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1. Introduction and results

Let G be a graph. Its radius and diameter are denoted by rad(G) and
diam(G), respectively. A graph is selfcentric if rad(G) = diam(G), other-
wise it is non-selfcentric. We say that the graph G is radially-maximal
if adding of any edge from its complement decreases its radius, i.e., if
rad(G ∪ e) < rad(G) for every edge e from G.
Obviously, for every r there is a radially-maximal graph of radius r, as

can be shown by complete graphs (in the case r = 1) and even cycles (in
the case r > 1). Both complete graphs and cycles are selfcentric graphs.
One may expect that a graph is radially-maximal if it is either a very dense
or a balanced (highly symmetric) one. Therefore, it is interesting that for
r ≥ 3 there are non-selfcentric radially-maximal graphs of radius r which
are planar. Such graphs are neither symmetric nor dense. In fact, in [1] we
have the following conjecture:

Conjecture A. Let G be a non-selfcentric radially-maximal graph with

radius r ≥ 3 on the minimum number of vertices. Then we have

(a) G has exactly 3r − 1 vertices;
(b) G is planar;
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(c) the maximum degree of G is 3 and the minimum degree of G is 1.

Conjecture A was verified for the case r = 3 (see [1]). By an exhaus-
tive computer search it was shown that there are just two non-selfcentric
radially-maximal graphs of radius 3 on at most 8 vertices. These graphs
are depicted in Figure 1. As one can see, they are planar, their minimum
degree is 1, the maximum degree is 3, and each of them has exactly 8
vertices.
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Figure 1

For higher values of r the conjecture was open. However, in [2] Haviar,
Hrnčiar and Monoszová published a very nice result:

Theorem B. Let G be a graph with rad(G) = r, diam(G) ≤ 2r − 2, on
at most 3r − 2 vertices. Then G contains a geodesic cycle of length 2r or
2r + 1.

Here we recall that a cycle C in G is geodesic, if for any two vertices
of C their distance on C equals their distance in G. In [3] we have:

Lemma C. Let G be a radially-maximal graph of radius r and diameter

d. Then d ≤ 2r − 2.

Theorem B and Lemma C restrict the candidates for non-selfcentric
radially-maximal graphs of radius r on at most 3r−2 vertices significantly.
Using these two statements we proved the (a) part of Conjecture A for
r = 4 (see [3]):

Theorem D. Let G be a non-selfcentric radially-maximal graph with ra-

dius 4 on the minimum number of vertices. Then G has exactly 11 vertices.

Consequently, using an exhaustive computer search we found that there
are exactly 8 graphs of radius 4 fulfilling all the conclusions of Conjecture A.
These graphs are depicted on Figure 2.

Further, generalizing the first graph of Figure 1 we obtained (see [3]):

Assertion E. For every r ≥ 3 there exists a non-selfcentric radially-
maximal graph with radius r on 3r − 1 vertices.
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Unfortunately, without a computer we were not able to prove more.
However, as the computers are faster and faster, using an exhaustive com-
puter search we are able to prove that the graphs depicted on Figure 2
are the only non-selfcentric radially-maximal graphs on 11 vertices. This
proves Conjecture A for radius 4. Surprisingly, we are able to go even one
step further. We have:

a b  d
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Figure 2

Theorem 1. Conjecture A is true for the cases r = 4 and r = 5. More-
over,

(1) in the case r = 4 there are exactly 8 non-selfcentric radially-maxi-
mal graphs on 11 vertices,

(2) in the case r = 5 there are exactly 22 non-selfcentric radially-
maximal graphs on 14 vertices.

The graphs mentioned in part (2) of Theorem 1 are in Figure 3. One
can observe that all these graphs are in a way similar to those on Figures 1
and 2. The only exception is the fourth graph of the first row of Figure 3,
which is unicyclic. But though being non-selfcentric, the automorphism
group of this graph has order 4, so that this graph is in a way a “balanced
one”.
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Figure 3

In the next section we describe the algorithm which found all the graphs
on Figures 2 and 3.

2. Description of algorithm

In this section we describe the computer programme, which found the
graphs depicted in Figures 2 and 3.
Every graph can be completed to a radially-maximal one, simply by

adding edges which do not decrease the radius. This observation was used
in designing the algorithm. We start with a graph, say H, and in a proce-
dure Adding we complete its adjacency matrix, which is of size n×n. More
precisely, from a given pair, say (k, l) where k < l, we check all the entries,
i.e., edges e, in the following order:

(vk, vl+1), (vk, vl+2), . . . , (vk, vn), (vk+1, vk+2), (vk+1, vk+3), . . . , (vn−1, vn)

where v1, v2, . . . , vn are the vertices. Whenever the adding of e does not
decrease the radius below r, we add e to the graph.
The procedure Adding finishes by examining the edge (vn−1, vn). Then

we check if the graph, we just constructed, is radially-maximal. For all
edges e from G the procedure Checking checks if rad(G∪ e) < rad(G) = r.
If the check is succesfull for all edges of G, the graph is radially-maximal.
In any case, we have to find another graph. A simple procedure Search

finds the last edge (in the ordering mentioned above) of the adjacency
matrix of G − H. Suppose that this last edge is (vk, vl). Then (vk, vl) is
erased and we call Adding from the next entry of the adjacency matrix. If
k = n − 1 and l = n, i.e., if the found edge is the last one in the ordering
mentioned above, then we canot call Adding. In such a case we call Search

once again. On the other hand, if Search does not find any added edge of
G − H, the programme terminates.
This is the sketch of our computer programme, so that now we can go

into details.
As we are interested in non-selfcentric graphs, we start with a path P

of length r+1 on vertices v1, v2, . . . , vr+2. In fact, this path is the starting
graph H. And in all the programme we expect that P is a geodesic path
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(i.e., the distance on P equals the distance in the whole graph G). This is
checked in the procedure Adding whenever we add a new edge.
In order to skip graphs which are wrong, we added to Adding yet another

check. A vertex, which is eccentric to the central vertex of P , must lie
outside P . We set this vertex to be vr+3, and we check if the distance from
v⌊(r+3)/2⌋ to vr+3 is at least r.
After some experiments we found that almost all the time is spend by

a small procedure which checks the radius using the breadth-search. To
shorten the running time we had to improve this procedure. This was done
in two obvious steps.
First we introduced an array N in which N(i, 0) denotes the degree of

vi and N(i, 1), N(i, 2), . . . , N(i, N(i, 0)) denotes the N(i, 0) neighbours of
vi. Moreover, if N(i, j) = k for j > 0, then in the adjacency matrix A we
have A(i, k) = j. This enables us to address the elements in breadth-search
directly.
The second step was that the bredth-search does not run from all the

vertices. We skipped vertices vj , which were already found to be at distance
at least r from some vi, where i < j.
Now we describe the output. Since at present there is not known a

polynomial algorithm for deciding whether two graphs are isomorphic, we
have to utilize the expected structure of generated graphs. We developed
an invariant based on the breadth-search. Let us denote by NG

t (v) the
set of vertices of G, which are at distance t from v. Further, denote by
nt(v) the number of vertices in NG

t (v). To each vertex we attached the
sequence S(v) = n1(v), n2(v), . . . , nn−1(v). Now we find a vertex w which
is lexicographically first acording to the sequence S. Then we list the
vertices in order w, NG

1 (w), N
G
2 (w), . . . so that for specific i, all the vertices

of NG
i (w) are listed lexicographically with respect to S. In such a way, the

8 graphs on Figure 2 have 9 different representations and the 22 graphs on
Figure 3 have 23 different representations. The graphs, which allow two
different representations, are the first graph of the second row on Figure 2
and the first graph of the fifth row on Figure 3.
Using the computer programme just described, it was found that there

are exactly 8 non-selfcentric radially-maximal graphs of radius 4 on 11
vertices. The running time was 11 seconds on a recent 2007 laptop in the
programming language C under Linux.
For radius 5 the programme was slightly improved. Since all the vertices

of P are at distance at most 3 from the vertex v4, we included the edge
(v8, v9) to the starting graph H. Here we recall that the distance from v4
to v8 has to be at least r. Finally, to get rid of redundant cases, we admit
an edge (vi, vj) for i ∈ {1, 2, . . . , 9} and j ∈ {10, 11, . . . , 14} only if j = 10
or if there is y ≤ i such that (vy, vj−1) is an edge of our graph.
With all these improvements, the programme found that there are ex-
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actly 22 non-selfcentric radially-maximal graphs of radius 5 on 14 vertices.
The running time was 52 minutes on a recent 2007 laptop in the program-
ming language C under Linux. Of course, this was not enough to state
Theorem 1. We have to prove that there are no non-selfcentric radially-
maximal graphs of radius 5 on less than 14 vertices. Since a cycle is a
selfcentric graph, by Theorem B and Lemma C it was enough to run our
programme on 11, 12 and 13 vertices. The running time was 1, 2 and 30
seconds, respectively, and no non-selfcentric radially-maximal graph was
found.
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