proves Conjecture 1.2 for the trees T satisfying
the assumption in Theorem 1.5.

Corollary 1.6 Let T be a tree not homeomorphic to a path, claw K1,3 and H. Then

W (Li(T )) > W (T ) for every i ≥ 3.

We remark that trees homeomorphic to the claw K1,3 and the graph H are
considered in forthcoming papers, see [12, 13].

For a tree T , let D(T ) = W (L3(T ))−W (T ). We prove D(T ) > 0 by induction
on the length of the longest ray in T . By Theorem 1.4, D(T ) > 0 if the longest ray
has length 1. Now we describe the induction step:

We suppose that D(T ) > 0 for all trees rays of which have length at most l + 1.
We would like to extend this statement to trees with rays of length at most l + 2.
Let a′ be the last vertex of a ray of length l + 1 in T , l ≥ 0. Since we extend only
one ray in turn, namely the ray terminating at a′, we assume that all rays of T have
lengths at most l+2. Add to T one new vertex b′ and the edge a′b′, and denote the
resulting tree by T ∗. Denote by a the edge of T containing a′ and denote by b the
edge a′b′. Then ab is an edge of L(T ∗) and the degree of b is 1 in L(T ∗). Moreover,
a is an endvertex of a ray of length l in L(T ) and b is an endvertex of a ray of length
l + 1 in L(T ∗); see Figure 1. By assumption, all rays of L(T ) have lengths at most
l + 1. Let

∆T = D(T ∗)−D(T ).

In the next section we present an exact formula for ∆T . In Section 3 we prove
∆T ≥ 0 and this will establish Theorem 1.5 (for more detailed explanation see the
proof of Theorem 1.5).

a bT ∗ :

≤ l+2

l+1

a′ b′

a

L(T ∗) :

≤ l+1

l

a b

Figure 1: Description of the induction step for l = 2.
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Now we introduce notation used throughout the paper. Let G be a graph. By
V (G) and E(G) we denote its sets of vertices and esges, respectively. Since we
work repeatedly with line graphs of trees, we simplify the notation and write LG
rather than L(G). The degree of a vertex z is denoted by dz. If there are more
graphs containing the vertex z, then dz denotes the degree of z in LT (whatever the
meaning of T at that point will be). Similarly, by d(z, w) we denote the distance
from z to w, and this distance is preferably considered in LT (rather than T ). When
no confusion is likely, any path starting at u and terminating at v will be denoted
by u− v.

2 Preliminaries

Analogously as a vertex of L(G) corresponds to an edge of G, a vertex of L2(G)
corresponds to a path of length two in G. For x ∈ V (L2(G)), we denote by B2(x)
the corresponding path in G. For two subgraphs S1 and S2 of G, by d(S1, S2) we
denote the shortest distance in G between a vertex of S1 and a vertex of S2. If S1

and S2 share s edges, then we set d(S1, S2) = −s.
Let x and y be two vertices of L2(G), such that u is the center of B2(x) and v is

the center of B2(y). Then dL2(G)(x, y) = d(B2(x), B2(y)) + 2; see [10, 11].
Let u, v ∈ V (G), u 6= v. Denote by βi(u, v) the number of pairs x, y ∈

V (L2(G)), with u being the center of B2(x) and v being the center of B2(y), such
that d(B2(x), B2(y)) = d(u, v)−2+ i. Since d(u, v)−2 ≤ d(B2(x), B2(y)) ≤ d(u, v),
we see that βi(u, v) = 0 for all i /∈ {0, 1, 2}. In [11] the following statement was
proved:

Proposition 2.1 Let G be a connected graph. Then

W (L2(G)) =
∑

u 6=v

[

(

du
2

)(

dv
2

)

d(u, v) + β1(u, v) + 2β2(u, v)

]

+
∑

u

[

3

(

du
3

)

+ 6

(

du
4

)

]

,

where the first sum runs through all unordered pairs of distinct vertices u, v ∈ V (G)
and the second one runs through all u ∈ V (G).

We apply Proposition 2.1 to line graphs of trees. Let us recall the structure
of these graphs. For any tree F , the graph LF consists of cliques in the following
sense: Denote by C(LF ) the set of maximal cliques of LF . Then every vertex of
LF belongs to at most two cliques from C(LF ); each pair of cliques from C(LF )
intersects in at most one vertex; and the cliques of C(LF ) have a “tree structure”,
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that is, there are no cliques C0, C1, . . . , Ct−1, t ≥ 3, such that Ci and Ci+1 have
nonempty intersection, 0 ≤ i ≤ t− 1, the addition being modulo t.

We start with an exact formula for ∆T . For u ∈ V (LT ) \ {a}, let

hLT (u) =

(

(

du
2

)

da − 1

)

d(u, a) + (du − 1)
(

du da − da −
1

2
du

)

− 2− φ(u, a), (1)

where

φ(u, a) =

{

(da − 1)(du − 2) if d(u, a) = 1,
0 otherwise.

Proposition 2.2 For a nontrivial tree, the following equality holds:

∆T =
∑

u

hLT (u) +
1

2
da (da − 1)(2da − 1)− 3,

where the sum is taken over all vertices u ∈ V (LT ) \ {a}.

Proof Let F be a tree and let u and v be distinct vertices of LF . Consider
vertices x, y ∈ V (L2(LF )) such that u is the center of B2(x) and v is the center of
B2(y). Due to the clique structure of LF , there is a unique shortest u − v path in
LF . Denote this path by u = a0, a1, . . . , at = v. If d(B2(x), B2(y)) = d(u, v) − 2,
then we must have a1 ∈ V (B2(x)) and at−1 ∈ V (B2(y)). There are (du − 1) ways
to choose the other endvertex of B2(x), and there are (dv − 1) ways to choose the
other endvertex of B2(y). Hence, β0(u, v) = (du − 1)(dv − 1).

Now we find β1(u, v). We distinguish two cases: d(u, v) ≥ 2 and d(u, v) = 1.
Suppose first d(u, v) ≥ 2. In this case u and v do not belong to a common

clique from C(LF ). If d(B2(x), B2(y)) = d(u, v)− 1, then either a1 ∈ V (B2(x)) or
at−1 ∈ V (B2(y)), but not both. In the first case we obtain (du − 1)

(

dv−1
2

)

pairs x, y

and in the second case
(

du−1
2

)

(dv − 1) pairs x, y. Thus

β1(u, v) = (du − 1)

(

dv − 1

2

)

+

(

du − 1

2

)

(dv − 1).

Suppose now that d(u, v) = 1. In this case, u and v belong to a common clique.
All pairs x, y mentioned in the previous case contribute to β1(u, v), but we have
to add pairs x, y such that v /∈ V (B2(x)), u /∈ V (B2(y)) and d(B2(x), B2(y)) =
d(u, v) − 1 = 0. For these pairs, the paths B2(x) and B2(y) share at least one of
their endvertices. Denote by αLF (u, v) the number of these extra pairs. Then

β1(u, v) = (du − 1)

(

dv − 1

2

)

+

(

du − 1

2

)

(dv − 1) + αLF (u, v).

5



Since we do not need to evaluate αLF (u, v) in general, we postpone this computation
until later. To simplify the notation, we set αLF (u, v) = 0 for all pairs u, v such that
d(u, v) ≥ 2.

We have
(

du
2

)(

dv
2

)

pairs x, y ∈ V (L2(LF )) such that u is the center of B2(x) and
v is the center of B2(y). Since

(

du
2

)(

dv
2

)

= (du − 1)(dv − 1) + (du − 1)

(

dv − 1

2

)

+

(

du − 1

2

)

(dv − 1)

+

(

du − 1

2

)(

dv − 1

2

)

,

we obtain β2(u, v) =
(

du−1
2

)(

dv−1
2

)

− αLF (u, v). By Proposition 2.1, it follows that

W (L2(LF )) =
∑

u 6=v

[

(

du
2

)(

dv
2

)

d(u, v) + (du − 1)

(

dv − 1

2

)

+

(

du − 1

2

)

(dv − 1) + 2

(

du − 1

2

)(

dv − 1

2

)

− αLF (u, v)

]

+
∑

u

[

3

(

du
3

)

+ 6

(

du
4

)

]

. (2)

Now we evaluate W (L3(T ∗))−W (L3(T )) = W (L2(LT ∗))−W (L2(LT )); see the
notation following Corollary 1.6. The graph LT ∗ has one more vertex than LT ,
namely the vertex b of degree 1, and the degree of a increased by 1 to da+1 in LT ∗.
Therefore, all the terms of (2) for pairs u, v which do not contain neither a nor b
cancell out in W (L2(LT ∗))−W (L2(LT )). However, we need to subtract the terms
for pairs u, a in LT and to add the terms for pairs u, a in LT ∗, u ∈ V (LT ) \ {a}.
We can ignore the terms containing b in LT ∗, since the degree of b is 1, and thus b
cannot be a center of B2(y) for any y ∈ V (L2(LT ∗)). (Observe that all terms of (2)
are 0 if one of the vertices has degree 1.) As regards the second sum in (2), we have
to subtract the term corresponding to a in LT and add the terms corresponding to
a and b in LT ∗, the second one being 0 since the degree of b is 1 in LT ∗. Denote by
∆α(u, v) the difference αLT ∗(u, v)− αLT (u, v) and denote by ∆WL2 the difference
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W (L2(LT ∗))−W (L2(LT )). By (2), it follows that

∆WL2 = −
∑

u

[

(

du
2

)(

da
2

)

d(u, a) + (du − 1)

(

da − 1

2

)

+

+

(

du − 1

2

)

(da − 1) + 2

(

du − 1

2

)(

da − 1

2

)

− αLT (u, a)

]

+
∑

u

[

(

du
2

)(

da + 1

2

)

d(u, a) + (du − 1)

(

da
2

)

+

+

(

du − 1

2

)

da + 2

(

du − 1

2

)(

da
2

)

− αLT ∗(u, a)

]

−3

(

da
3

)

− 6

(

da
4

)

+ 3

(

da + 1

3

)

+ 6

(

da + 1

4

)

=
∑

u

[

(

du
2

)

da d(u, a) + (du − 1)(da − 1)

+

(

du − 1

2

)

+ 2

(

du − 1

2

)

(da − 1)−∆α(u, v))

]

+
1

4
da (da − 1)

[

− 2(da − 2)− (da − 2)(da − 3)

+ 2(da + 1) + (da + 1)(da − 2)
]

=
∑

u

[

(

du
2

)

da d(u, a) + (du − 1)
(

du da − da −
1

2
du

)

−∆α(u, a)

]

+
1

2
da(da − 1)(2da − 1). (3)

Now we determine ∆α(u, a). For u ∈ V (LT ) \ {a}, the distance from u to a in
LT is the same as in LT ∗. Therefore ∆α(u, a) = αLT ∗(u, a)−αLT (u, a) = 0− 0 = 0
if d(u, a) ≥ 2. If d(u, a) = 1, then in order to evaluate αLT ∗(u, a) − αLT (u, a) we
need to count pairs x, y such that b ∈ V (B2(y)). Denote by C the clique of C(LT )
containing both a and u. The order of C is da + 1. We distinguish two cases.

• Both endvertices of B2(x) are in C: We have
(

da−1
2

)

choices for B2(x) in this
case since a /∈ V (B2(x)). For each of these choices there are two choices
for B2(y) such that B2(x) and B2(y) share an endvertex and b ∈ V (B2(y)).
Therefore there are 2

(

da−1
2

)

pairs x, y contributing to ∆α(u, v) in this case.

• Only one endvertex of B2(x) is in C: For this vertex we have da − 1 choices,
since a /∈ V (B2(x)), and for the other endvertex of B2(x) we have du − da
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choices. In this case, for every x there is a unique y such that B2(x) and B2(y)
share an endvertex and b ∈ V (B2(y)). Thus there are (da − 1)(du − da) pairs
x, y contributing to ∆α(u, v) in this case.

Hence,

∆α(u, v) = 2

(

da − 1

2

)

+ (da − 1)(du − da) = (da − 1)(du − 2) = φ(u, a). (4)

Now we evaluate W (T ∗)−W (T ). If F is a tree with n0 vertices, then W (LF ) =
W (F )−

(

n0

2

)

, by Theorem 1.1. Denote by n1 the number of vertices of LF . Since

n1 = n0−1, we have W (F ) = W (LF )+
(

n1+1
2

)

. Denote by n the number of vertices
of LT . Then

W (T ∗)−W (T ) = W (LT ∗) +

(

n+ 2

2

)

−W (LT )−

(

n+ 1

2

)

= W (LT ∗)−W (LT ) + n+ 1.

In W (LT ∗) − W (LT ), all terms for pairs u, v which do not contain b will cancell
out. Therefore

W (T ∗)−W (T ) =
∑

u

d(u, b) + d(a, b) + n+ 1

=
∑

u

(

d(u, a) + 1
)

+ 1 +
∑

u

1 + 2

=
∑

u

(

d(u, a) + 2
)

+ 3. (5)

where the sum goes once again through n− 1 vertices u ∈ V (LT ) \ {a}.
Since ∆T = D(T ∗) − D(T ) = W (L3(T ∗)) − W (T ∗) − W (L3(T )) + W (T ) =

∆WL2−(W (T ∗)−W (T )), combining (3), (4) and (5) we obtain the required result.

3 Proof of Theorem 1.5

We prove that ∆T ≥ 0 for every tree T which is not homeomorphic to a path, claw
K1,3 or the graph H . Let l, a′, b′, a, b, T ∗ and ∆T be as in the discussion following
Corollary 1.6. As explained there, we proceed by induction on l.

First we prove that ∆T ≥ 0 for the case l = 0. In this case, a′ is adjacent to a
vertex of degree at least 3 in T , implying that in LT we have da ≥ 2.

Let v be an endvertex of a ray (a pendant path) R in LT , that is, dv = 1. By v
we denote the first vertex of R, i.e., a vertex at shortest distance to v whose degree
is at least 3. Due to the clique structure of LT described after Proposition 2.1, we
have:
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Observation 3.1 If u and v are distinct vertices of degree 1 in LT , then u 6= v.

We use Obseravtion 3.1 repeatedly in the following proofs.

Lemma 3.2 Let T be a tree different from a path in which all rays have length at

most l + 2, and let l = 0. Then ∆T ≥ 0.

Proof We find a lower bound for
∑

u hLT (u). Consider four cases:

• du = 1: Then d(u, a) > 1, and thus hLT (u) = −d(u, a)− 2 by (1).

• du = 2: Since (da− 1)(du− 2) = 0, we see that φ(u, a) = 0 in this case as well.
By (1) we obtain

hLT (u) = (da − 1)d(u, a) + da − 3 ≥ da − 1 + da − 3 = 2da − 4 ≥ 0

since da ≥ 2.

• du ≥ 3 and d(u, a) ≥ 2: By (1) it follows that

hLT (u) =

(

(

du
2

)

da − 1

)

d(u, a) + (du − 1)
(

du da − da −
1

2
du

)

− 2

≥ 5d(u, a) + (du − 1)
1

2

[

da (du − 2) + du (da − 1)
]

− 2

≥ 5d(u, a) + 5− 2

≥ d(u, a) + 11

as du ≥ 3, da ≥ 2 and d(u, a) ≥ 2.

• du ≥ 3 and d(u, a) = 1: By (1) it follows that

hLT (u) =

(

(

du
2

)

da − 1

)

d(u, a) + (du − 1)
(

du da − da −
1

2
du

)

− 2

− (da − 1)(du − 2)

≥ 5d(u, a) + du
2da −

1

2
du

2 − 3du da +
3

2
du + 3da −

3

2
−

5

2

= 5d(u, a) +
1

2

[

(2da − 1)
(

du(du − 3) + 3
)

− 5
]

≥ d(u, a) + 6

as du ≥ 3, da ≥ 2 and d(u, a) = 1.
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Hence,

hLT (u) ≥







−d(u, a)− 2 if du = 1,
0 if du = 2,
d(u, a) + 6 if du ≥ 3.

(6)

Since l = 0, all rays of T have length at most 2, implying that all rays of LT
have length at most 1. Hence, if du = 1, then d(u, u) = 1 in LT . Thus

hLT (u) + hLT (u) ≥ −d(u, a)− 2 + d(u, a) + 6 = −d(u, a)− 3 + d(u, a) + 6 ≥ 0.

Denote by V1 the set of vertices of degree 1 in V (LT ) \ {a}. By Observation 3.1, we
have u 6= v whenever u, v ∈ V1, u 6= v. Therefore, by (6) it follows that

∑

u

hLT (u) ≥
∑

u∈V1

(

hLT (u) + hLT (u)
)

≥ 0.

Since da ≥ 2, we have 1
2
da (da − 1)(2da − 1) ≥ 3, implying that

∆T =
∑

u

hLT (u) +
1

2
da (da − 1)(2da − 1)− 3 ≥ 0,

by Proposition 2.2.

Now we prove that ∆T ≥ 0 for all l ≥ 1, that is, from now on we consider l ≥ 1.
In this case φ(u, a) = 0 since da = 1, which simplifies the expression for hLT (u) in
(1). The problem is that hLT (u) < 0 even if du = 2, suggesting that we need sharper
estimations. We prove ∆T ≥ 0 by induction on the number of vertices of degree at
least 3 in T .

Let G be a graph. A path of length at least one in G is interior path if its
endvertices have degrees both at least 3, its interior vertices (if any) have degree 2
in G, and its edges are bridges of G. In the next lemma we show that it suffices to
prove ∆T ≥ 0 for trees whose interior paths have lengths at most 2, i.e., we reduce
the class of trees for which we need to prove ∆T ≥ 0.

Lemma 3.3 Let T s be obtained from T by subdividing one edge of an interior path

of length t, t ≥ 2, and let l ≥ 1. Then ∆T s ≥ ∆T .

Proof Denote by P ′ the interior path of T , whose edge was subdivided to obtain
T s. Since P ′ has length t ≥ 2, the edges of P ′ form an interior path P of length
t − 1 ≥ 1 in LT . Obviously, LT s can be obtained from LT by subdividing one
edge of P . Denote by e the endvertex of P , which has among the vertices of P the
greatest distance from a. Let LT s be obtained from LT by subdividing that edge
of P which is incident to e. Denote the new vertex by w. Observe that for every
vertex u ∈ V (LT ), the degree of u in LT is the same as its degree in LT s.
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Since the degree of a is the same in LT s as in LT , namely 1, by Proposition 2.2 it
suffices to show that

∑

u∈V (LT s)\{a} hLT s(u) ≥
∑

u∈V (LT )\{a} hLT (u). We distinguish
three cases.

• u is a vertex of LT such that e does not lie on u − a path in LT : Then
dLT s(u, a) = dLT (u, a), implying that hLT s(u) = hLT (u) and hLT s(u)−hLT (u) =
0, see (1).

• u is a vertex of LT , such that e lays on u− a path in LT : Then dLT s(u, a) =
dLT (u, a) + 1, implying that hLT s(u)−hLT (u) =

(

du
2

)

− 1 since da = 1; see (1).
Thus hLT s(u) − hLT (u) = −1 if du = 1, hLT s(u) − hLT (u) = 0 if du = 2 and
hLT s(u)− hLT (u) ≥ 2 if du ≥ 3.

• u = w: Since the degree of w is 2 in LT s, we see that hLT s(w) = −2, by (1).

Every vertex u of degree 1 in LT is an endvertex of a ray starting at vertex u of
degree at least 3. By Observation 3.1, if u and v are distinct vertices of degree 1 in
LT , then u 6= v. Denote by Ve the set of vertices u of LT such that du = 1 and e
lays on u− a path. Observe that e 6= u for any u ∈ Ve.

Denote ∆h =
∑

u∈V (LT s)\{a} hLT s(u) −
∑

u∈V (LT )\{a} hLT (u). By the analysis

above only vertices of Ve ∪ {w} contribute negative value to ∆h. Therefore

∆h ≥
∑

u∈Ve

[(

hLT s(u)− hLT (u)
)

+
(

hLT s(u)− hLT (u)
)]

+
(

hLT s(e)− hLT (e)
)

+ hLT s(w)

≥
∑

u∈Ve

(−1 + 2) + 2− 2 ≥ 0.

Hence ∆T s ≥ ∆T .

Let F be a tree with a ray of length l + 1 terminating in the edge a. Denote
by SLF the set of first edges of rays of F . Then SLF is also a set of vertices of LF .
These vertices have degree at least 3, with the exception when the corresponding
edge is incident to vertices of degree 1 and 3 in F . Let u ∈ SLF . If there is a ray in
LF starting at u, then denote by RLF (u) the set of vertices (other than a) of this
ray; otherwise set RLF (u) = {u}. Since l ≥ 1, there is a ray in LF starting at a and
a 6= s. Observe also that RLF (u) ∩RLF (v) = ∅ whenever u, v ∈ SLF , u 6= v.

Lemma 3.4 Let F be a tree rays of which have length at most l+2, l ≥ 1. Moreover,

one ray of F has length exactly l + 1 and this ray terminates in the edge a. Let
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c ∈ SLF be a vertex of a clique from C(LF ) of order r ≥ 3. Then

∑

u∈RLF (c)

hLF (u) ≥



















(

(

r

2

)

− 3
)

l +
(

r−1
2

)

if c = a,
(

(

r−1
2

)

− 1
)

d(c, a) +
(

r−2
2

)

− 2 if c 6= a and |RLF (c)| = 1,
(

(

r

2

)

− 2
)

d(c, a)− 3l +
(

r−1
2

)

− 5 if c 6= a and |RLF (c)| ≥ 2.

Proof We distinguish three cases.

• c = a: Then RLF (c) has one vertex of degree r, namely c with d(c, a) = l, and
l − 1 vertices of degree 2. Since the degree of a is 1, by (1) we have

∑

u∈RLF (c)

hLF (u) =

(

(

r

2

)

− 1

)

d(c, a) + (r − 1)
(r − 2

2

)

− 2 + (l − 1)(−2)

=

(

(

r

2

)

− 3

)

l +

(

r − 1

2

)

.

• c 6= a and |RLF (c)| = 1: Since the degree of c is r − 1, by (1) we obtain

∑

u∈RLF (c)

hLF (u) = hLF (c) =

(

(

r − 1

2

)

− 1

)

d(c, a) + (r − 2)
(r − 3

2

)

− 2.

• c 6= a and |RLF (c)| ≥ 2: Then RLF (c) has one vertex of degree r, namely c,
one vertex of degree 1 at distance at most d(c, a) + l + 1 from a and at most
l vertices of degree 2 since all rays of LF have length at most l + 1. By (1) it
follows that

∑

u∈RLF (c)

hLF (u) ≥

(

(

r

2

)

− 1

)

d(c, a) + (r − 1)
(r − 2

2

)

− 2

− (d(c, a) + l + 1)− 2 + l(−2)

=

(

(

r

2

)

− 2

)

d(c, a)− 3l +

(

r − 1

2

)

− 5.

Before we state the lemmas necessary for the basis of induction, we give the
proof of induction step. That is, we prove that if ∆T h ≥ 0 for every tree T h

homeomorphic to T rays of which have lengths at most l+2, then ∆T gh ≥ 0 for all
trees T gh homeomorphic to T g rays of which have lengths at most l+2, where T g is
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obtained from T by inserting a star at the end of one ray of T (of course, we cannot
attach this star to a′).

Let R′ be a ray of T which does not terminate at a′. Remove R′ from T and
replace it by a path PR′ of length i, 1 ≤ i ≤ 2. Denote by c′ the vertex of degree 1
in PR′. Now attach to c′ exactly j−1 rays, each of length at most l+2, and denote
the resulting graph by Ti,j, j ≥ 3. In the next two lemmas we prove that ∆Ti,j ≥ 0.

 dT :

≤ l+2

l+1

a′ b′

a
R′

T2,3 :

≤ l+2

l+1

a′ b′

a

PR′

Figure 2: The trees T and T2,3 in the case l = 2.

Lemma 3.5 Suppose that ∆T h ≥ 0 for all trees T h homeomorphic to T rays of

which have lengths at most l+2, l ≥ 1, and in which the ray terminating in the edge

a has length l + 1. Then ∆Ti,3 ≥ 0 for all i ∈ {1, 2}.

Proof Since ∆T h ≥ 0 for all trees homeomorphic to T rays of which have length
at most l+2, we may assume that the length of R′ is exactly l+2, l ≥ 1. Then the
edges of R′ form a ray R in LT of length l + 1. Denote by e the first vertex of R.
By (1) it follows that

∑

u∈RLT (e)\{e}

hLT (u) = −2l − (d(e, a) + l + 1)− 2 = −d(e, a)− 3l − 3

since RLT (e) has l vertices of degree 2 and one vertex of degree 1 at distance d(e, a)+
l + 1 from a. We distinguish two cases.

• i = 1: Then PR′ has length 1 and the unique edge of PR′ corresponds to the
vertex e in LT1,3. In LT1,3 the degree of e is de+3−2 = de+1 since e is in two
cliques from C(LT1,3), one of them has order de and the other one has order 3.
Denote by c any one of the other two vertices of this clique of order 3. Since
d(c, a) ≥ l + 2, we see that d(c, a)− 3l − 4 ≥ −2l − 2. Hence, by Lemma 3.4,

∑

u∈RLT1,3
(c)

hLT1,3
(u) ≥

{

−2 if |RLT1,3
(c)| = 1,

−2l − 2 if |RLT1,3
(c)| ≥ 2.

Since −2l − 2 ≤ −2, we have
∑

u∈RLT1,3
(c) hLT1,3

(u) ≥ −2l − 2.
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Denote
∆h =

∑

u∈V (LT1,3)\{a}

hLT1,3
(u)−

∑

u∈V (LT )\{a}

hLT (u).

In ∆h all terms cancel out, except the terms corresponding to vertices of rays
starting at the clique of order 3 containing e, the vertex e itself, and the vertices
of RLT (e) \ {e}. By (1) it follows that

∆h ≥ 2(−2l − 2) +

(

(

de + 1

2

)

− 1

)

d(e, a) + de

(de + 1

2
− 1
)

− 2

−

(

(

de
2

)

− 1

)

d(e, a)− (de − 1)
(de
2

− 1
)

+ 2 + (d(e, a) + 3l + 3)

≥ (de + 1)d(e, a) + (de − 1)− l − 1

≥ 4d(e, a)− l + 1 ≥ 0

since de ≥ 3 and d(e, a) ≥ l + 1. By Proposition 2.2, we have ∆T1,3 −∆T =
∆h ≥ 0, implying that ∆T1,3 ≥ ∆T ≥ 0.

• i = 2: Then PR′ has length 2. One edge of PR′ corresponds to e, while the
other corresponds to a vertex of degree 3, say f , in LT2,3. Observe that the
degree of e is de in LT2,3 and the degree of f is 3 in LT2,3. Analogously as in the
previous case, denote by c any one of the two vertices of the triangle containing
f , c 6= f . Since d(c, a) = d(e, a)+2 ≥ l+3, we see that d(c, a)−3l−4 ≥ −2l−1.
Hence, by Lemma 3.4

∑

u∈RLT2,3
(c)

hLT2,3
(u) ≥

{

−2 if |RLT2,3
(c)| = 1,

−2l − 1 if |RLT2,3
(c)| ≥ 2.

Since l ≥ 1, it follows that−2l−1 ≤ −2, implying that
∑

u∈RLT2,3
(c) hLT2,3

(u) ≥

−2l − 1. Denote

∆h =
∑

u∈V (LT2,3)\{a}

hLT2,3
(u)−

∑

u∈V (LT )\{a}

hLT (u).

In ∆h all terms cancell out, except the terms corresponding to vertices of
rays starting at the clique of order 3 containing f , the vertex f itself, and the
vertices of RLT (e) \ {e}. By (1) it follows that

∆h ≥ 2(−2l − 1) + (2d(f, a)− 1) + (d(e, a) + 3l + 3)

≥ 3d(e, a)− l + 2 ≥ 0

since d(f, a) = d(e, a) + 1 and d(e, a) ≥ l + 1. By Proposition 2.2, we have
∆T2,3 −∆T = ∆h ≥ 0, implying that ∆T2,3 ≥ ∆T ≥ 0.
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In both cases the inequality ∆Ti,3 ≥ 0 holds, which completes the proof.

Now we extend the previous lemma to trees Ti,j with higher j.

Lemma 3.6 Suppose that ∆T h ≥ 0 for all trees T h homeomorphic to T rays of

which have lengths at most l+2, l ≥ 1, and in which the ray terminating in the edge

a has length l + 1. Then ∆Ti,j ≥ 0 for all j ≥ 4 and i ∈ {1, 2}.

Proof We use the notation of the proof of Lemma 3.5. Analogously as in the
proof of Lemma 3.5, assume that the length of R′ is l + 2, l ≥ 1. Then again

∑

u∈RLT (e)\{e}

hLT (u) = −d(e, a)− 3l − 3.

Let c be one of the j − 1 vertices of the clique of order j obtained from the edges
incident to c′, other than e (in the case i = 1) or f (in the case i = 2). By Lemma 3.4
it follows that

∑

u∈RLTi,j
(c)

hLTi,j
(u) ≥







(

(

j−1
2

)

− 1
)

d(c, a) +
(

j−2
2

)

− 2 if |RLTi,j
(c)| = 1,

(

(

j

2

)

− 2
)

d(c, a)− 3l +
(

j−1
2

)

− 5 if |RLTi,j
(c)| ≥ 2.

Since j ≥ 4 and d(c, a) ≥ l + 2 ≥ 3, in any case we have
∑

u∈RLTi,j
(c) hLTi,j

(u) ≥ 0.

Now if i = 1, then hLTi,j
(e) − hLT (e) ≥ 0 since the degree of e is de + j − 2 in Ti,j;

see (1). On the other hand, if i = 2, then hLTi,j
(e) = hLT (e) while hLTi,j

(f) ≥ 0,
since the degree of f is j ≥ 4 in Ti,j. Hence

∆h =
∑

u∈V (LTi,j)\{a}

hLTi,j
(u)−

∑

u∈V (LT )\{a}

hLT (u) ≥ (j − 1) · 0 + 0 + d(e, a) + 3l + 3 ≥ 0.

By Proposition 2.2, we have ∆Ti,j −∆T = ∆h ≥ 0, showing that ∆Ti,j ≥ ∆T ≥ 0.

Now we prove ∆T ≥ 0 for the basis of induction. In all graphs in this basis, a′

is an endvertex of a ray of length l + 1 and a is the edge incident with a′.

Lemma 3.7 Let T be a tree homeomorphic to a star K1,k, k ≥ 4, in which all rays

have lengths at most l+2, l ≥ 1, and in which the ray terminating in the edge a has

length l + 1. Then ∆T ≥ 0.

Proof Here |SLT | = k and ∪u∈SLT
RLT (u) = V (LT ) \ {a} where RLT (u) ∩

RLT (v) = ∅ if u 6= v. Thus
∑

u hLT (u) =
∑

c∈SLT
(
∑

u∈RLT (c) hLT (u)). We prove that
∑

u∈RLT (c) hLT (u) ≥ 1.
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Choose c ∈ SLT . By Lemma 3.4 it follows that

∑

u∈RLT (c)

hLT (u) ≥



















(

(

k

2

)

− 3
)

l +
(

k−1
2

)

if c = a,
(

(

k−1
2

)

− 1
)

d(c, a) +
(

k−2
2

)

− 2 if c 6= a and |RLT (c)| = 1,
(

(

k

2

)

− 2
)

d(c, a)− 3l +
(

k−1
2

)

− 5 if c 6= a and |RLT (c)| ≥ 2.

Since d(c, a) = l + 1 in the last two cases, k ≥ 4 and l ≥ 1, in all three cases we
conclude

∑

u∈RLT (c) hLT (u) ≥ 1.

We have
∑

u hLT (u) =
∑

c∈SLT
(
∑

u∈RLT (c) hLT (u)) ≥ k · 1 ≥ 4. Since da = 1, we

see that ∆T =
∑

u hLT (u)− 3 by Proposition 2.2, implying that ∆T ≥ 0.

Denote by Hi,j a tree having i+j vertices, where both i and j are at least 3. One
of these vertices has degree i, another one has degree j and the remaining i+ j − 2
vertices have degrees 1. Obviously, the vertices of degrees i and j must be adjacent
in Hi,j and H = H3,3.

Lemma 3.8 Let T be a tree homeomorphic to H3,j, j ≥ 4, in which all rays have

lengths at most l + 2, l ≥ 1, and in which the ray terminating in the edge a has

length l+1. Suppose that the interior path of H3,j has length at most 2 and moreover

suppose that the first vertex of the ray terminating in a has degree 3. Then ∆T ≥ 0.

Proof Denote e = a and let P ′ be the unique interior path of T . If P ′ has
length 1, then the unique vertex of LP ′ (denote it by v) has degree 3 + j − 2 ≥ 5,
while if P ′ has length 2, then one of the vertices of LP ′ has degree 3 and the
other (denote it by v) has degree j ≥ 4. Since by (1), hLT (u) ≥ 0 if du ≥ 3 and
hLT (u) ≥ 5d(u, a)+1 if du ≥ 4, the vertices of LP ′ contribute to

∑

u∈V (LT )\{a} hLT (u)

by at least 5d(v, a) + 1 ≥ 5l + 6 since d(v, a) ≥ l + 1.
Denote by c any one of the j − 1 vertices of the clique of order j from C(H3,j),

which is not in LP ′. By Lemma 3.4 it follows that

∑

u∈RLT (c)

hLT (u) ≥







(

(

j−1
2

)

− 1
)

d(c, a) +
(

j−2
2

)

− 2 if |RLT (c)| = 1,
(

(

j

2

)

− 2
)

d(c, a)− 3l +
(

j−1
2

)

− 5 if |RLT (c)| ≥ 2.

Since j ≥ 4 and d(c, a) ≥ l + 2 ≥ 3, in any case we have
∑

u∈RLT (c) hLT (u) ≥ 0.

Now consider the rays attached to the clique of order 3 from C(H3,j). By
Lemma 3.4

∑

u∈RLT (e)

hLT (u) =

(

(

3

2

)

− 3

)

l +

(

3− 1

2

)

= 1.
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Denote by f that vertex of the clique of order 3 from C(H3,j) which is different from
e and which is not in LP ′. By Lemma 3.4 it follows that

∑

u∈RLT (f)

hLT (u) ≥

{

−2 if |RLT (f)| = 1,
d(f, a)− 3l − 4 if |RLT (f)| ≥ 2.

Since d(f, a) = l + 1 and l ≥ 1, in any case we have
∑

u∈RLT (f) hLT (u) ≥ −2l − 3.
Now summing up the inequalities above we obtain

∑

u

hLT (u) ≥ (5l + 6) + (j − 1) · 0 + 1 + (−2l − 3) = 3l + 4 ≥ 3.

Since da = 1, we have ∆T =
∑

u hLT (u) − 3 by Proposition 2.2, showing that
∆T ≥ 0.

Denote by Yi,j, 1 ≤ i, j ≤ 2, a tree having three vertices of degree 3, namely y′1,
y′2 and y′3. All the other vertices of Yi,j have degree at most 2. There are two interior
paths in Yi,j, namely y′1− y′2 and y′2− y′3, and their lengths are i and j, respectively.
Moreover, there are five rays in Yi,j. Two such rays start at y′1, one starts at y′2
and two start at y′3. Of course, one of these rays has length exactly l + 1 and it
terminates in a′.

Lemma 3.9 Let T be the tree Yi,j, 1 ≤ i, j ≤ 2, in which all rays have lengths at

most l + 2, l ≥ 1. Then ∆T ≥ 0.

Proof Denote by x1, x2, x3, x4 and x5 the five vertices of SLT corresponding
to the first edges of rays starting at y′1, y

′
1, y

′
2, y

′
3 and y′3, respectively. Since the

degrees of y′1, y
′
2 and y′3 are 3 in T , all x1, x2, . . . , x5 are vertices of cliques of order

3 in LT . Let xt = a, 1 ≤ t ≤ 5. By Lemma 3.4
∑

u∈RLT (xt)

hLT (u) = 1.

For all other xr, 1 ≤ r ≤ 5 and r 6= t, by Lemma 3.4 we obtain
∑

u∈RLT (xr)

hLT (u) ≥ min{−2, d(xr, a)− 3l − 4}.

Since l ≥ 1, this minimum equals d(xr, a)−3l−4 if d(xr, a) ≤ l+4. If d(xr, a) = l+5
then

∑

u∈RLT (xr)
hLT (u) ≥ min{−2,−2l + 1} ≥ −2l.

Now we consider vertices corresponding to the edges of interior paths. If such a
path has length 1, then its unique edge corresponds to a vertex, say e, the degree of
which is 4 in LT . By (1) it follows that

hLT (e) = 5d(e, a) + 1.
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On the other hand, if such a path has length 2, then its edges correspond to two
vetices, say e and f , both of degree 3. Suppose that e is closer to a than f . By (1)
it follows that

hLT (e) + hLT (f) = 2d(e, a)− 1 + 2d(f, a)− 1 = 4d(e, a).

In what follows, we list contributions to
∑

u hLT (u) first by vertices of rays
starting at x1, x2, . . . , x5 and then by the vertices corresponding to edges of paths
y′1 − y′2 and y′2 − y′3. By symmetry, there are two cases to consider. First, suppose
that t = 1, that is, a = x1. We distinguish 4 subcases.

• i = j = 1: Then d(x2, a) = l+1, d(x3, a) = l+2 and d(x4, a) = d(x5, a) = l+3.
Since l ≥ 1, we see that

∑

u

hLT (u) ≥ 1+(−2l−3)+(−2l−2)+2(−2l−1)+(5l+6)+(5l+11) ≥ 2l+11 ≥ 3.

• i = 1 and j = 2: Analogously as above we obtain

∑

u

hLT (u) ≥ 1+(−2l−3)+(−2l−2)+2(−2l)+(5l+6)+(4l+8) ≥ l+10 ≥ 3.

• i = 2 and j = 1: Then

∑

u

hLT (u) ≥ 1+(−2l−3)+(−2l−1)+2(−2l)+(4l+4)+(5l+16) ≥ l+17 ≥ 3.

• i = j = 2: Here d(x4, a) = d(x5, a) = l + 5. Hence

∑

u

hLT (u) ≥ 1+(−2l−3)+(−2l−1)+2(−2l)+(4l+4)+(4l+12) ≥ 13 ≥ 3.

Now suppose that t = 3, that is, a = x3. By symmetry, it suffices to consider 3
subcases.

• i = j = 1: Then d(x1, a) = d(x2, a) = l+2 and also d(x4, a) = d(x5, a) = l+2.
Since l ≥ 1, we see that

∑

u

hLT (u) ≥ 2(−2l − 2) + 1 + 2(−2l − 2) + (5l + 6) + (5l + 6) ≥ 2l + 5 ≥ 3.

• i = 1 and j = 2: Then the following holds

∑

u

hLT (u) ≥ 2(−2l − 2) + 1 + 2(−2l − 1) + (5l + 6) + (4l + 4) ≥ l + 5 ≥ 3.
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• i = j = 2: Then
∑

u

hLT (u) ≥ 2(−2l − 1) + 1 + 2(−2l − 1) + (4l + 4) + (4l + 4) ≥ 5 ≥ 3.

Since ∆T =
∑

u hLT (u)− 3 by Proposition 2.2, we conclude that ∆T ≥ 0.

Now we prove ∆T ≥ 0 for the last graph of the basis of induction. Denote by
Xk, k ≥ 4, the tree having two vertices of degree 3, namely y′1 and y′2, and one
vertex of degree k, namely y′3. All other vertices of Xk have degree at most 2. There
are two interior paths in Xk, namely y′1 − y′2 and y′2 − y′3, both of length at most 2.
Moreover, there are k + 2 rays in Xk. Two such rays start at y′1, one starts at y′2
and the remaining k − 1 start at y′3.

Lemma 3.10 Let T be the tree Xk, k ≥ 4, in which all rays have lengths at most

l+ 2, l ≥ 1. Suppose that the ray having length l+1 and terminating at a′ starts at
y′1. Then ∆T ≥ 0.

Proof We use the notation of the proof of Lemma 3.9. Denote by x1, x2, x3, x4,
. . . xk+2 the k+2 vertices of SLT corresponding to the first edges of rays starting at
y′1, y

′
1, y

′
2, y

′
3, . . . , y

′
3, respectively. The vertices x1, x2 and x3 are in cliques of order 3,

while x4, . . . , xk+2 are in the clique of order k. Assume that a = x1. As shown in the
proof of Lemma 3.9, we have

∑

u∈RLT (x1)
hLT (u) = 1. Further,

∑

u∈RLT (x2)
hLT (u) ≥

−2l − 3 since d(x2, a) = l + 1. The vertices corresponding to edges of y′1 − y′2 path
contribute to

∑

u hLT (u) by at least min{5d(e, a)+1, 4d(e, a)} = 4d(e, a) = 4l+4 as
d(e, a) = l + 1. Finally,

∑

u∈RLT (x3)
hLT (u) ≥ min{−2, d(x3, a)− 3l − 4} ≥ −2l − 2

as d(x3, a) ≥ l + 2.
Since the vertices corresponding to edges of y′2 − y′3 path have degree k + 1 (in

the case when the length of y′2 − y′3 is 1) or 3 and k (in the case when the length
of y′2 − y′3 is 2), and since hLT (u) ≥ 0 if du ≥ 3 by (1), the contribution of these
vertices to

∑

u hLT (u) is nonnegative.
Finally, consider

∑

u∈RLT (xi)
hLT (u) when i ≥ 4. By Lemma 3.4 it follows that

∑

u∈RLT (xi)

hLT (u) ≥







(

(

k−1
2

)

− 1
)

d(xi, a) +
(

k−2
2

)

− 2 if |RLT (xi)| = 1,
(

(

k

2

)

− 2
)

d(xi, a)− 3l +
(

k−1
2

)

− 5 if |RLT (xi)| ≥ 2.

Since d(xi, a) ≥ l+3, k ≥ 4 and l ≥ 1, we obtain
∑

u∈RLT (xi)
hLT (u) ≥ min{7, 11} =

7.
Summing up these inequalities we obtain
∑

u

hLT (u) ≥ 1 + (−2l − 3) + (4l + 4) + (−2l − 2) + 0 + (k − 1)7 = 7k − 7 ≥ 3.
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Since da = 1, by Proposition 2.2 we conclude that ∆T =
∑

u hLT (u)− 3 ≥ 0.

Now we summarize the proof of Theorem 1.5

Proof of Theorem 1.5 Let T be a tree, not homeomorphic to a path, claw
K1,3 and H . We prove that D(T ) = W (L3(T ))−W (T ) > 0. Denote by l+2, l ≥ −1,
the length of a longest ray in T . If l = −1 then D(T ) = W (L3(T ))−W (T ) > 0 by
Theorem 1.4.

Suppose that l ≥ 0 and suppose that the statement of the theorem is true for all
trees (not homeomorphic to a path, claw K1,3 and H) rays of which have lengths at
most l + 1. Let R′

1, R
′
2, . . . , R

′
t be rays of T having length l + 2. Further, denote by

c′i the first vertex of R′
j , denote by b′i its last vertex and denote by a′i the neighbour

of b′i in T , 1 ≤ i ≤ t. Finally, denote by Ti a tree obtained from T by removing
the vertices b′i+1, b

′
i+2, . . . , b

′
t and edges a′i+1b

′
i+1, a

′
i+2b

′
i+2, . . . , a

′
tb

′
t, 0 ≤ i ≤ t. Then

Tt = T and T0 is a tree rays of which have length at most l + 1. By induction we
have D(T0) = W (L3(T0))−W (T0) > 0. Let ∆Ti = D(Ti+1)−D(Ti), 0 ≤ i ≤ t− 1.

Suppose that l = 0. All rays of Ti have length at most l + 2, and the ray R′
i+1

terminating at a′i+1 has length l+1. Moreover, Ti+1 is obtained from Ti by adding the
vertex b′i+1 and the edge a′i+1b

′
i+1. Hence ∆Ti ≥ 0 by Lemma 3.2, 0 ≤ i ≤ t−1, where

the vertex a′i+1 and the tree Ti play the role of a and T , respectively. Consequently
∑t−1

i=0 ∆Ti ≥ 0. Since

0 ≤
t−1
∑

i=0

∆Ti = D(Tt)−D(T0) = [W (L3(T ))−W (T )]− [W (L3(T0))−W (T0)],

we have W (L3(T ))−W (T ) ≥ W (L3(T0))−W (T0) > 0.
Now suppose that l ≥ 1. In Ti shorten all interior paths of length at least 3 to

paths of length 2, and denote the resulting graph by T−
i . Analogously as Ti+1 is

obtained from Ti, the tree T−
i+1 is obtained from T−

i by adding the vertex b′i+1 and
the edge a′i+1b

′
i+1. We prove that ∆T−

i = D(T−
i+1)−D(T−

i ) ≥ 0 by induction on the
number of vertices of degree at least 3. Observe that T−

i , as welll as Ti, is a tree,
rays of which have length at most l + 2 and the ray terminating at a′i+1 has length
l + 1, 0 ≤ i ≤ t− 1.

Denote by V 3
i the set of vertices of degree at least 3 in T−

i . We distinguish four
cases.

• |V 3
i | = 1: Then T−

i is homeomorphic to K1,k. Since T is not homeomorphic
to K1,3, it follows that k ≥ 4. By Lemma 3.7 we have ∆T−

i ≥ 0.

• |V 3
i | = 2: If the degree of c′i+1 is 3, then ∆T−

i ≥ 0 by Lemma 3.8, since T is not
homeomorphic to H = H3,3. On the other hand if the degree of c′i+1 is k ≥ 4,
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then denote by c′′ the other vertex of V 3
i . Remove the rays starting at c′′ from

T−
i , and denote the resulting graph by T ′′. Then T ′′ is a tree, rays of which

have length at most l+2, and T ′′ is homeomorphic to K1,k. By Lemma 3.7 we
have ∆T ′′ ≥ 0. If the degree of c′′ is 3, then ∆T−

i ≥ 0 by Lemma 3.5, while if
the degree of c′′ is at least 4, then ∆T−

i ≥ 0 by Lemma 3.6.

• |V 3
i | = 3: Denote by T ∗ a graph obtained from T−

i by removing the edges of
all rays. Since T ∗ is a tree, it has at least two vertices of degree 1. (We remark
that in this case T ∗ is a path.) Denote by c′′ a pendant vertex in T ∗, c′′ 6= c′i+1,
the degree of which is the smallest possible in T−

i . Finally, denote by T ′′ a
tree obtained from T−

i by removing all rays starting at c′′. We distinguish two
subcases.

– T ′′ is homeomorphic to H : If the degree of c′′ is 3 in T then ∆T−
i ≥ 0 by

Lemma 3.9. Suppose that the degree of c′′ is k, k ≥ 4. By the choice of
c′′, the vertex c′i+1 is a leaf of T ∗. Hence T is Xk and c′i+1 is the vertex
y′1 in the notation of Lemma 3.10. Therefore ∆T−

i ≥ 0 by Lemma 3.10.

– T ′′ is homeomorphic to Hi,j, i ≤ j and j ≥ 4: Since T ′′ is not homeo-
morphic to H , it follows that ∆T ′′ ≥ 0 by the previous case (the case
|V 3

i | = 2). If the degree of c′′ is 3, then ∆T−
i ≥ 0 by Lemma 3.5; while if

the degree of c′′ is at least 4, then ∆T−
i ≥ 0 by Lemma 3.6.

Thus we proved ∆T−
i ≥ 0 for every tree T−

i rays of which have length at most
l + 2 and |V 3

i | = 3.

• |V 3
i | ≥ 4: Analogously as in the previous case, denote by T ′′ a tree obtained

from T−
i by removing all rays starting at a pendant vertex c′′ of T ∗, c′′ 6= c′i+1.

By induction we assume that ∆T ′′ ≥ 0. If the degree of c′′ is 3, then ∆T−
i ≥ 0

by Lemma 3.5, while if the degree of c′′ is at least 4, then ∆T−
i ≥ 0 by

Lemma 3.6.

Hence, in any case we have ∆T−
i ≥ 0. If T−

i = Ti, then it follows that also
∆Ti ≥ 0. Otherwise form a sequence T−

i = F0, F1, . . . , Fr = Ti such that Fj+1 is
obtained from Fj by subdividing one edge of one interior path, 0 ≤ j ≤ r − 1. By
Lemma 3.3 we have ∆Fj+1 −∆Fj ≥ 0. Hence

∑r−1
j=0(∆Fj+1 −∆Fj) ≥ 0. Since

0 ≤
r−1
∑

j=0

(∆Fj+1 −∆Fj) = ∆Ti −∆T−
i ,

we see that ∆Ti ≥ ∆T−
i ≥ 0.

Thus we proved that ∆Ti ≥ 0 for every i ∈ {0, 1, . . . , t−1}. Hence
∑t−1

i=0 ∆Ti ≥ 0.
Since

0 ≤
t−1
∑

i=0

∆Ti = D(Tt)−D(T0) = [W (L3(T ))−W (T )]− [W (L3(T0))−W (T0)],
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we conclude that W (L3(T ))−W (T ) ≥ W (L3(T0))−W (T0) > 0.
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