A note on 2-subset-regular self-complementary 3-uniform hypergraphs

Martin Knor* and Primož Potočnik†

Abstract

We show that a 2-subset-regular self-complementary 3-uniform hypergraph with \(n \) vertices exists if and only if \(n \geq 6 \) and \(n \) is congruent to 2 modulo 4.

1 Introduction

A \(k \)-uniform hypergraph of order \(n \) is an ordered pair \(\Gamma = (V, E) \), where \(V = V(\Gamma) \) is an arbitrary set of size \(n \), and \(E = E(\Gamma) \) is a subset of \(V^{(k)} = \{e \subseteq V : |e| = k\} \). Note that the notion of a 2-uniform hypergraph coincides with the usual notion of a simple graph. We shall call a \(k \)-uniform hypergraph simply a \(k \)-hypergraph.

A \(k \)-hypergraph \(\Gamma \) is self-complementary if it is isomorphic to its complement \(\Gamma^C \), defined by \(V(\Gamma^C) = V(\Gamma) \) and \(E(\Gamma^C) = V(\Gamma)^{(k)} \setminus E(\Gamma) \). Equivalently, \(\Gamma = (V, E) \) is self-complementary whenever there exists a permutation \(\tau \in \text{Sym}(V) \), called the antimorphism of \(\Gamma \), such that for all \(e \in V^{(k)} \) the equivalence \(e \in E \iff e^\tau \not\in E(\Gamma) \) holds. Antimorphisms of uniform hypergraphs were characterized in terms of their cyclic decompositions by Wojda in [7].

A \(k \)-hypergraph \(\Gamma \) is \(t \)-subset-regular if there exists an integer \(\lambda \), also called the \(t \)-valence of \(\Gamma \), such that each \(t \)-element subset of \(V(\Gamma) \) is a subset of exactly \(\lambda \) elements of \(E(\Gamma) \). Clearly \(t \)-subset-regular \(k \)-hypergraphs generalize the notion of regular graphs, and can also be viewed as a bridge between graph theory and design theory. Namely, a \(t \)-subset-regular \(k \)-hypergraph of \(\lambda \)-valence and order \(n \) is simply a \(t \)-\((n, k, \lambda) \) design. Moreover, such a \(k \)-hypergraph \(\Gamma \) is self-complementary if and only if the pair \(\{\Gamma, \Gamma^C\} \) forms a large set of \(t \)-designs \(\text{LS}[2](t, n, k) \) with the additional property that the two designs constituting the large set are isomorphic (see [1] for the definition of a large set of designs).

Here a question of existence of a self-complementary \(t \)-subset-regular hypergraph with prescribed parameters \(n, k, \) and \(t \) arises naturally. An easy counting argument shows that whenever a self-complementary \(t \)-subset-regular \(k \)-hypergraph on \(n \) vertices exists, then \(\binom{n-i}{k-i} \) is even for all \(i = 0, \ldots, t \).

It can be seen that the above divisibility conditions can in fact be expressed in terms of certain congruence conditions on \(n \) modulo an appropriate power of 2 (see [4]). For example if \(k = 2^\ell \) or \(k = 2^\ell + 1 \) for some positive integer \(\ell \), then \(n \) is congruent to one of \(t, \ldots, k-1 \)

*Department of Mathematics, Faculty of Civil Engineering, Slovak University of Technology, Radlinského 11, 813 68 Bratislava, Slovakia, knor@math.sk.
†Faculty of Mathematics and Physics, University of Ljubljana, Slovenia, and Institute of Mathematics, Physics, and Mechanics, Jadranska 19, SI-1000 Ljubljana, Slovenia, primoz.potocnik@fmf.uni-lj.si.
modulo 2^{t+1}. In particular, if $k = 2$ and $t = 1$, then $n \equiv 1 \pmod{4}$; if $k = 3$ and $t = 1$, then $n \equiv 1 \pmod{2}$; if $k = 3$ and $t = 2$, then $n \equiv 2 \pmod{4}$.

In [5] the following question, strengthening Hartman’s conjecture [3] about existence of large sets of (not necessarily isomorphic) designs, was raised:

Question. [5] Is it true that for every triple of integers $t < k < n$ such that $\binom{n-i}{k-i}$ is even for all $i = 0, \ldots, t$, there exists a self-complementary t-subset-regular k-hypergraph of order n?

It is well known (see [6]) that a regular self-complementary graph on n vertices exists if and only if n is congruent to 1 modulo 4, showing that the answer to the above question is affirmative for $k = 2$ and $t = 1$. Recently, the answer was proved to be affirmative also for the case $k = 3$ and $t = 1$ (see [5]). The aim of this note is to show that the answer to the question above is affirmative also for the remaining case of 3-hypergraphs, namely for the case $k = 3$, $t = 2$. More precisely, in Section 2 we present a construction which proves the following:

Theorem 1 If $n \geq 6$ and n is congruent to 2 modulo 4, then there exists a 2-subset-regular self-complementary 3-hypergraph on n vertices.

2 Construction

Let $n = 4k + 2$ for some integer k. For $i = 0, 1$, let $V_i = \{0, 1, \ldots, (2k)\}$ be a copy of the the ring \mathbb{Z}_{2k+1}. Define Γ_n to be the 3-hypergraph with vertex set $V = V_0 \cup V_1$ and edge set $E = E_1 \cup E_2 \cup E_3$, where

\[
E_1 = V_0^{(3)},
\]

\[
E_2 = \{\{a_0, b_0, c_1\} : a, b \in \mathbb{Z}_{2k+1}, a \neq b, c = \frac{a + b}{2}\},
\]

\[
E_3 = \{\{a_0, b_1, c_1\} : a, b, c \in \mathbb{Z}_{2k+1}, a \neq \frac{b + c}{2}\}.
\]

Note that 2 is invertible in \mathbb{Z}_{2k+1}, hence dividing by 2 in the definitions of E_2 and E_3 is well defined.

First we show that Γ_n is 2-subset-regular, i.e. we show that each pair of vertices is contained in exactly $(n-2)/2 = 2k$ edges. There are four types of pairs of vertices to consider:

(a) A pair a_0, b_0, where $a, b \in \mathbb{Z}_{2k+1}, a \neq b$. This pair is contained in $2k-1$ edges of E_1 and in a unique edge in E_2. As it is contained in none of the edges of E_3, the pair is in total of $2k$ edges.

(b) A pair a_1, b_1, where $a, b \in \mathbb{Z}_{2k+1}, a \neq b$. This pair appears only in $(2k + 1) - 1 = 2k$ edges of E_3.

(c) A pair a_0, a_1, where $a \in \mathbb{Z}_{2k+1}$. This pair also appears only in the edges of E_3. In fact, it appears precisely in the $2k$ edges of the form $\{a_0, a_1, b\}, b \in \mathbb{Z}_{2k+1} \setminus \{a\}$.

(d) A pair a_0, c_1, where $a, c \in \mathbb{Z}_{2k+1}, a \neq c$. This pair is contained in the edge $\{a_0, c_1, (2c - a)_0\}$ of E_2, and in the $2k - 1$ edges of the form $\{a_0, c_1, b\}$ where $b \in \mathbb{Z}_{2k+1} \setminus \{2a - c\}$, of E_3. Hence this pair is in exactly $2k$ edges of Γ_n.

This proves that Γ_n is a 2-subset-regular hypergraph. To prove that it is self-complementary, note that the mapping $\phi : V \to V$ defined by $\phi(a_i) = a_{i+1}$, for $i = 0, 1$, with addition in the subscript being modulo 2, is an antimorphism of Γ_n. \hfill \square
We remark that Γ_n is not a vertex-transitive hypergraph if $n > 6$ (check the complete sub-hypergraphs of order $n/2$). However, in Γ_6 every pair of vertices appears in exactly two edges. Hence Γ_6 can be considered as a triangular embedding of a complete graph K_6 into a surface (see [2] for a detailed account on graph embeddings). In fact, Γ_6 represents a regular triangulation of the projective plane by K_6. As a consequence, Γ_6 is vertex-transitive.

Acknowledgement. This paper was partially supported by the Slovak-Slovenian bilateral project, grant no. SK-SI-01906. Martin Knor acknowledges partial support by the Slovak research grants VEGA 1/0489/08, APVT-20-000704 and APVV-0040-06.

References

