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Abstract

A complete enumeration is given of orientable biembeddings in-
volving five of the 80 Steiner triple systems of order 15. As a conse-
quence, it follows that each of the 80 systems has a biembedding in
an orientable surface, and precisely 78 of the systems have orientable
self-embeddings.
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1 Introduction

This paper is concerned with biembeddings of Steiner triple systems. A
Steiner triple system of order n, STS(n), is a pair (V,B), where V is a set
of n points and B is a collection of triples, also called blocks, taken from
V and such that every pair of distinct points from V appears in precisely
one block. Such systems exist if and only if n ≡ 1 or 3 (mod 6) [10].
Biembeddings of such systems in orientable and nonorientable surfaces arise
as follows. Consider a triangular embedding M of the complete graph Kn in
the orientable surface Sg, the sphere with g handles, or in the nonorientable
surface Nγ , the sphere with γ crosscaps. If the faces of M can be properly
2-coloured then the faces in each colour class form an STS(n). Euler’s
formula gives g (respectively γ) for triangular embeddings of Kn in an
orientable (respectively nonorientable) surface, namely g = (n−3)(n−4)/12
(γ = (n − 3)(n − 4)/6). Face 2-colourability requires n to be odd. It
easily follows that a necessary condition for an orientable biembedding is
that n ≡ 3 or 7 (mod 12), and a necessary condition for a nonorientable
biembedding is n ≡ 1 or 3 (mod 6). These necessary conditions are also
sufficient for the existence of such biembeddings, except in the case n = 7,
where there is no biembedding of STS(7)s in the surface N2 [12, 13, 8].

Two STS(n)s, A and B, are said to be biembeddable in some surface if
there exists a face 2-colourable triangular embedding of Kn in that surface
in which the Steiner triple systems arising from the two colour classes are
isomorphic copies of A and B. The issue which then naturally arises is to
determine which pairs of STS(n)s are biembeddable. For v = 3 there is a
trivial and unique embedding of a triangle in the sphere, and this provides
a biembedding of STS(3)s. The STS(7) is unique and there is precisely one
biembedding of the system, this with an isomorphic copy of itself, in the
torus S1. Here and subsequently when enumerating, we refer to the number
of isomorphism classes. For the STS(9), which is also unique, there is again
precisely one biembedding, again with an isomorphic copy of itself, in the
nonorientable surface N5 [1, 7]. There are two STS(13)s, one is cyclic and
the other is not. We will refer to these here as C and N respectively. There
are 615 biembeddings of C with C, 8 539 biembeddings of C with N , and
29 454 biembeddings of N with N [9], all of these being in the nonorientable
surface N15.

Biembeddings of STS(15)s lie in either the orientable surface S11 or the
nonorientable surface N22. A complete enumeration of all these biembed-
dings is probably beyond current computational capabilities. There are
80 isomorphism classes of STS(15)s and we follow the standard numbering
of these given in [11]. It was shown in [5] that every pair, including iso-
morphic pairs, has a biembedding in a nonorientable surface. However, it
was proved in [4] that at least one pair, namely {#1,#2} in the standard
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numbering, has no biembedding in an orientable surface. Furthermore, in
[6] it was shown that there is no biembedding in an orientable surface of a
pair of isomorphic copies of #2. It was known from the work of Ringel [12]
that system #80 has an orientable biembedding with an isomorphic copy
of itself (a self-embedding). This embedding was originally constructed by
means of a bipartite index 3 current graph, and two further examples of this
type are the self-embeddings of systems #1 and #76 given in [3]. All three
of these self-embeddings have automorphism groups of order 10, with the
automorphisms of even order exchanging the colour classes. The systems
#1, #76 and #80 are the only three systems with an automorphism of or-
der 5; indeed both #1 and #80 have cyclic automorphisms of order 15 and
they are the only systems which do. System #1 is the point-line design of
the projective geometry PG(3, 2) and has by far the largest automorphism
group (order 20 160) of any of the STS(15)s. Additional details about the
self-embedding of #1 are given in [2]. Structurally #1 is very different from
#80; the former contains 105 Pasch configurations, the maximum possible,
while the latter contains none. (A Pasch configuration is a set of four blocks
of the form abc, xyc, xbz, ayz.) System #2 may be obtained from #1 by
switching any Pasch configuration. This means replacing the four blocks
shown by the blocks xyz, abz, ayc, xbc that cover exactly the same pairs.

In [6] an attempt was made to find an orientable self-embedding of each
of the 80 STS(15)s. The embedding was assumed to have an involutory
automorphism, with a single fixed point, that reversed the colour classes.
Self-embeddings of this type were found for 78 of the 80 systems. One of
the exceptions was system #2 as already noted, and the other was #79,
although in this latter case the existence of an orientable self-embedding
remained unsettled. However, a biembedding of #79 with #77 was discov-
ered.

In the current paper we give all orientable biembeddings in which one of
the two systems is one of #1, #2, #76, #79, #80. As noted above, all five of
these systems have interesting characteristics. With the current methods
of computer searching, systems with small automorphism groups are the
most time consuming. The automorphism group orders of the five systems
analyzed in this paper are respectively 20 160, 192, 5, 36, 60. Analysis of
these systems has taken a substantial amount of computer time on existing
standard PC equipment. Of the remaining 75 systems, 36 have only a trivial
automorphism group and only ten have a group of order greater than 8. We
intend to continue with the remaining 75 systems, but results will not be
available for some time. We believe that our interim results are significant
and their publication is timely, particularly as the results for #2 and #79
allow us to state the two theorems of Section 4.
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2 Method

The biembeddings were found and verified by two independent computer
programs. Both these programs take two systems A and B from the listing
of [11]. The representation of system A is not altered, but permutations
are in turn applied to the vertices of system B. For each permutation, two
sets of triangles result, those from A and those from B. To form a surface
embedding we have, for example, the trivial test that these sets of triangles
must be disjoint. During the examination of possible permutations, the
automorphism groups of the two systems are exploited. If we examine all
permutations π that take a point b of B to a point a of A, then we do
not need to consider further any other permutation π′ that takes a point
in the orbit of b under Aut(B) to a point in the orbit of a under Aut(A).
Furthermore, if φ ∈ Aut(B) fixes b then checking the permutation π suffices
also to check the permutation πφ.

In the first computer program we use an enhanced procedure for the
construction of the permutation. One vertex, say a1, is chosen. Assume
that the triples of A containing a1 are a1a2a3, a1a4a5, . . . , a1a14a15. Then
in any biembedding, in the rotation around a1 there are pairs a2a3, a4a5,
. . . , a14a15. Since these pairs may be reversed and mutually interchanged,
there are 6! · 26 = 46 080 possible rotations at a1, and these are considered
in turn. In any biembedding of A with B, one vertex of B is mapped to
a1, and some other vertex is mapped to a2. But as we already have the
rotation at a1, the image of the third vertex in the triple from B containing
the inverse image of the pair a1a2 is determined. Similarly, the image
of a fourth vertex determines that of a fifth vertex, and so on. In this
way, only 15 · 14 · 12 · . . . · 2 = 9 676 800 permutations are constructed for
each possible rotation at a1. So, all together, for every pair of systems
we examine (46 080) · (9 676 800) = 445 906 944 000 possible permutations
instead of 15! = 1 307 674 368 000, that is approximately one-third. But in
fact, by using the automorphism groups of A and B as described above,
a much smaller number is examined. To confirm that a biembedding is
formed, we simply check that the rotation at each vertex is a single cycle
of length 14. To test for orientability, we fix the orientation of the triangle
a1a2a3. This implies an orientation for all the other triangles. Since every
triangle is in three rotations, after assigning it an orientation, we check the
two further occurrences.

In the second computer program all 15! permutations are considered
lexicographically. However, in the generation of these, it is possible to skip
large sets of consecutive permutations for which it is clear at an early stage
of partial completion that an orientable biembedding cannot result. If we
have a partially specified permutation π∗ and we find that a resulting trian-
gle T from π∗(B) either closes a rotation at some vertex “too early” (that
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is, creates a cycle of length less than 14), or causes nonorientability of the
surface, then we may skip all fully specified permutations π that represent
completions of π∗. These checks, especially that for nonorientability, are
quite time consuming. Although they allow us to reject many unsuitable
permutations, the running time of this second program is very similar to
that of the first.

Each of the two programs was applied with B taken in turn as one
of the systems #1, #2, #76, #79, #80, and with A running through all
80 systems. It is easy to determine possible isomorphisms between two
biembeddings since it is only necessary to consider at most 15 · 14 · 2 = 420
mappings. Determination of automorphisms is similar. After discarding
isomorphic copies we were left with just 91 orientable biembeddings.

3 Results

In the following table we give all 91 orientable biembeddings involving sys-
tems #1, #2, #76, #79 and #80. These systems feature in 1, 4, 69, 14
and 3 orientable biembeddings respectively. The first two columns give
the numbers of the two biembedded systems A and B from the standard
listing of [11]; the second number, which corresponds to B, is one of 1,
2, 76, 79 and 80. The third column gives the order of the automorphism
group of the biembedding. The remaining 15 columns specify the permu-
tation of the vertices of B, which gives a biembedding with system A taken
directly (unaltered) from the standard listing. So, for example, the sec-
ond line in the table gives a biembedding of systems #11 and #2, with
a trivial automorphism group, and the biembedding is realized by tak-
ing the listings of these systems from [11] and applying the permutation(

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
2 8 4 6 14 12 5 1 10 3 15 11 7 13 9

)
to system #2.

1 1, 10; 1 8 10 3 5 2 12 7 4 6 9 11 14 15 13
11 2, 1; 2 8 4 6 14 12 5 1 10 3 15 11 7 13 9
14 2, 1; 5 4 11 9 3 14 6 8 13 1 7 12 10 2 15
27 2, 1; 10 12 9 11 5 13 15 1 2 14 4 8 7 6 3
66 2, 1; 4 10 8 3 15 1 14 2 12 13 6 9 11 5 7
4 76, 1; 8 1 15 11 14 9 13 10 12 4 3 7 2 5 6
8 76, 1; 8 9 15 10 13 6 12 11 1 14 2 7 3 4 5
9 76, 1; 9 4 8 15 14 13 3 12 1 2 10 11 6 5 7

10 76, 1; 9 2 8 1 7 15 6 5 4 14 11 10 12 3 13
11 76, 1; 1 14 2 10 9 8 12 3 4 5 11 6 15 13 7
18 76, 1; 8 14 3 2 7 1 12 11 9 10 6 4 5 13 15
21 76, 1; 2 12 14 6 11 13 3 1 10 5 9 15 4 8 7
21 76, 1; 2 4 8 7 11 1 14 10 15 5 12 13 3 9 6
21 76, 1; 2 4 7 11 3 9 5 13 12 15 10 6 14 1 8
22 76, 1; 8 6 15 14 4 7 13 5 10 2 1 9 11 12 3
23 76, 1; 5 1 12 13 2 7 10 11 6 9 3 8 4 15 14
24 76, 1; 3 11 2 14 9 7 12 10 4 6 8 13 1 15 5
25 76, 1; 1 9 6 12 4 8 14 15 11 10 2 13 3 7 5
26 76, 1; 1 13 14 10 15 3 4 7 12 9 11 5 6 8 2
27 76, 1; 1 3 8 15 10 2 12 5 13 14 4 7 9 6 11
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30 76, 1; 1 10 3 12 8 6 9 5 11 2 7 14 4 15 13
33 76, 1; 5 4 7 11 3 1 12 2 14 15 10 9 6 8 13
38 76, 1; 2 3 15 4 8 10 5 14 6 13 7 9 12 1 11
39 76, 1; 5 14 4 8 1 13 11 6 7 12 9 10 2 3 15
40 76, 1; 2 5 10 12 13 9 3 4 11 8 15 14 6 7 1
40 76, 1; 3 1 12 5 10 6 7 13 11 15 4 8 2 14 9
41 76, 1; 1 15 10 11 8 2 9 5 13 7 4 6 14 3 12
41 76, 1; 2 6 11 10 12 9 14 15 4 7 3 8 5 13 1
41 76, 1; 4 13 10 14 3 6 5 12 11 9 8 15 1 2 7
41 76, 1; 7 6 4 10 5 1 13 11 9 12 14 8 3 15 2
45 76, 1; 1 10 8 12 2 6 9 4 14 15 7 11 13 3 5
45 76, 1; 5 3 6 9 13 7 14 8 11 1 10 15 12 2 4
46 76, 1; 1 2 15 4 9 8 6 14 13 10 5 12 7 3 11
46 76, 1; 3 14 15 5 10 4 9 11 12 6 2 7 8 1 13
47 76, 1; 2 12 5 11 14 13 10 4 9 3 8 15 6 1 7
48 76, 1; 6 3 1 13 4 14 12 5 15 11 2 8 7 9 10
49 76, 1; 2 14 10 9 7 15 11 12 13 4 5 8 1 6 3
53 76, 1; 1 15 11 4 7 8 12 2 5 10 13 9 3 6 14
53 76, 1; 2 1 15 11 5 7 6 14 4 9 10 12 13 3 8
53 76, 1; 4 11 2 9 15 7 8 12 13 5 10 6 1 14 3
54 76, 1; 2 12 5 8 9 3 15 11 4 13 7 10 1 6 14
55 76, 1; 2 6 10 8 11 1 9 3 5 4 14 15 12 13 7
55 76, 1; 2 1 4 13 7 14 3 9 6 5 10 11 15 12 8
56 76, 1; 1 3 14 11 5 7 12 10 15 2 6 9 13 4 8
57 76, 1; 1 7 4 14 13 12 9 8 11 10 3 2 6 5 15
57 76, 1; 1 12 3 7 8 13 5 10 6 2 9 14 4 15 11
57 76, 1; 1 2 6 3 15 8 14 10 7 13 9 11 4 12 5
58 76, 1; 4 14 2 7 3 9 11 1 8 12 6 5 15 13 10
60 76, 1; 2 1 9 5 8 3 6 11 15 12 10 7 13 14 4
61 76, 1; 1 7 9 12 6 15 11 8 5 10 13 3 4 2 14
66 76, 1; 5 7 14 9 3 13 8 1 10 11 12 6 4 15 2
67 76, 1; 1 4 9 10 7 13 8 3 6 11 12 15 2 14 5
67 76, 1; 1 10 6 4 12 5 9 13 7 2 15 3 11 14 8
67 76, 1; 2 3 15 11 13 7 8 5 14 4 1 10 12 9 6
68 76, 1; 1 6 12 13 5 10 4 8 7 2 14 9 15 3 11
68 76, 1; 1 14 6 5 15 8 13 9 11 10 2 12 4 7 3
69 76, 1; 3 14 13 5 15 9 4 2 8 12 1 11 7 10 6
70 76, 1; 5 15 7 12 4 9 6 10 13 2 14 11 3 8 1
71 76, 1; 2 7 3 8 5 6 9 1 4 13 12 11 15 14 10
71 76, 1; 4 14 11 13 15 7 5 1 10 3 2 6 9 8 12
72 76, 1; 1 2 7 6 15 3 12 10 14 4 11 13 8 5 9
72 76, 1; 6 13 12 10 5 9 11 3 14 2 1 15 7 4 8
73 76, 1; 1 15 11 12 8 4 10 5 9 13 2 14 7 6 3
76 76, 2; 1 8 14 7 4 12 11 9 6 13 3 15 2 10 5
76 76, 2; 1 14 6 15 2 7 4 11 8 10 13 5 9 3 12
76 76, 2; 1 3 12 8 14 2 4 10 13 5 7 6 15 11 9
76 76, 2; 1 4 3 11 7 15 10 14 12 6 9 5 13 2 8
76 76, 2; 2 1 10 15 5 12 13 9 8 3 14 6 7 11 4
76 76, 5; 1 2 15 12 10 11 9 13 4 6 5 7 3 14 8
76 76, 5; 1 11 14 9 6 2 12 3 7 10 5 4 13 15 8
76 76, 10; 2 1 14 10 9 12 11 13 5 4 7 6 8 3 15
76 76, 10; 2 1 8 10 9 12 11 3 5 4 7 6 15 14 13
76 76, 10; 2 1 15 10 9 12 11 14 5 4 7 6 13 8 3
76 76, 10; 2 1 13 10 9 12 11 8 5 4 7 6 3 15 14
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18 79, 1; 10 8 9 2 13 14 3 1 12 5 6 11 7 15 4
23 79, 1; 9 2 1 14 11 7 5 12 13 8 3 10 15 6 4
24 79, 1; 8 2 11 7 15 13 3 9 14 12 1 6 4 10 5
27 79, 1; 4 1 14 12 11 8 15 9 3 5 6 7 13 10 2
27 79, 1; 10 2 14 9 7 3 1 12 8 4 15 5 13 6 11
28 79, 1; 4 1 13 2 12 10 8 9 3 7 5 6 14 15 11
34 79, 1; 3 1 6 12 11 15 4 9 7 14 5 10 13 8 2
40 79, 1; 15 2 1 9 6 10 8 12 14 13 7 11 5 4 3
41 79, 1; 5 1 3 7 8 15 4 11 9 14 10 6 12 13 2
55 79, 1; 3 1 15 10 11 2 6 14 13 8 12 4 9 7 5
55 79, 1; 13 2 9 3 14 4 6 8 7 15 1 11 5 10 12
58 79, 1; 11 1 3 8 13 5 4 10 7 12 9 2 15 14 6
65 79, 1; 6 2 15 12 9 7 8 4 1 14 10 11 13 3 5
77 79, 3; 8 1 3 14 2 10 12 9 15 7 11 6 5 4 13
51 80, 1; 1 15 11 6 8 3 7 12 10 4 13 9 14 5 2
52 80, 1; 1 15 12 14 5 6 4 7 9 13 11 3 8 2 10
80 80, 10; 1 3 11 10 5 9 7 6 4 15 13 12 8 14 2

4 Conclusion

The enumeration results given in this paper provide the final pieces in
determining the answers to two questions concerning the biembeddability
of STS(15)s. These are: which of the 80 nonisomorphic systems can be
biembedded with some system in an orientable surface, and which have
self-embeddings? We can state the following two theorems.

Theorem 4.1 Each of the 80 nonisomorphic STS(15)s has a biembedding
with some STS(15) in an orientable surface.

Theorem 4.2 Of the 80 nonisomorphic STS(15)s, 78 have a self-embedding
in an orientable surface. The two exceptions which have no such self-
embeddings are #2 and #79 in the standard listing.

The results also enable us to identify many pairs of STS(15)s which are
not biembeddable in an orientable surface. As we remarked in Section 2,
previously the only pairs which were known not to be biembeddable were
#1 with #2 and #2 with itself. In fact, system #1 can only be biembedded
with itself and this biembedding is unique [2]. Systems #2 and #80 also
have relatively few biembeddings.
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